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Abstract 

We present a neurocomputational model of visual object 
processing, which takes photographic inputs and creates 
topographic stimulus representations on the hidden layer. 
We perform multi-voxel pattern analysis on the activations 
of hidden units and simulate contradictory findings from 
Haxby et al. (2001) and Spiridon and Kanwisher (2002) 
within a single model. With no special processing 
mechanism or architecture for faces in our model, we obtain 
the same results as Spiridon & Kanwisher, who interpreted 
their results as evidence for a “face module” – something 
our model does not possess. 

Keywords: MVPA; face processing; visual cortex; fMRI; 
visual expertise; visual perception; fusiform face area. 

Introduction 

A region in the fusiform gyrus of the temporal lobe, dubbed 

the “Fusiform Face Area” (FFA), has been shown to be 

differentially activated when subjects in an fMRI scanner 

view faces compared to other classes of visual stimuli 

(Kanwisher et al. 1997). The FFA has been the subject of 

fierce debate. Opinions are divided between those who 

believe this area constitutes a specialized module for visual 

processing of faces as a unique class of visual stimuli (e.g., 

Kanwisher et al., 1997) and those who believe, instead, that 

the existence of a region in visual cortex dedicated to faces 

can be accounted for with alternative hypotheses, such as 

the “visual expertise” hypothesis (Gauthier, et al., 1999; 

Tarr & Gauthier, 2000), or the “object form topography” 

account (Haxby et al,. 2001). 

A number of studies attempting to resolve this debate 

have drawn upon multi-voxel pattern analysis techniques 

(MVPA) for analyzing fMRI data collected while subjects 

view images of objects and faces (Grill-Spector et al., 2004; 

Haxby et al., 2001; O’Toole et al. 2005; Spiridon & 

Kanwisher, 2002). MVPA techniques typically use 

statistical or machine-learning techniques to draw inferences 

from fMRI data by comparing the patterns of activation 

across multiple voxels in different experimental conditions.  

Unlike traditional subtraction methodologies that focus on 

spatially contiguous voxels within a single patch of cortex, 

MVPA considers patterns across potentially disparate 

voxels that maximally discriminate between behavioral 

conditions. This can be done within an anatomical region or 

even across regions.  

Central to the debate concerning the existence of a face 

module are two seemingly contradictory sets of findings 

from two fMRI studies. Both studies used MVPA 

techniques to analyze patterns of response that were 

recorded while subjects viewed photographs of faces and 

objects. Haxby et al. (2001) (hereafter referred to as H01), 

reported that information about the category membership of 

the object being viewed was distributed across visual cortex, 

rather than confined to regions that were maximally active 

in response to that category. In contrast, Spiridon and 

Kanwisher (2002) (hereafter referred to as SK02), carried 

out a different set of analyses on a similar set of fMRI data 

and reported evidence for specialized processing of faces in 

regions preferentially activated by faces. 

In this paper, we present a neurocomputational model of 

object processing in the ventral visual pathway, and analyze 

the activation patterns in the model using a method we have 

termed “virtual MVPA”. We account for data from both 

H01 and SK02, providing an explanation for both sets of 

findings within a single framework. The model contains no 

specialized mechanism for the processing of faces, casting 

doubt on the interpretation of the findings in SK02 as 

evidence in favor of a “face module”. 

Object representations in the model are organized 

topographically, which can be related to the topographic 

organization of stimuli seen in much of visual cortex. 

Because of this property of the network, we are able to 

analyze model behavior with a method analogous to the 

analysis of activation patterns across voxels in MVPA of 

fMRI data.  More specifically, we sort hidden layer units 

into those that are “selective” for faces, houses, chairs and 

so on, allowing breakdown of the activation patterns by 

region, as was carried out in H01 and SK02. 

A Neurocomputational Model of Object 

Processing in Visual Cortex 

The model architecture is shown in Figure 1. Input 

images are first subject to Gabor wavelet filtering and 

Principal Components Analysis (PCA); these stages are 

designed to mimic the processing in early visual cortex.
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Figure 1. The Model Architecture.

