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Abstract

We present a neurocomputational model of visual object
processing, which takes photographic inputs and creates
topographic stimulus representations on the hidden layer.
We perform multi-voxel pattern analysis on the activations
of hidden units and simulate contradictory findings from
Haxby et al. (2001) and Spiridon and Kanwisher (2002)
within a single model. With no special processing
mechanism or architecture for faces in our model, we obtain
the same results as Spiridon & Kanwisher, who interpreted
their results as evidence for a “face module” — something
our model does not possess.

Keywords: MVPA; face processing; visual cortex; fMRI;
visual expertise; visual perception; fusiform face area.

Introduction

A region in the fusiform gyrus of the temporal lobe, dubbed
the “Fusiform Face Area” (FFA), has been shown to be
differentially activated when subjects in an fMRI scanner
view faces compared to other classes of visual stimuli
(Kanwisher et al. 1997). The FFA has been the subject of
fierce debate. Opinions are divided between those who
believe this area constitutes a specialized module for visual
processing of faces as a unique class of visual stimuli (e.g.,
Kanwisher et al., 1997) and those who believe, instead, that
the existence of a region in visual cortex dedicated to faces
can be accounted for with alternative hypotheses, such as
the “visual expertise” hypothesis (Gauthier, et al., 1999;
Tarr & Gauthier, 2000), or the “object form topography”
account (Haxby et al,. 2001).

A number of studies attempting to resolve this debate
have drawn upon multi-voxel pattern analysis techniques
(MVPA) for analyzing fMRI data collected while subjects
view images of objects and faces (Grill-Spector et al., 2004;
Haxby et al., 2001; O’Toole et al. 2005; Spiridon &
Kanwisher, 2002). MVPA techniques typically use
statistical or machine-learning techniques to draw inferences
from fMRI data by comparing the patterns of activation
across multiple voxels in different experimental conditions.

Unlike traditional subtraction methodologies that focus on
spatially contiguous voxels within a single patch of cortex,
MVPA considers patterns across potentially disparate
voxels that maximally discriminate between behavioral
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conditions. This can be done within an anatomical region or
even across regions.

Central to the debate concerning the existence of a face
module are two seemingly contradictory sets of findings
from two fMRI studies. Both studies used MVPA
techniques to analyze patterns of response that were
recorded while subjects viewed photographs of faces and
objects. Haxby et al. (2001) (hereafter referred to as HO1),
reported that information about the category membership of
the object being viewed was distributed across visual cortex,
rather than confined to regions that were maximally active
in response to that category. In contrast, Spiridon and
Kanwisher (2002) (hereafter referred to as SKO02), carried
out a different set of analyses on a similar set of fMRI data
and reported evidence for specialized processing of faces in
regions preferentially activated by faces.

In this paper, we present a neurocomputational model of
object processing in the ventral visual pathway, and analyze
the activation patterns in the model using a method we have
termed “virtual MVPA”. We account for data from both
HO1 and SKO02, providing an explanation for both sets of
findings within a single framework. The model contains no
specialized mechanism for the processing of faces, casting
doubt on the interpretation of the findings in SKO02 as
evidence in favor of a “face module”.

Object representations in the model are organized
topographically, which can be related to the topographic
organization of stimuli seen in much of visual cortex.
Because of this property of the network, we are able to
analyze model behavior with a method analogous to the
analysis of activation patterns across voxels in MVPA of
fMRI data. More specifically, we sort hidden layer units
into those that are “selective” for faces, houses, chairs and
so on, allowing breakdown of the activation patterns by
region, as was carried out in HO1 and SKO02.

A Neurocomputational Model of Object
Processing in Visual Cortex
The model architecture is shown in Figure 1. Input
images are first subject to Gabor wavelet filtering and

Principal Components Analysis (PCA); these stages are
designed to mimic the processing in early visual cortex.
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Figure 1. The Model Architecture.

