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Abstract

One view of causation is deterministic: 4 causes B means that
on any occasion in which 4 occurs, B occurs. An alternative
view is that causation is probabilistic: it means that given A4,
the probability of B is greater than some criterion, such as the
probability of B given not 4. Evidence about the induction of
causal relations cannot decide between these two accounts,
and so we examined how people refute causal relations. Three
experiments showed that they tend to be satisfied that a single
counterexample of 4 and not-B refutes claims of the form, 4
causes B and A enables B. But, as a deterministic theory
based on mental models predicted, when participants required
more than one refutation they tended to do so for claims of
the form, 4 enables B. Similarly, refutations of the form not-4
and B were more frequent for enabling than causal claims. We
interpret these results to imply that causation is a
deterministic notion, and that causation and enabling
conditions are distinct concepts.
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Introduction

The everyday concept of causation is puzzling. No-one
seems sure about what it means, and some theorists even
deny its coherence and seek to outlaw it from scientific
discourse (Russell, 1912-13; Salsburg, 2001). The
traditional view is that causation is deterministic (e.g.,

Hume, 1748/1988). But, a contrasting probabilistic
conception developed in the twentieth century
(Reichenbach, 1956; Suppes, 1970). Both views have

current proponents in psychology. In what follows, we
outline psychological theories of causation, consider some
of the recent evidence for the role of covariation in inferring
causation, and examine the role of refutation in elucidating
the debate between deterministic and probabilistic theories.

Psychological theories of causation

The theory of mental models provides a deterministic
account of the everyday meaning of causation (Goldvarg &
Johnson-Laird, 2001; Johnson-Laird, 2006). 4 causes B
refers to three possibilities:

A B
not- A B
not- A not- B

in which B does not precede A in time. The theory
acknowledges the role of probability in causal reasoning:
the evidence supporting a causal relation may be
probabilistic, but not the concept itself.

In contrast to deterministic theories, a probabilistic
account of causation, such as the one proposed by Cheng
and her colleagues, is based on the difference between the
conditional probability of B given 4 and the conditional
probability of B given not-A (Cheng & Novick, 1990). This
difference enters into various computations in order to
account for different causal tasks (e.g., Cheng, 1997,
Novick & Cheng, 2004).

Other theories are less committed to either side of the
debate and make provisions for both deterministic and
probabilistic representations. For example, Sloman, Barbey,
and Hotaling (2009) describe a theory, based on causal
models, which allows causal assertions to be probabilistic or
deterministic depending on whether an uncertainty
parameter is included or ignored. Another recent theory
postulates that causal relations are characterized by forces
that either work together or oppose one another (Barbey &
Wolff, 2007; cf. Wolff, 2007). And Sloman et al describe
how Barbey and Wolff’s (2007) transitive dynamics model
can account for both deterministic and probabilistic causal
relations.

Is covariation the key to causal inference?

Research on induction has shown that people infer causal
relations from data about covariations among events
(McArthur, 1972; Cummins, Lubart, Alksnis, & Rist, 1991;
Shanks, 2004), and that they may do so when the probability
of the effect given the cause is less than 1. Such results,
however, do not establish that the concept of causation, as
opposed to evidence for its applicability, is probabilistic.
Indeed, the view that causal relations are inferred from
covariation information alone is controversial and
questioned by Lagnado, Waldmann, Hagmayer, and Sloman
(2007). This idea receives further support from Luhmann
and Ahn (2003), who demonstrated that when individuals
consider physical causation they are willing to attribute
causal roles to unobserved events. They explain cases of
not-A and B by referring to alternative causes of B, and they
explain cases of 4 and not-B by referring to inhibitory
causes (‘disabling’ conditions). Hence, individuals make
causal inferences without all of the relevant covariation
data. Luhmann and Ahn (2005) went on to argue that
probabilistic causality is psychologically implausible.
Schulz and Sommerville (2006) addressed the question of
whether children have a deterministic view of causation. In
a series of experiments, they showed that children infer
unobserved causes when an observed cause does not always
produce an effect, and that children can distinguish between
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unobserved inhibitory causes and absent unobserved
generative causes. These authors concluded that children
have a deterministic view of causation. In sum, the tendency
of children and adults to explain cases of 4 and not-B and
not-A and B by invoking disablers and alternative causes
casts doubt on a probabilistic interpretation of causation,
which by its very nature should tolerate counterexamples
without the need for explanation.