Pre-processed stimuli are then input to a Kohonen layer, in 

which topographically organized representations of objects 

develop through a self-organization process. Finally, 

representations in the topographic layer are associated with 

output nodes corresponding to the six classes of object, via 

weights that are learned using the delta rule. The use of a 

Kohonen network at the hidden layer is a departure from our 

previous models of face and object processing (Dailey & 

Cottrell, 1999; Tong et al., 2008). Whereas these models 

used a hidden layer trained with the backpropagation 

algorithm, learning in the present model is unsupervised and 

neurophysiologically plausible. Kohonen networks are 

designed to model cortex; the learning algorithm is a 

computational abstraction of cortical mechanisms such as 

Hebbian learning and lateral inhibition. The stimulus 

representation layer in a Kohonen network is typically a 

two-dimensional array in which all units occupy a fixed 

position with respect to their neighbors. The network is 

trained by incremental update of the weights from input to 

hidden units over successive presentation of stimuli; the 

weight update is governed by a neighborhood function 

ensuring that neighboring units receive similar updates in 

response to a given stimulus, with the result that 

neighboring units come to represent items that are close 

together in stimulus space. These properties make Kohonen 

networks suitable for computational investigations of object 

processing in visual cortex (see, e.g., Cowell et al., 2006). 

Visual Categorization Training 

Stimuli We used stimuli from the fMRI study of H01: 

grayscale photographs of faces, houses, chairs, bottles, 

scissors and shoes (we did not use the cats or scrambled 

images from H01). Images were scaled and cropped to 

64x64 pixels. There were 240 training images: 40 in each 

category, 4 views of 10 exemplars. In addition, 48 images 

were assigned to a “hold-out” set: 8 per category, 4 views of 

2 individuals. The hold-out set was reserved for testing 

networks’ classification performance after every 10 epochs. 

 

Image Pre-processing Before presentation to the neural 

network, stimuli were subject to Gabor filtering to extract 

representations suitable for object recognition (Dailey and 

Cottrell, 1999). We applied the Gabor filters to a 32x32 grid 

of points in each image resulting in a vector of size 40,960 

(32x32 sample points, with 8 orientations and 5 scales of the 

filter at each point). 

These patterns were reduced in dimensionality using 

Principal Components Analysis (PCA), to make them 

suitable for input to a neural network. PCA was performed 

on all 288 images used in the present study. We used the 

first 20 components and did not normalize them to have 

equal variance, a difference from previous work that 

enabled better Kohonen network learning. 

 

Training Networks were trained to classify objects into one 

of six categories. Note that learning of the feed-forward 

weights from the input layer to the topographic hidden layer 

was independent from learning of the weights from the 

hidden layer to the output nodes. Sigmoidal units were used 

throughout.  Eight networks were trained for 10 epochs at a 

time, and then checked for performance on the hold-out set. 

The only effect of the output layer on the Kohonen layer 

was that training ended when hold-out set accuracy at the 

output was >90% in 3 successive presentations. 

The input-Kohonen layer weights were trained by the 

standard Kohonen learning rule: 
 

where wji is the weight from input i to unit j, ai is the 

activation of input i, and f is a neighborhood weighting 

function on the learning rate, centered on the most highly-

activated unit (dist is the distance from unit i to the 

maximally activated unit in the grid). f takes the form:  

 

in which , the learning rate, starts at 1 and reduces over 

epochs according to  = epoch
(-0.2)

. G is a Gaussian width 

parameter, which also decreases over epochs, according to  

G = 0.5 +10*epoch
(-0.3)

, but stops reducing at epoch 50. 

This neighborhood learning rule ensures that nearby units 

learn similar patterns, which is what gives the Kohonen 

network its map-like quality. The output units were trained 

by a simple delta rule, with learning rate 0.01. We used 

2500 units on the Kohonen layer for these simulations. 

MVPA Analyses 

We simulated four findings from the fMRI literature: three 

demonstrations from H01 and one finding from SK02. For 
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all MVPA analyses, we examined activation patterns in the 

hidden layer of the network. For each of the eight trained 

networks, we recorded the activation patterns elicited by 

presentation of all stimuli in the 240-image training set, 

using the input-Kohonen weight values that the network had 

attained at the final epoch of training. Since the output units 

do not affect hidden unit representations in the model, the 

output weights were simply used to ensure that the network 

had formed a useful representation of the data. 

