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Abstract

Inductive inferences about objects, properties, categories, re-
lations, and labels have been studied for many years but there
are few attempts to chart the range of inductive problems that
humans are able to solve. We present a taxonomy that includes
more than thirty inductive problems. The taxonomy helps to
clarify the relationships between familiar problems such as
identification, stimulus generalization, and categorization, and
introduces several novel problems including property identifi-
cation and object discovery.
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Attempts to systematize knowledge have proven useful in
several fields. Mendeleev presented a periodic table of the
chemical elements that helped to clarify relationships be-
tween known elements and that made predictions about the
existence of new elements. Adelson and Bergen [1] devel-
oped a “periodic table” of early vision that maps out a space
of visual computations and identifies several that had previ-
ously received little attention. This paper aims to make a sim-
ilar contribution to the study of inductive inference. We de-
scribe a taxonomy of inductive problems that aims to clarify
the relationships between different problems and to highlight
problems that have previously been overlooked.

An inductive inference goes beyond the information given
and reaches a conclusion that is likely but not certain given
the available evidence. Inferences of this kind are relevant to
almost every area of cognition, and take place, for example,
when humans predict the motion of an occluded object, guess
the meaning of a novel word, or decide how to grasp an object
that is encountered for the first time. We will not discuss vi-
sion, language, or motor control, but instead focus on a cluster
of problems from an area that has been called semantic cog-
nition. Research in this area aims to capture knowledge about
objects and their properties, categories or collections of ob-
jects, relationships between objects, and word meanings. The
relevant literature includes studies of property induction [7],
categorization (both supervised [12] and unsupervised [2]),
stimulus generalization [15], identification [12], and word
learning [17].

Accounts of semantic cognition differ in many respects but
most of them rely on six basic notions: objects, properties,
categories, relations, labels, and truth values. Our taxonomy
takes these six notions as a starting point and attempts to chart
the space of inductive problems that can be posed given a
commitment to these notions. Two familiar problems that be-
long to this space are categorization and property induction,
or deciding whether an object has an unobserved property.

Most psychological work on inductive inference focuses on
a single inductive problem, but some existing frameworks ad-
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dress multiple problems [7]. For example, exemplar models
that formalize objects as points in a multidimensional space
have been used to account for several problems including
identification, stimulus generalization, recognition, and cat-
egorization [13]. Our taxonomy includes all of these prob-
lems along with many others. Since we aim to characterize
inductive problems rather than to describe the psychological
mechanisms that allow them to be solved, we hope that our
taxonomy will be useful to researchers from many different
traditions, including modelers who pursue probabilistic, log-
ical, or connectionist approaches. The taxonomy we describe
can serve as a guide for future work, and future models and
experiments can address the problems that it contains.

A semantic repository

Our approach proposes that semantic knowledge can be cap-
tured in terms of objects, relations, labels and truth-values.
Our goal is to characterize all inductive problems that can be
formulated in terms of these notions.

We assume that knowledge about objects, relations and la-
bels can be organized into a semantic repository. Let O be
a set of objects, L be a set of labels, and 7" be the set {1,0}
that includes two truth values. For most cases that we con-
sider, set O will include individuals such as dogs, people, and
chairs, and set L will include strings of phonemes such as
“Fido,” “dog,” and “brown.” Here we discuss a running ex-
ample where O and L include the four people and the seven
labels shown in Figure 1.

Sets O, L and T correspond to primitive types, and rela-
tions are constructed out of these types. Any property can be
formalized as a unary relation r : O — T that assigns a truth
value (1 or 0) to each object depending on whether it has the
property. Figure 1 shows a property 1 (-) that includes three
of the four objects and can be glossed as bearded(:). A cat-
egory can also be formalized as a unary relationr : O — T
where the truth values now indicate whether a given object
belongs to the category. Figure 1 shows a category r(-)
that can be glossed as Sikh(-). Binary relations of the form
r: O x O — T assign a truth value to each pair of objects.
In Figure 1, for example, relation r3(-,-) can be glossed as
parent(-, -), and assigns value 1 to all pairs (0;,0;) such that
0, is the parent of 0;. Relations with three or more places can
also be considered, but here we focus on unary and binary
relations.