Pre-processed stimuli are then input to a Kohonen layer, in
which topographically organized representations of objects
develop through a self-organization process. Finally,
representations in the topographic layer are associated with
output nodes corresponding to the six classes of object, via
weights that are learned using the delta rule. The use of a
Kohonen network at the hidden layer is a departure from our
previous models of face and object processing (Dailey &
Cottrell, 1999; Tong et al., 2008). Whereas these models
used a hidden layer trained with the backpropagation
algorithm, learning in the present model is unsupervised and
neurophysiologically plausible. Kohonen networks are
designed to model cortex; the learning algorithm is a
computational abstraction of cortical mechanisms such as
Hebbian learning and lateral inhibition. The stimulus
representation layer in a Kohonen network is typically a
two-dimensional array in which all units occupy a fixed
position with respect to their neighbors. The network is
trained by incremental update of the weights from input to
hidden units over successive presentation of stimuli; the
weight update is governed by a neighborhood function
ensuring that neighboring units receive similar updates in
response to a given stimulus, with the result that
neighboring units come to represent items that are close
together in stimulus space. These properties make Kohonen
networks suitable for computational investigations of object
processing in visual cortex (see, e.g., Cowell et al., 2006).

Visual Categorization Training

Stimuli We used stimuli from the fMRI study of HO1:
grayscale photographs of faces, houses, chairs, bottles,
scissors and shoes (we did not use the cats or scrambled
images from HO1). Images were scaled and cropped to
64x64 pixels. There were 240 training images: 40 in each
category, 4 views of 10 exemplars. In addition, 48 images
were assigned to a “hold-out” set: 8 per category, 4 views of
2 individuals. The hold-out set was reserved for testing
networks’ classification performance after every 10 epochs.

Image Pre-processing Before presentation to the neural
network, stimuli were subject to Gabor filtering to extract
representations suitable for object recognition (Dailey and
Cottrell, 1999). We applied the Gabor filters to a 32x32 grid
of points in each image resulting in a vector of size 40,960
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(32x32 sample points, with 8 orientations and 5 scales of the
filter at each point).

These patterns were reduced in dimensionality using
Principal Components Analysis (PCA), to make them
suitable for input to a neural network. PCA was performed
on all 288 images used in the present study. We used the
first 20 components and did not normalize them to have
equal variance, a difference from previous work that
enabled better Kohonen network learning.

Training Networks were trained to classify objects into one
of six categories. Note that learning of the feed-forward
weights from the input layer to the topographic hidden layer
was independent from learning of the weights from the
hidden layer to the output nodes. Sigmoidal units were used
throughout. Eight networks were trained for 10 epochs at a
time, and then checked for performance on the hold-out set.
The only effect of the output layer on the Kohonen layer
was that training ended when hold-out set accuracy at the
output was >90% in 3 successive presentations.

The input-Kohonen layer weights were trained by the
standard Kohonen learning rule:

W, (t + 1)= W (t)+ f(dist)*(ai - wﬁ)

where wj; is the weight from input i to unit j, a is the
activation of input i, and f is a neighborhood weighting
function on the learning rate, centered on the most highly-
activated unit (dist is the distance from unit i to the
maximally activated unit in the grid). f takes the form:
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f(dist)=nei( )

in which #, the learning rate, starts at 1 and reduces over

epochs according to n = epoch®™®?. G is a Gaussian width

parameter, which also decreases over epochs, according to
G = 0.5 +10*epoch®?, but stops reducing at epoch 50.

This neighborhood learning rule ensures that nearby units
learn similar patterns, which is what gives the Kohonen
network its map-like quality. The output units were trained
by a simple delta rule, with learning rate 0.01. We used
2500 units on the Kohonen layer for these simulations.

dist
G

MVPA Analyses

We simulated four findings from the fMRI literature: three
demonstrations from HO1 and one finding from SK02. For
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all MVPA analyses, we examined activation patterns in the
hidden layer of the network. For each of the eight trained
networks, we recorded the activation patterns elicited by
presentation of all stimuli in the 240-image training set,
using the input-Kohonen weight values that the network had
attained at the final epoch of training. Since the output units
do not affect hidden unit representations in the model, the
output weights were simply used to ensure that the network
had formed a useful representation of the data.