The role of refutation

The search for counterexamples is an integral part of the
mental model theory of reasoning (Johnson-Laird & Byrne,
1991). For example, in reasoning from sentential
connectives, individuals tend to refute putative conclusions
that are consistent with the premises but that do not follow
of necessity, by identifying a counterexample (Johnson-
Laird & Hasson, 2003). Likewise, if causation is
deterministic, then individuals should seek a single
refutation to refute a causal claim. In contrast, if causation is
probabilistic, then individuals should seek multiple
refutations to refute a causal claim.

The model theory also draws a clear distinction between
the meaning of causal claims and enabling claims. A causal
assertion, such as, ‘emotions cause individuals to pay
attention,” refers to the following three possibilities in a
temporal order:

attention
attention
not-attention

emotion
not-emotion
not-emotion

An enabling assertion, such as, ‘emotions enable individuals
to pay attention’, refers to what emotions make possible,
and so it refers to the following temporally-ordered
possibilities:

attention
not-attention
not-attention

emotion
emotion
not-emotion

A weaker sense of enabling is consistent with all four
contingencies, but there is often an implicature that only the
antecedent, emotion in this case, makes the consequent
possible (Goldvarg & Johnson-Laird, 2001).

To hold three distinct possibilities in mind is difficult
(Bauer & Johnson-Laird, 1993; Bucciarelli & Johnson-
Laird, 1999), and so the model theory postulates that
individuals normally represent only the case in which both
clauses are true (Johnson-Laird & Byrne, 1991). Hence,
both causal and enabling claims have the same mental
models:

A B

where the ellipsis denotes other implicit possibilities. One
corollary is that individuals should have difficulty in

distinguishing between the meanings of causal and enabling
claims, which may account for the common view that they
do not differ in meaning (e.g., Mill, 1874).

According to the model theory, causal claims with the
structure A causes B are refuted by a single occurrence of 4
without B:

A not-B

Enabling claims of the form A enables B granted the
implicature that only A makes B possible are refuted by a
single occurrence of B without 4:

not-A B

However, in the absence of the implicature, the only way to
refute the weak claim that 4 makes B possible is to observe
that B never occurs in the presence of 4. Hence, the theory
predicts that individuals should seek multiple observations
to refute enabling claims more often than to refute causal
claims.

Assertions about prevention, A prevents B, are equivalent
to A causes not-B, and so they refer to these three
possibilities:

A not- B
not- A B
not- A not-B

Hence, a claim about prevention should be refuted by a
single occurrence of A with B:

A B

Wolff (personal communication 06/12/2008)
acknowledges that the force dynamics theory makes no
clear predictions about how causes and enablers should be
refuted, but suggests that a combination of the theory and
lexical semantics might predict that a claim of the form, 4
causes B, is refuted by an observation of 4 and not-B,
whereas an observation of not-4 and B would be more
damaging for an enabling relation. The theory accordingly
makes much the same predictions as the model theory. But,
other current theories take a different point of view.
Sloman’s (2005) causal model theory stresses the
importance of mechanisms, and so it implies that refutations
establish either the absence of a mechanism relating cause to
effect or that the mechanism is malfunctioning or broken.
Hence, causes are refuted by the absence of an enabler or
the presence of a disabler; and enablers are refuted by the
absence of additional enablers (Sloman, personal
communication, 09/29/2008). In some cases, a single
refutation suffices; it depends on how many other causes,
enablers, or disablers, an assertion brings to mind (Sloman,
personal communication, 06/24/2008). However, the model
theory predicts an asymmetry: individuals should be more
likely to seek multiple refutations for enabling than for
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causal assertions. We carried out three experiments to test
these predictions.