Both objects and relations can be associated with labels.
Object labels can be captured by arelationr : Ox L — T that
indicates for each pair (o;, ;) whether [; is a label of object
o0;. Figure 1 shows, for example, that each of the four objects
in the repository has a unique label. Labels for the unary
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Figure 1: A small semantic repository that includes six rela-
tions with the types shown in Table 1. The set of relations
includes unary relations that can be glossed as bearded(-) and
Sikh(-), a binary relation that can be glossed as parent(-, -),
and three name(-, -) relations that specify labels of the ob-
jects, the unary relations, and the binary relation.

Type Description
r:0—T property

r:0—T category
r:0Ox0—T binary relation
n:0OxL—-T object labels
n:(r:0—-T)xL—-T property/category labels
n:(r:0Ox0 —T)xL—T binary relation labels

Table 1: Six examples of the many kinds of relations that can
appear in the semantic repository. Each relation is built from
the three primitive types (O, L and T'). Examples of each
kind of relation are shown in Figure 1.

relations are captured by arelationn : (r: O — T)xL — T,
and labels for the binary relations are captured by a relation
n:(r:0Ox0 — T)x L — T. The three name(-, -) relations
in Figure 1 have different types and are therefore distinct, but
we will overload our notation and use name(-, -) to refer to
each of them.

A semantic repository captures what is true about the
world. A very general problem faced by humans is to make
inferences about the contents of this repository given par-
tial and noisy data. This paper discusses three instances
of this general problem. We first consider two problems—
generalization and discovery—that arise when the available
data specify a partially observed repository R,s. We then
consider a third problem—identification—that arises when
the available data specify information about object and re-
lation tokens, and the reasoner may be unsure whether two
tokens correspond to the same relation or object. The three
problems we consider are captured by the hierarchical frame-
work in Figure 2. The ultimate goal of the reasoner is to re-
cover the repository R at the top of the hierarchy, and this
repository must be inferred given a partially observed reposi-
tory R,ps or given token data 7" that form an incomplete spec-
ification of a partially observed repository.
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Figure 2: A hierarchical framework for specifying inductive
problems. Semantic repository R contains information about
objects (0;) and relations (r;) and can be formalized as a list
of statements. R, is a partially observed version of R. The
token data T" are an incomplete specification of R that in-
clude information about object tokens (o} ) and relation tokens
(r}) and identity relations over these tokens. If the identity re-
lations I, and I, are fully observed, then 7" and R, will be
equivalent. Note, however, that the identity relations are typ-
ically partially observed, reflecting uncertainty about which
tokens correspond to the same relation or object.

Generalization

Suppose first that a reasoner is given a partially observed
repository R,,s—for example, a version of Figure 1 where
one or more of the entries are replaced by question marks.
Generalization is the problem of making inferences about
these unobserved entries. A partially observed repository can
be represented as a list of statements like the examples in Fig-
ures 2 and 3a. Given these statements as input, generalization
can be formalized as the problem of deciding whether or not a
new statement is true. In Figure 3a, for example, the reasoner
must decide whether r2(03) = 1 or 72(03) = 0.

At least two special cases of the problem of generalization
can be distinguished. Object generalization can be defined as
the problem of making inferences about a sparsely observed
object. Suppose, for instance, that you meet a new person
and observe only some of his properties and relationships
with others. Making inferences about this new acquaintance
is an example of object generalization. Relation generaliza-
tion can be defined as the problem of making inferences about
a sparsely observed relation. Suppose, for instance, that you
learn about a new property (e.g. carries the T4 gene) or a new
category (e.g. mesomorph), and observe a single instance of
a person with the property or category. Deciding which other
people have the property or belong to the category is an ex-
ample of relation generalization.