 

Haxby et al. (2001) MVPA Methods Subjects viewed 

photographic images from seven different categories: faces, 

houses, cats, bottles, scissors, shoes and chairs, plus 

scrambled “nonsense” images, while patterns of response 

were measured with fMRI. The authors first identified 

object-selective cortex by selecting those voxels for which 

the response to the different object categories that subjects 

viewed differed significantly. Data for each subject were 

split into two sets: odd and even numbered scans. By 

examining the similarity of patterns of response evoked by 

each category on odd and even scans, the authors 

determined whether the category being viewed by the 

subject could be identified, and measured the 

discriminability of the responses to different categories. 

Similarity was measured by the correlation between 

responses in odd and even runs. To determine the 

discriminability of, say, faces and shoes, the correlation 

between the mean response to faces across odd runs and the 

mean response to faces across even runs was compared to 

the correlation between the mean response to faces on odd 

runs and the mean response to shoes on even runs. If the 

within-category (face-face) correlation was higher than the 

between-category (face-shoe) correlation, that pairwise 

comparison was deemed correct. In comparing faces and 

shoes, there are four pairwise comparisons to be made: 1. 

faceodd-faceeven vs. faceodd-shoeeven, 2. faceodd-faceeven vs. 

faceeven-shoeodd, 3. shoeodd-shoeeven vs. faceeven-shoeodd, 4. 

shoeodd-shoeeven vs. faceodd-shoeeven. Thus, for each 

discrimination of two categories, there were four binary 

comparisons, yielding a possible score of 0, 25%, 50%, 75% 

or 100% on that pairwise discrimination, for every subject.  

H01 presented all photographic images to subjects several 

times each. However, the manner of assigning photographs 

to scans and sorting data from scans (by odd or even 

number) into two halves meant that the evoked activation 

patterns that were pooled by averaging over each half of the 

data were not elicited by an identical set of images. So the 

within-category correlation values – derived from activation 

to, e.g., faces in the first half and faces in the second half – 

were partly determined by the reproducibility of brain 

responses to different images from the same category. 

 

Spiridon and Kanwisher (2002) MVPA Methods The 

methods were broadly the same as in H01. However, SK02 

assayed different ways of splitting the data into two halves. 

In the ‘identical images’ condition, images were allocated to 

scans and sorted into two halves in such a way that each half 

of the data contained responses evoked by an identical set of 

images. In the ‘different views’ condition, scans were sorted 

such that each half contained responses evoked by the same 

exemplars, but different views appeared in each half. In the 

‘different exemplars’ condition, responses to a given 

category in each half of the data were evoked by images of 

different exemplars. When SK02 performed the same type 

of correlational analysis as H01, they found no significant 

differences between the three conditions in the percentage 

of correct pairwise category discriminations. 

 

Virtual MVPA Methods There is considerable noise in 

fMRI BOLD responses, which can be attributed to both 

endogenously-generated noise within the brain responses of 

subjects and externally-generated noise such as variability in 

scanner measurements. Owing to these sources of noise, 

correlations between neural responses reported by H01 were 

never perfect; even for within-category correlations, mean 

values ranged from 0.28 (bottles) to 0.81 (houses), measured 

across all of object-selective ventral temporal cortex. In 

contrast, there is no noise in the activation values of our 

model: we can access the exact activation evoked in a given 

unit by a given pattern at the time of test. If we present an 

image to the network twice, we obtain the identical 

activation pattern on both occasions. Presentation of exactly 

the same images in the two halves of the data, as in the 

‘identical views’ condition of SK02, would invariably yield 

within-category correlations of 1. In order to exploit the 

within-category variability in the model of activation 

patterns due to different images (and avoid perfect within-

category correlations), we followed the methods of H01 and 

the ‘different views’ condition of SK02: we sorted our 

activation patterns so that the two halves contained images 

from different views. Thus, both within-category and 

between-category correlations (rwithin and rbetween) were free 

to vary between -1 and 1, depending on the degree of 

similarity of the two activation patterns being compared.  

In practice, because of the lack of noise in the model, 

within-category correlations were always higher than 

between category correlations, therefore performing four 

binary comparisons, as in H01 and SK02, would always 

yield scores of 100%. Therefore we devised a measure of 

pairwise discrimination accuracy using the within- and 

between-category r values and the Luce Choice rule: 

     

where the sum over r means rwithin and rbetween, and  = 2 (the 

 value was chosen for discrimination of 95% on fictitious 

high within-category and low between-category r’s before 

applying to the network data). Accuracy of discrimination 

was equated with probability of the correct choice. 