Haxby et al. (2001) MVPA Methods Subjects viewed
photographic images from seven different categories: faces,
houses, cats, bottles, scissors, shoes and chairs, plus
scrambled “nonsense” images, while patterns of response
were measured with fMRI. The authors first identified
object-selective cortex by selecting those voxels for which
the response to the different object categories that subjects
viewed differed significantly. Data for each subject were
split into two sets: odd and even numbered scans. By
examining the similarity of patterns of response evoked by
each category on odd and even scans, the authors
determined whether the category being viewed by the
subject could be identified, and measured the
discriminability of the responses to different categories.
Similarity was measured by the correlation between
responses in odd and even runs. To determine the
discriminability of, say, faces and shoes, the correlation
between the mean response to faces across odd runs and the
mean response to faces across even runs was compared to
the correlation between the mean response to faces on odd
runs and the mean response to shoes on even runs. If the
within-category (face-face) correlation was higher than the
between-category (face-shoe) correlation, that pairwise
comparison was deemed correct. In comparing faces and
shoes, there are four pairwise comparisons to be made: 1.
faceogq-faceeyen VS. facepqq-ShOEeyen, 2. faceodq-facEeven VS.
faceeyen-Sh0€oqq, 3. Sho€ggg-Sh0Eeven VS. faceeyen-Sho€gdd, 4.
shoeggg-Sho€even VS.  faceyqg-Shoeeven. Thus, for each
discrimination of two categories, there were four binary
comparisons, yielding a possible score of 0, 25%, 50%, 75%
or 100% on that pairwise discrimination, for every subject.
HO1 presented all photographic images to subjects several
times each. However, the manner of assigning photographs
to scans and sorting data from scans (by odd or even
number) into two halves meant that the evoked activation
patterns that were pooled by averaging over each half of the
data were not elicited by an identical set of images. So the
within-category correlation values — derived from activation
to, e.g., faces in the first half and faces in the second half —
were partly determined by the reproducibility of brain
responses to different images from the same category.

Spiridon and Kanwisher (2002) MVPA Methods The
methods were broadly the same as in HO1. However, SK02
assayed different ways of splitting the data into two halves.
In the “identical images’ condition, images were allocated to
scans and sorted into two halves in such a way that each half
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of the data contained responses evoked by an identical set of
images. In the “different views’ condition, scans were sorted
such that each half contained responses evoked by the same
exemplars, but different views appeared in each half. In the
‘different exemplars’ condition, responses to a given
category in each half of the data were evoked by images of
different exemplars. When SKO02 performed the same type
of correlational analysis as HO1, they found no significant
differences between the three conditions in the percentage
of correct pairwise category discriminations.

Virtual MVPA Methods There is considerable noise in
fMRI BOLD responses, which can be attributed to both
endogenously-generated noise within the brain responses of
subjects and externally-generated noise such as variability in
scanner measurements. Owing to these sources of noise,
correlations between neural responses reported by HO1 were
never perfect; even for within-category correlations, mean
values ranged from 0.28 (bottles) to 0.81 (houses), measured
across all of object-selective ventral temporal cortex. In
contrast, there is no noise in the activation values of our
model: we can access the exact activation evoked in a given
unit by a given pattern at the time of test. If we present an
image to the network twice, we obtain the identical
activation pattern on both occasions. Presentation of exactly
the same images in the two halves of the data, as in the
‘identical views’ condition of SK02, would invariably yield
within-category correlations of 1. In order to exploit the
within-category variability in the model of activation
patterns due to different images (and avoid perfect within-
category correlations), we followed the methods of HO1 and
the ‘different views’ condition of SKO02: we sorted our
activation patterns so that the two halves contained images
from different views. Thus, both within-category and
between-category correlations (ryitin and Fpetween) Were free
to vary between -1 and 1, depending on the degree of
similarity of the two activation patterns being compared.