As characterized here, the problem of generalization in-
cludes several problems that go by different names in the psy-
chological literature. Stimulus generalization and property
induction are two prominent examples—the first is similar to



object generalization, and the second to relation generaliza-
tion. Categorization or classification is a third problem that
falls under the heading of relation generalization. Since we
formalize a category as a unary relation, reasoning about the
extension of a novel category reduces to the problem of rela-
tion generalization.

Discovery

One family of generalization problems includes cases where
the partially-observed repository R.ps includes all objects
and relations of interest and the inductive challenge is to in-
fer statements about these relations and objects that are true
but unobserved. A second family includes cases where some
objects or relations are not mentioned at all in R,;s. Note,
for example, that R,;s in Figure 2 does not mention relation
r2(-) or objects o3 and o4. Discovery is the problem of infer-
ring the existence of an object or relation that has not been
observed.

The problem of relation discovery has received some at-
tention in the psychological literature. In one version of the
problem, the relations to be discovered are unary relations
that specify the category assignments of a set of objects. The
problem of discovering these categories is sometimes known
as unsupervised categorization. We previously suggested, for
example, that a learner might group Sikhs into a category
(ro(+) in Figure 2) without being taught about the existence
of this category. To give a second example, the first European
explorers to visit Australia were able to organize the animals
they saw into categories without needing a teacher to provide
category labels. Further examples of relation discovery can
be found in the literature on theory learning [9] and inductive
logic programming [16]. One common idea is that learners
should search for a short description of the observations they
have made, and this shortest description will sometimes rely
on relations that have not been observed but that help to ex-
plain the available data. For example, if Alice and Bob both
simultaneously come down with a rare illness, we may infer
that the two have recently come into contact.

The problem of object discovery involves inferences about
the existence of objects that have not been observed. Given
the partially observed repository R, in Figure 2, for exam-
ple, a reasoner may infer that Arjun had parents (one of whom
is 03), and that properties of these individuals can help to ex-
plain some of the properties of Arjun. Scientists have been
responsible for some of the most striking examples of object
discovery. Before the planet Neptune was directly observed,
the existence of this object was inferred based on the way
that it interacted with known objects. Many microoorganisms
have also been discovered without the benefit of direct obser-
vation, and Koch’s postulates characterize one case in which
the existence of an unobserved organism can be confidently
inferred.

Identification

So far we have assumed that the information available to a
reasoner takes the form of a partially observed repository
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Figure 3: Inductive inferences are based on information about
objects, relations and labels. (a) In some cases, the avail-
able information corresponds to a partially observed semantic
repository and can be formalized as a list of statements. (b)
In other cases the available information is better described as
a list of statements about object and relation tokens together
with identity relations I, and I, that specify which tokens the
same object or relation. The identity relations here are fully
observed, and the information in (b) is equivalent to the infor-
mation in (a). In general, however, the identity relations will
be partially observed as they are in Figure 2.

Rps involving objects, relations, and labels. In many cases,
however, this partially observed repository cannot be directly
experienced and must instead be constructed from more prim-
itive kinds of observations. Here we assume that the primitive
observations take the form of the token data 7" in Figure 2.
These token data specify information about object tokens,
relation tokens, and labels, where each token is an instance
of an underlying object or relation. Suppose, for example,
that you have met Arjun on two occasions. The information
you gather will refer to two distinct object tokens, and it is
likely you will understand that these tokens are instances of
the same individual. Note, however, that it is entirely possible
to meet the same person twice and to think that the two object
tokens are instances of different individuals.

The notion of a relation token can be introduced using a
common word learning scenario. Suppose that a young child
has noticed that some objects are round—in other words, she
has acquired the unary relation round(-), although she does
not yet know the name of this relation. Suppose now that
the child’s father points to an orange and tells her that this
object is “round.” The child now knows that there is some
unary relation with this label, but may still be unsure whether
the label refers to the round(-) relation or to some other re-
lation. Relation tokens provide a natural way to handle this
uncertainty. A relation token is created when the child thinks
of the relation round(-), and another relation token is created
and associated with the label “round.” Given these two to-
kens, the child may well be unsure whether they are instances
of the same underlying relation.