Results 

All eight networks trained on the classification task reached 

criterion in 50 - 330 epochs. Figure 2 shows the topographic 
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organization of stimulus representations that emerged on the 

Kohonen layer for a typical simulation.  

 
Figure 2. Bird’s eye view of the Kohonen network hidden layer. 

Each hidden unit is represented by a colored square; the color 

indicates which category maximally activated the unit. The 

position of a unit in the 2D grid is shown on the x- and y-axes. 

Haxby Simulation 1 H01 found that patterns of response 

across all object-selective voxels in ventral temporal cortex 

contained sufficient information to perform pairwise 

discriminations of object categories. The correct category 

was identified in 96% of pairwise comparisons.  

Like Haxby et al., we also found that correlations between 

activation patterns on the hidden layer of our model 

correctly identified the category being viewed, with a mean 

probability of 86% that the correct category would be 

chosen in a pairwise comparison (see Table 1). This result 

was obtained without optimizing the constant in the Luce 

Choice Rule. Interestingly, H01 found that faces and houses 

were best discriminated by human subjects’ activation 

patterns, and of the categories on which we trained our 

model (i.e., excluding cats), they reported that chairs were 

the next best discriminated, with scissors, shoes and bottles 

performing more poorly. We report the exact same trend, 

with faces and houses best discriminated, followed by 

chairs, and then by the other three categories. In H01, there 

were two further analyses demonstrating that activations 

patterns are distributed across cortex; here we simulate both. 

 

Haxby Simulation 2 H01 reported that information about a 

given category is not solely contained in voxels in regions 

that respond maximally to stimuli from that category. They 

showed this by measuring accuracy of pairwise category 

discriminations using responses across object-selective 

cortex from which the voxels maximally responsive to the 

two categories being discriminated had been removed. For 

example, when discriminating houses and shoes, they 

removed the house- and shoe-selective voxels from the 

analysis. They found that the category being viewed was 

correctly identified in 94% of pairwise comparisons – a 

score barely diminished from that obtained using all object-

selective voxels. We replicated this analysis using activation 

patterns from the hidden layer in which all units maximally 

activated by either category in the discrimination were 

removed. Like H01, we found that the mean probability of 

correct identification of a category in a pairwise 

discrimination was 87%, similarly undiminished from the 

case where all object-selective units were used. The results 

of this analysis are shown in line 2 of Table 1. 

 

Haxby Simulation 3 Since voxels outside of the region 

responding maximally to a category contained information 

about that category (shown in H01 finding of Simulation 2), 

Haxby et al. proposed that each category-selective region 

contains information about other categories, too. To 

investigate this, they examined the discriminability of all 

object categories in each region that was maximally (and 

differentially) activated by one category, i.e., in each 

“category-selective” region. H01 showed that, within only 

cortex that responded maximally to one object class, good 

identification of all categories was possible. They reported 

mean accuracies for all pairwise category discriminations 

ranging from 83% to 94% across the different regions 

selective for faces, houses, or small man-made objects.  

We replicated this analysis by using activations from each 

“category-selective” region of the hidden layer for pairwise 

discriminations of all categories. The results are shown in 

lines 3-5 of Table 1. Like H01, we found that accuracy 

values for discriminations based on these regions of the 

hidden layer were similar to those obtained in Simulations 1 

and 2, with mean probability of correct identification 

ranging from 83% to 85% across the face, house and small 

man-made object regions of the hidden layer.  

The results of Analyses 2 and 3 from H01 suggested 

distributed cortical representations. SK02 performed similar 

analyses to H01, but in doing so, they found results that they 

interpreted as evidence for specialized processing of faces. 

Hence, we simulate those results here. 

Table 1: Simulation of Haxby et al. (2001) results. Accuracy of identification of the category being viewed based on 

activation patterns in the topographic hidden layer of the model.