In practice, because of the lack of noise in the model,
within-category correlations were always higher than
between category correlations, therefore performing four
binary comparisons, as in HO1 and SK02, would always
yield scores of 100%. Therefore we devised a measure of
pairwise discrimination accuracy using the within- and
between-category r values and the Luce Choice rule:

e B*Fvithin
3

r
where the sum over r means ryimin and Fpenween, aNd p = 2 (the
B value was chosen for discrimination of 95% on fictitious
high within-category and low between-category r’s before

applying to the network data). Accuracy of discrimination
was equated with probability of the correct choice.

P(correct) =

Results

All eight networks trained on the classification task reached
criterion in 50 - 330 epochs. Figure 2 shows the topographic
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organization of stimulus representations that emerged on the
Kohonen layer for a typical simulation.

B =faces
B = houses
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B = scissors
B =shoes

5 10 1520 25 30 35 40 4550

Figure 2. Bird’s eye view of the Kohonen network hidden layer.
Each hidden unit is represented by a colored square; the color
indicates which category maximally activated the unit. The
position of a unit in the 2D grid is shown on the x- and y-axes.

Haxby Simulation 1 HO1 found that patterns of response
across all object-selective voxels in ventral temporal cortex
contained sufficient information to perform pairwise
discriminations of object categories. The correct category
was identified in 96% of pairwise comparisons.

Like Haxby et al., we also found that correlations between
activation patterns on the hidden layer of our model
correctly identified the category being viewed, with a mean
probability of 86% that the correct category would be
chosen in a pairwise comparison (see Table 1). This result
was obtained without optimizing the constant in the Luce
Choice Rule. Interestingly, HO1 found that faces and houses
were best discriminated by human subjects’ activation
patterns, and of the categories on which we trained our
model (i.e., excluding cats), they reported that chairs were
the next best discriminated, with scissors, shoes and bottles
performing more poorly. We report the exact same trend,
with faces and houses best discriminated, followed by
chairs, and then by the other three categories. In HO1, there
were two further analyses demonstrating that activations
patterns are distributed across cortex; here we simulate both.

Haxby Simulation 2 HO1 reported that information about a
given category is not solely contained in voxels in regions
that respond maximally to stimuli from that category. They
showed this by measuring accuracy of pairwise category

discriminations using responses across object-selective
cortex from which the voxels maximally responsive to the
two categories being discriminated had been removed. For
example, when discriminating houses and shoes, they
removed the house- and shoe-selective voxels from the
analysis. They found that the category being viewed was
correctly identified in 94% of pairwise comparisons — a
score barely diminished from that obtained using all object-
selective voxels. We replicated this analysis using activation
patterns from the hidden layer in which all units maximally
activated by either category in the discrimination were
removed. Like HO1, we found that the mean probability of
correct identification of a category in a pairwise
discrimination was 87%, similarly undiminished from the
case where all object-selective units were used. The results
of this analysis are shown in line 2 of Table 1.

Haxby Simulation 3 Since voxels outside of the region
responding maximally to a category contained information
about that category (shown in HO1 finding of Simulation 2),
Haxby et al. proposed that each category-selective region
contains information about other categories, too. To
investigate this, they examined the discriminability of all
object categories in each region that was maximally (and
differentially) activated by one category, i.e., in each
“category-selective” region. HO1 showed that, within only
cortex that responded maximally to one object class, good
identification of all categories was possible. They reported
mean accuracies for all pairwise category discriminations
ranging from 83% to 94% across the different regions
selective for faces, houses, or small man-made objects.

We replicated this analysis by using activations from each
“category-selective” region of the hidden layer for pairwise
discriminations of all categories. The results are shown in
lines 3-5 of Table 1. Like HO1, we found that accuracy
values for discriminations based on these regions of the
hidden layer were similar to those obtained in Simulations 1
and 2, with mean probability of correct identification
ranging from 83% to 85% across the face, house and small
man-made object regions of the hidden layer.

The results of Analyses 2 and 3 from HOl1 suggested
distributed cortical representations. SK02 performed similar
analyses to HO1, but in doing so, they found results that they
interpreted as evidence for specialized processing of faces.
Hence, we simulate those results here.

Table 1: Simulation of Haxby et al. (2001) results. Accuracy of identification of the category being viewed based on
activation patterns in the topographic hidden layer of the model.