It is possible to introduce a distinction between a label, or
a sequence of phonemes, and a label token, or an utterance
of a label that is spoken in a particular accent and that may
include speech errors. For simplicity, we avoid making this
distinction here, and assume instead that labels and naming
relations name(+, -) can both be directly observed.

The problem of identification can now be formalized. Sup-
pose that a reasoner is given a list of statements that spec-
ify information about object tokens and relation tokens (Fig-
ure 3b). Suppose also that there are two identity relations,



one for object tokens (I,) and one for relation tokens (I,.).
I,(0},07) = 1if tokens o} and o} are instances of the same
object, and I,-(r},77) = 1if tokens 7} and r} are instances
of the same relation. Each identity relation may be partially
observed—in Figure 2, for example, the reasoner is not sure
whether o7 and o5 correspond to the same object, and whether
r] and r3 correspond to the same relation. The problem of
identification is to infer which tokens correspond to the same
underlying entity—in other words, to infer the relations I,
and I,

A closely related problem is known as recognition [13].
Suppose, for example, that Bill, Bob and Ben are triplets and
that you have met all three. One day you see a boy in the
store and recognize him as a person you have seen before,
even though you cannot identify him as Bill, Bob or Ben. As
this example suggests, recognition is the problem of deciding
whether a token is an instance of a previously-observed en-
tity without necessarily identifying the entity involved. This
problem can again be formulated as an inference about the
identity relations I, and I, in Figure 2. In the recognition
setting, a reasoner may be uncertain about the contents of I,
but may infer enough about this relation to know whether a
given object has previously been observed.

Although this section has focused on identification, the two
inductive problems previously described (generalization and
discovery) can be formulated given raw data in the form of
object and relation tokens. Once the relations I, and I,. have
been inferred, the observations in Figure 3b uniquely spec-
ify a partially observed repository, and we are back to the
inductive setting considered in previous sections. The prob-
lems considered in previous sections can be posed even if a
reasoner is uncertain about the identity relations I, and I,.
Even if a reasoner is uncertain about R, she can still make
inferences about unobserved properties of object tokens, and
inferences about the existence of objects and relations that
have not been observed.

A taxonomy of inductive problems

We have now described a framework for characterizing induc-
tive reasoning (Figure 2). The input data 7" include statements
about object and relation tokens along with partially observed
identity relations I, and I,. The goal of the reasoner is to
complete the identity relations, thereby specifying a partially
observed repository R, and to infer the true repository R
that is partially captured by R,;s. In one sense we have de-
scribed a single inductive problem that is very general. In
another sense our framework captures many inductive prob-
lems, and this section attempts to organize these problems
into a taxonomy.

The previous sections described five basic problems: gen-
eralization, object discovery, relation discovery, object identi-
fication, and relation identification. Additional problems can
be created by combining two or more of these basic problems.
Since there are five basic problems, there are 31 combinations
that include at least one basic problem. We do not suggest that
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the 31 problems specified by these combinations are equally
likely to be encountered in the real world, and expect that
some will turn out to be more fundamental than others. We
propose, however, that many of the 31 combinations specify
problems that are worthy of psychological investigation.

The rest of this section focuses on the nine combinations
shown in Table 2. Each row represents a combination, and
the first five columns correspond to the five basic problems.
The combinations above the double line have been discussed
by previous researchers, but the combinations below the line
appear to be novel. Some of these combinations have previ-
ously been discussed in this paper, but for completeness we
briefly review them here.

Note that our taxonomy of 31 problems is only one way
of organizing the inductive problems that emerge from the
framework in Figure 2. For example, Table 2 treats prop-
erty induction and supervised categorization as instances of
the same basic problem, but we could separate the two by
distinguishing between categories and unary relations and in-
creasing the number of problems in the taxonomy. The taxon-
omy could also be expanded by including separate columns
for object generalization and relation generalization instead
of grouping these problems. Our taxonomy provides a useful
way to think about the space of inductive problems, but is by
no means the only taxonomy that could be constructed.