Identification accuracy 
Region of hidden layer 

Faces Houses Chairs Bottles Scissors Shoes 

All object-selective units 91.4 ± 0.2 87.9 ± 0.2 87.5 ± 0.3 85.4 ± 0.4 82.3 ± 0.2 82.1 ± 0.2 

Minus regions maximally responsive to 

categories being compared 
92.0 ± 0.4 87.7 ± 0.2 89.2 ± 0.5 86.8 ± 0.4 82.2 ± 0.3 82.2 ± 0.3 

Regions maximally responsive to:       

         Faces 93.6 ± 0.2 83.1 ± 0.5 84.8 ± 0.5 84.5 ± 0.9 79.7 ± 0.6 79.1 ± 0.4 

         Houses 87.6 ± 0.4 89.9 ± 0.3 87.8 ± 0.3 82.1 ± 0.5 80.9 ± 0.4 80.9 ± 0.3 

         Small Objects 85.1 ± 1.0 84.7 ± 1.2 84.5 ± 1.4 81.7 ± 0.9 81.2 ± 1.5 80.2 ± 0.8 
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Simulation 4: Spiridon & Kanwisher (2002) One finding 

from SK02 was particularly pertinent to the debate 

regarding a specialized module for faces. This finding 

emerged from a replication of H01’s Analysis 3, but in 

which the size of the cluster of voxels used in the MVPA 

was equated across categories. The authors measured the 

accuracy of pairwise category discriminations between 

activation patterns across clusters of 30 voxels most 

selective for each category. They found that the cluster of 

voxels most selective for faces yielded better accuracy in 

discriminating face from non-face categories than in 

discriminating non-face from non-face categories. Spiridon 

and Kanwisher took this as evidence for specialized 

processing of faces by face-selective neurons. Since no 

other cluster of voxels exhibited such an advantage for 

discrimination of the category to which it responded 

maximally, the authors concluded that this specialized 

processing does not exist for any other object category. 

The results from our replication of this analysis, using 30-

unit clusters, are shown in Table 2. Using the same methods 

of analysis as SK02, we also find that, in the cluster of units 

most selective for faces, faces are better discriminated than 

any other category. As in SK02, this is true for no other 

category.  

The relationship between the number of units in our 

simulation and the number of voxels in the brain is unclear; 

there is no reason to expect a one to one mapping between 

voxels and hidden units. Therefore we performed analyses 

using cluster sizes of 60 and 100 units. We found that the 

simulation results generalize across different spatial scaling 

assumptions; that is, for both 60- and 100-unit clusters we 

found the same selective advantage for discriminating faces 

in the face cluster, and no such advantage for discriminating 

the category to which the cluster is maximally responsive 

for any other cluster. 

Discussion 

In this paper we presented a neurocomputational model of 

visual object processing in which representations of objects 

on the hidden layer develop, without supervision, into a 

topographically organized map of stimulus space. Learning 

of hidden layer representations is governed by the Kohonen 

algorithm, which mimics processing in mammalian sensory 

cortex. The topography of object representations in the 

hidden layer allowed us to develop a method we term 

“virtual MVPA”, in which we analyze patterns of activation 

across units in the hidden layer with statistical techniques 

similar to those used in MVPA of fMRI data. 

We have replicated three findings from H01 and an 

important result from SK02. In the replications of H01, we 

demonstrated that activation patterns across units in the 

model can be used to determine the category of stimulus 

being presented to the model, under three conditions: (1) 

using all object-selective units in the discrimination, (2) 

using all object-selective units minus those that are 

maximally activated by the categories being discriminated, 

and (3) using only the units maximally responsive to a 

single stimulus category. In the simulation of SK02, we 

showed, using a model containing no specialized processing 

for faces, that the ‘face region’ shows an advantage for 

category discriminations involving faces (i.e., identifying 

that an object is a face) but this is not true for other category 

selective regions. In other words, the region maximally 

responsive to shoes is not best at shoes.  

These simulations showcase our virtual MVPA method, 

demonstrating that introducing topographic representations 

into a model of face and object processing allows analysis 

of the model in the way that brain scan data from human 

subjects is analyzed using MVPA. Further, our successful 

simulation of H01 demonstrates that we have a 

neurocomputational model of visual object processing in 

which representations contain the type of information about 

object categories that is contained in neural representations 

in ventral temporal cortex, as assessed by fMRI.  

The three findings from H01 support an account of visual 

processing in which there is no face module, since they 

suggest that information about other categories exists in the 

face area, and information about faces is contained in other 

areas. For example, Haxby Simulations 2 and 3 demonstrate 

that a unit maximally activated by bottles is still useful in 

discriminating, say, faces from houses, because it responds 

consistently with characteristic (albeit non-maximal) 

activation values to face and house stimuli. Information 

about stimulus identity is not solely carried by the units 

responding maximally to the stimulus. However, Spiridon 

and Kanwisher performed a similar analysis to Haxby 

Simulation 3 and found that information was not equally 

distributed across cortex for all categories. For this reason, 

we simulated SK02. 