Identification accuracy

Region of hidden layer

Faces Houses Chairs Bottles Scissors Shoes

All object-selective units 91.4+0.2 87.9%0.2 875+0.3 85.4+0.4 82.3+0.2 82.1+0.2
Minus regions maximally responsive o 95404 g77+02  892+05  868+04 822403 822403
categories being compared
Regions maximally responsive to:

Faces 93.6+0.2 83.1+0.5 84.8+0.5 84.5+0.9 79.7+0.6 79.1+04

Houses 876+04 899+03 87.8+0.3 82.1+0.5 80.9+0.4 80.9+0.3

Small Objects 85.1+10 847+12 845+1.4 81.7+0.9 81.2+15 80.2+0.8




Simulation 4: Spiridon & Kanwisher (2002) One finding
from SKO02 was particularly pertinent to the debate
regarding a specialized module for faces. This finding
emerged from a replication of HO1’s Analysis 3, but in
which the size of the cluster of voxels used in the MVPA
was equated across categories. The authors measured the
accuracy of pairwise category discriminations between
activation patterns across clusters of 30 voxels most
selective for each category. They found that the cluster of
voxels most selective for faces yielded better accuracy in
discriminating face from non-face categories than in
discriminating non-face from non-face categories. Spiridon
and Kanwisher took this as evidence for specialized
processing of faces by face-selective neurons. Since no
other cluster of voxels exhibited such an advantage for
discrimination of the category to which it responded
maximally, the authors concluded that this specialized
processing does not exist for any other object category.

The results from our replication of this analysis, using 30-
unit clusters, are shown in Table 2. Using the same methods
of analysis as SK02, we also find that, in the cluster of units
most selective for faces, faces are better discriminated than
any other category. As in SK02, this is true for no other
category.

The relationship between the number of units in our
simulation and the number of voxels in the brain is unclear;
there is no reason to expect a one to one mapping between
voxels and hidden units. Therefore we performed analyses
using cluster sizes of 60 and 100 units. We found that the
simulation results generalize across different spatial scaling
assumptions; that is, for both 60- and 100-unit clusters we
found the same selective advantage for discriminating faces
in the face cluster, and no such advantage for discriminating
the category to which the cluster is maximally responsive
for any other cluster.

Discussion

In this paper we presented a neurocomputational model of
visual object processing in which representations of objects
on the hidden layer develop, without supervision, into a
topographically organized map of stimulus space. Learning
of hidden layer representations is governed by the Kohonen
algorithm, which mimics processing in mammalian sensory
cortex. The topography of object representations in the
hidden layer allowed us to develop a method we term

“virtual MVPA”, in which we analyze patterns of activation
across units in the hidden layer with statistical techniques
similar to those used in MVPA of fMRI data.

We have replicated three findings from HOl and an
important result from SKO02. In the replications of HO1, we
demonstrated that activation patterns across units in the
model can be used to determine the category of stimulus
being presented to the model, under three conditions: (1)
using all object-selective units in the discrimination, (2)
using all object-selective units minus those that are
maximally activated by the categories being discriminated,
and (3) using only the units maximally responsive to a
single stimulus category. In the simulation of SK02, we
showed, using a model containing no specialized processing
for faces, that the ‘face region’ shows an advantage for
category discriminations involving faces (i.e., identifying
that an object is a face) but this is not true for other category
selective regions. In other words, the region maximally
responsive to shoes is not best at shoes.

These simulations showcase our virtual MVPA method,
demonstrating that introducing topographic representations
into a model of face and object processing allows analysis
of the model in the way that brain scan data from human
subjects is analyzed using MVPA. Further, our successful
simulation of HO1 demonstrates that we have a
neurocomputational model of visual object processing in
which representations contain the type of information about
object categories that is contained in neural representations
in ventral temporal cortex, as assessed by fMRI.