Familiar problems

Generalization. The first row of Table 2 specifies a combi-
nation that includes only the problem of generalization. This
problem has been extensively discussed, and the relevant lit-
erature includes work on stimulus generalization, property in-
duction, and supervised categorization.

Relation discovery. The second row specifies a combina-
tion that includes both relation discovery and relation gener-
alization. Relation discovery is needed to infer the existence
of unobserved relations, and generalization is needed to infer
the extensions of these relations. This combination has been
previously addressed by research on unsupervised categoriza-
tion and predicate invention.

Object identification. The third row specifies a combina-
tion that includes only the problem of object identification.
This problem has previously been discussed by researchers
including [12] and [15], and is closely related to the problem
of recognition [13].

Object identification and generalization. The fourth row
specifies a problem where reasoners are required to make in-
ferences about unobserved properties of object tokens and
may be uncertain whether two tokens correspond to the same
object. Few researchers have set out to study this problem,
but some have explored it inadvertently by designing general-
ization experiments where the stimuli are highly confusable.
There is some debate about whether generalization gradients
are exponential or Gaussian in character. One proposed res-
olution is that pure generalization curves are exponential, but
that inferences about confusable stimuli include an identifi-
cation component that produces near-Gaussian generalization



Relation
discovery

Generalization Object

discovery

Object
identification

Relation Problem

identification

Stimulus generalization [15]
Property induction [7]
Supervised categorization [12]

Unsupervised categorization [2]
Predicate invention [16]

Object identification [12]
Object recognition [13]

Object identification and generalization [6]

Object identification and categorization

Property identification [8]
Category identification [10]

v

Inferences about ‘Property P’ [14]

v Word learning [17]

v

v Object and property identification [8]

v v

Object discovery [5]

Table 2: A taxonomy showing 9 of the 31 problems specified by our framework. The framework includes three basic
problems—generalization, discovery, and identification—and additional problems can be specified that include these basic
problems as components. Each problem above the double line has been previously discussed in some detail. The problems
below the double line are discussed less often, although some are connected with previous work.

curves [6]. The literature on this topic suggests that some in-
ductive tasks require two or more basic problems to be solved,
and that it is important to think clearly about the problems
posed by a given task.

Novel problems

Object identification and categorization.

We have just seen that object identification and general-

ization can be combined, and the fifth row specifies a prob-
lem where identification is combined with unsupervised cat-
egorization. The raw data in this case are observations of
object tokens, and the reasoner must decide how many dis-
tinct objects have been observed and organize these objects
into categories. Infants may solve a version of this problem
early in development when they are simultaneously discover-
ing which objects their world contains and organizing these
objects into categories. This problem, however, is rarely dis-
cussed in the psychological literature.
Relation identification. There are many studies of object
identification, but the problem of relation identification (row
6 of Table 2) has received very little attention. In one version
of this problem, the relation to be identified is a property, or
a unary relation. Suppose for example that a reasoner learns
that a polar bear and a dove both have ‘Property P. The rea-
soner may be able to infer that ‘Property P’ is the property
of being white. Motivated in part by the taxonomy outlined
here, Kemp et al. [8] have recently addressed this problem.

Real-world instances of property identification often arise
when learning new words. We previously mentioned the case
of a child who is told that an orange is “round”:

T;(of) 1 W

name(r;, “round”) = 1

where o] is a token of a given orange. Token r} will either
correspond to one of the properties that is familiar to the child,
or to a property that has never previously been encountered.
Deciding which possibility is true is a problem of property
identification.

Relation identification and generalization. Row 7 of Ta-
ble 2 shows a closely related problem where the learner must
not only decide whether a relation token corresponds to a fa-
miliar property, but must also decide whether the relation to-
ken can be applied to additional objects. Given, for example,
that a polar bear and a dove both have property P, a reasoner
can be asked to decide whether a swan has property P.