 

Table 2: Simulation of Spiridon and Kanwisher (2002) results. Accuracy of identification of the category being viewed based 

on activation patterns across the 30 units most selective for each category. 

Region of hidden layer Identification accuracy 

 Faces Houses Chairs Bottles Scissors Shoes 

30 units most selective for:       

         Faces 90.3 ± 2.1 80.4 ± 1.6 82.7 ± 2.5 84.0 ± 1.0 76.2 ± 1.7 74.1 ± 2.2 

         Houses 85.6 ± 1.1 83.1 ± 2.0 85.8 ± 1.7 79.3 ± 1.2 77.2 ± 1.6 81.0 ± 1.5 

         Chairs 87.2 ± 2.1 84.8 ± 1.6 85.6 ± 1.6 77.3 ± 1.7 77.6 ± 2.9 75.9 ± 1.2 

         Bottles 90.9 ± 1.5 81.7 ± 1.4 82.0 ± 1.7 82.9 ± 1.2 83.4 ± 1.5 86.3 ± 1.0 

         Scissors 84.6 ± 2.0 81.6 ± 1.4 84.8 ± 1.8 86.4 ± 1.5 81.4 ± 1.2 82.9 ± 2.4 

         Shoes 85.8 ± 1.7 86.4 ± 0.6 84.8 ± 1.7 86.9 ± 0.9 86.0 ± 2.7 79.6 ± 2.5 
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We replicated the SK02 finding that there is no cluster of 

voxels other than for faces that selectively discriminates one 

object category from the alternatives. We were able to 

replicate this finding simply because the similarity structure 

of the representations in the model reflects the similarity 

structure of the stimuli (echoing the match between the 

similarity of brain scans and the similarity of the images 

eliciting the brain scans revealed by O’Toole et al., 2005). 

Among the object categories, the images of faces show the 

greatest within-category similarity and the greatest 

dissimilarity from other categories; this is also true of the 

representations of faces in the model (Figure 3A). This 

means that individual face stimuli elicit highly reproducible 

patterns (yielding a high within-category correlation for face 

activations) that are quite different from the patterns due to 

other objects (yielding low between-category correlations 

for face vs. non-face comparisons). This is particularly true 

in the region of the hidden layer maximally responsive to 

faces, where all units are activated maximally by a face, but 

yield highly variable activations in response to other objects. 

Thus in the face region, the face-face correlation is high and 

the face-nonface correlation is low (giving good face 

discrimination) but, e.g., the shoe-shoe correlation is not 

high (giving poor shoe discrimination). By contrast, the 

within-category similarity of other categories is much lower, 

so that individual scissor stimuli elicit very variable 

responses (Figure 3B), even in the region maximally 

responsive to scissors. Here the within-category correlation 

for activation patterns due to scissors is not high, and the 

between-category correlation for scissors compared to, say, 

shoes, may be moderate (since the average activation over a 

variable set of scissor patterns may be similar to the average 

over a variable set of shoe patterns), therefore 

discrimination of scissors is poor. 

 
Figure 3. Kohonen layer activations evoked by four individual face 

stimuli (top row) and four individual scissor stimuli (bottom row). 

Individual exemplars were chosen randomly. Compare to Figure 2. 

In simulating the SK02 result, we have helped resolve the 

inconsistency of this finding with Haxby et al.’s 

interpretation of their own results within a distributed 

processing account. In essence, using a neurocomputational 

model that has no special anatomy or processing mechanism 

for faces, we have accounted for MVPA results that both 

suggest the face specific region of cortex is special (because 

only the face area is better at discriminating faces from the 

alternatives) and that faces are not special (because they can 

be discriminated in regions not selective for faces). This 

demonstration was made using equal amounts of training for 

all object categories (that is, ignoring any influence of the 

social significance of, or extra exposure to, faces). The 

success of this computational account suggests that the 

differences between faces versus other objects may lie 

primarily in the visual characteristics of faces themselves as 

objects (O’Toole et al., 2005). Moreover, since our virtual 

MVPA findings map onto the results of real brain scan 

MVPA, we provide an existence proof that one can obtain 

the SK02 results from a model that has no specialized 

processing for faces. This calls into question use of these 

results in arguing for a specialized “face module” in ventral 

temporal visual cortex. 
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