The three findings from HO1 support an account of visual
processing in which there is no face module, since they
suggest that information about other categories exists in the
face area, and information about faces is contained in other
areas. For example, Haxby Simulations 2 and 3 demonstrate
that a unit maximally activated by bottles is still useful in
discriminating, say, faces from houses, because it responds
consistently with characteristic (albeit non-maximal)
activation values to face and house stimuli. Information
about stimulus identity is not solely carried by the units
responding maximally to the stimulus. However, Spiridon
and Kanwisher performed a similar analysis to Haxby
Simulation 3 and found that information was not equally
distributed across cortex for all categories. For this reason,
we simulated SK02.

Table 2: Simulation of Spiridon and Kanwisher (2002) results. Accuracy of identification of the category being viewed based
on activation patterns across the 30 units most selective for each category.

Region of hidden layer

Identification accuracy

Faces Houses Chairs Bottles Scissors Shoes
30 units most selective for:
Faces 90.3+21 80.4+1.6 82.7+25 84.0+1.0 76.2+1.7 74.1+22
Houses 85.6+1.1 83.1+£20 85.8+1.7 79.3+1.2 77.2+1.6 81.0+15
Chairs 87.2+21 84.8+1.6 85.6 1.6 773+1.7 776+29 759+1.2
Bottles 909+15 81.7+14 82017 829+1.2 83.4+15 86.3+1.0
Scissors 84620 816+14 84.8+1.8 86.4+15 81.4+1.2 829+24
Shoes 85.8+1.7 86.4 0.6 84.8+1.7 86.9+0.9 86.0 + 2.7 79.6+25
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We replicated the SK02 finding that there is no cluster of
voxels other than for faces that selectively discriminates one
object category from the alternatives. We were able to
replicate this finding simply because the similarity structure
of the representations in the model reflects the similarity
structure of the stimuli (echoing the match between the
similarity of brain scans and the similarity of the images
eliciting the brain scans revealed by O’Toole et al., 2005).
Among the object categories, the images of faces show the
greatest within-category similarity and the greatest
dissimilarity from other categories; this is also true of the
representations of faces in the model (Figure 3A). This
means that individual face stimuli elicit highly reproducible
patterns (yielding a high within-category correlation for face
activations) that are quite different from the patterns due to
other objects (yielding low between-category correlations
for face vs. non-face comparisons). This is particularly true
in the region of the hidden layer maximally responsive to
faces, where all units are activated maximally by a face, but
yield highly variable activations in response to other objects.
Thus in the face region, the face-face correlation is high and
the face-nonface correlation is low (giving good face
discrimination) but, e.g., the shoe-shoe correlation is not
high (giving poor shoe discrimination). By contrast, the
within-category similarity of other categories is much lower,
so that individual scissor stimuli elicit very variable
responses (Figure 3B), even in the region maximally
responsive to scissors. Here the within-category correlation
for activation patterns due to scissors is not high, and the
between-category correlation for scissors compared to, say,
shoes, may be moderate (since the average activation over a
variable set of scissor patterns may be similar to the average
over a variable set of shoe patterns), therefore

discrimination of scissors is poor.
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Figure 3. Kohonen layer activations evoked by four individual face
stimuli (top row) and four individual scissor stimuli (bottom row).
Individual exemplars were chosen randomly. Compare to Figure 2.

In simulating the SKO2 result, we have helped resolve the
inconsistency of this finding with Haxby et al.’s
interpretation of their own results within a distributed
processing account. In essence, using a neurocomputational
model that has no special anatomy or processing mechanism
for faces, we have accounted for MVPA results that both
suggest the face specific region of cortex is special (because
only the face area is better at discriminating faces from the
alternatives) and that faces are not special (because they can
be discriminated in regions not selective for faces). This
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demonstration was made using equal amounts of training for
all object categories (that is, ignoring any influence of the
social significance of, or extra exposure to, faces). The
success of this computational account suggests that the
differences between faces versus other objects may lie
primarily in the visual characteristics of faces themselves as
objects (O’Toole et al., 2005). Moreover, since our virtual
MVPA findings map onto the results of real brain scan
MVPA, we provide an existence proof that one can obtain
the SKO2 results from a model that has no specialized
processing for faces. This calls into question use of these
results in arguing for a specialized “face module” in ventral
temporal visual cortex.
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