Generalization problems of this kind should be distin-
guished from property induction problems that do not include
an identification component. Some studies ask participants to
make inferences about “property P,” but others use properties
like “has biotinic acid in its blood.” Property P may be inter-
preted as a token of a familiar property, but the “biotinic acid”
example uses a novel property that does not raise the problem
of identification.

The literature on property induction often blurs the distinc-
tion between these two kinds of properties, but this distinc-
tion helps to explain some findings that seem puzzling at first.
Consider, for example, two studies of inductive reasoning that
compared German speakers with Mandarin speakers [14].
Unlike German and English, Mandarin is a language with nu-
meral classifiers, or linguistic categories that organize objects
into groups on the basis of properties like shape (e.g. whether
an object is long and thin) and function (e.g. whether an ob-
ject has a handle). Mandarin speakers are therefore likely to
think of these properties given problems that include a prop-
erty identification component, but less likely when given pure
generalization problems. The results of Saalbach and Imai
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[14] are consistent with this prediction. In their first study,
participants judged whether two objects were likely to “carry
the same bacteria”, and the second study was identical except
that the bacteria property was replaced by “property X.” No
difference was found between the two groups when the bac-
teria property was used, but Mandarin speakers were more
likely to give responses that matched their numeral classifiers
in the “property X’ experiment.

Real-world examples of property identification and gener-

alization often arise in the context of word learning. Given
the information in Equation 1, for example, a reasoner can be
asked to extend the label “round” to other objects. General-
ization tests of this kind often explore cases where a learner
acquires a label (e.g. “round”) for a pre-existing concept (e.g.
the property round(-).) Many approaches to word-learning
(including the modeling work of Xu and Tenenbaum [17]) are
consistent with the idea that word-learning includes an iden-
tification component. Analyzing word-learning in this way
helps to explain cases of ‘one-shot learning’ or ‘fast map-
ping’ [4] where children appear to learn a new concept in a
single exposure. In reality, children are often learning a label
for a pre-existing concept, which is a much simpler challenge.
Object and property identification. Object and property
identification can be studied individually, but the task in the
eighth row of Table 2 requires both problems to be solved.
Suppose, for example, that Tweety the canary has property
P, that Animal A also has property P, and that Animal A has
a mane [8]. Humans can combine all of this information in
order to identify the property (P is more likely to be yellow(-)
than feathered(-)) and the object (A is more likely to be Leo
the lion than Hans the horse).
Object discovery. The final row in Table 2 represents the
problem of object discovery. This problem is occasionally
mentioned in the psychological literature [3] but is rarely ad-
dressed by modeling or experimental work. Note that the
problem includes a generalization component, since postu-
lating a new object is of little use unless its properties or its
relationships to other objects can be inferred.

Conclusion

Psychologists dream of developing unified theories of cogni-
tion [11], and our long-term goal is only slightly more mod-
est: we aim for a unified theory of inductive inference. In
order to reach this goal it will be necessary to understand the
space of inductive problems that people are able to solve. We
took a step in this direction by providing a systematic descrip-
tion of more than thirty inductive problems involving objects,
relations, and labels. All of these problems are closely related
and it is surprising that many of them have received little pre-
vious attention. Future work can explore all of these problems
in detail.

This paper has not focused on computational models, but
future work can aim to develop a single formal framework
that addresses all of the problems in our taxonomy. The prob-
lems we described can potentially be addressed by several dif-
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ferent approaches, including connectionist, logical, and prob-
abilistic approaches. For example, a probabilistic approach
can be developed by defining a prior distribution over seman-
tic repositories and a procedure by which object tokens, re-
lation tokens, and labels are sampled from a true but unob-
served repository. Given these components, a learner who
observes a collection of tokens can compute a posterior dis-
tribution over identity relations and repositories, and can use
this distribution to address all the problems in our taxonomy.
Previous researchers [2, 8, 15, 17] have described probabilis-
tic models that address some of the individual problems in our
taxonomy, and the approach just sketched may help to unify
many of these models.
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