The Experiments

In three experiments, the participants were presented with
causal assertions made by different individuals, such as:

Peter says: Following this diet causes a person with this
sort of metabolism to lose weight.

Their task was to state what would refute Peter’s claim.
Experiments 1 and 2 were conducted online, and, to
strengthen their results, Experiment 3 was conducted in a a
face to face test of each participant in the laboratory. There
were also differences in the materials and procedure over
the three experiments. Participants in Experiment 1 were
asked an open-ended question about the sort of evidence
they required to refute causal, enabling, and prevention
assertions. In general, the participants sought observations
of A and not-B and not-A and B, but with no clear difference
between causes and enablers. Hence, Experiments 2 and 3
explained the difference between causes and enablers in
more detail, and the participants selected one of two options
(4 and not-B or not-A and B) and stated whether or not one
observation was sufficient evidence for a refutation.

Method

Design The participants acted as their own controls in all
three experiments. In Experiment 1, they carried out the task
for five assertions about causes, five assertions about
enabling conditions, and five assertions about preventions.
We created the three sorts of assertion from each of fifteen
contents, but each participant saw just one assertion with
each of the contents, which were rotated over the
participants in order to counterbalance them. In Experiments
2 and 3, the assertions described eight causes and eight
enabling conditions. In all three experiments, the assertions
occurred in a different random order for each participant.

Participants The participants were as follows: Experiment
1: 18 Princeton University students and staff (mean age =22
years). Experiment 2: 20 Princeton University students and
staff (mean age = 23 years). Experiment 3: 21 University of
Reading undergraduates (mean age = 22 years).

Materials The materials for the experiments were drawn
from five domains: physiological, e.g., ‘regular exercise of
this sort causes a person to build muscle’, physical, e.g.
‘contact between these two sorts of substance causes an
explosion to occur’, mechanical, e.g., ‘tuning this kind of
engine in this special way causes a reduction in its fuel
consumption to occur’, socio-economic, e.g., ‘introducing
these health care reforms causes more people to seek
medical attention’, and psychological, e.g., ‘a person’s
positive attitude towards you causes you to like that person’.
Each content occurred with three sorts of verb in
Experiment 1: causes, enables, and prevents, but only with

the first two of these verbs in Experiments 2 and 3. People
distinguish between causing and enabling relations whether
causal relations are expressed using causes, forces, or
makes, and whether enabling relations are expressed using
enables, allows, or helps (Wolff & Song, 2003). But, there
can be slight difference of meaning amongst these verbs,
e.g., it would be odd to assert, the weak brackets enabled the
shelves to collapse, and so we used the most general verbs.
Individuals are more likely to test a hypothesis when they
consider another person’s claim rather than a self-generated
one (Cowley & Byrne, 2005; under review; Sanbonmatsu,
Posavac, Vanous, & Ho, 2005), and so each assertion was
presented as made by a different person, and the participants
had to say what would refute the assertion.

Procedure Experiments 1 and 2 were conducted online at
Princeton University and Experiment 3 was conducted face
to face at the University of Reading. In Experiment 1,
participants were asked an open-ended question:

What sort of evidence would you require to refute this
statement? Please describe one or more possibilities that
would show that Peter’s claim is false.

In Experiments 2 and 3, the participants were asked:

Which of these two possibilities provides more decisive
evidence against this assertion?

And they were presented with two options of the form: 4
and not-B, not-A and B. They were then asked:

Would this observation suffice to show that the claim is
false? And, if not, what other observation would be
necessary?

In these two experiments, we explained that the causing
event ‘brought about the outcome’ whereas the enabling
event ‘made the outcome possible’.

Results

Figure 1 presents the percentages of trials over the three
experiments on which the participants required a single
refutation, and the remaining responses were for multiple
refutations. We used a stringent criterion in Experiment 1,
e.g., assertions such as, ‘I would have people perform the
exercise and see whether they consistently built muscle or
not,” were classified as requiring multiple refutations. There
was an explicit question on the matter for Experiments 2
and 3.

As the figure shows, the participants required more single
than multiple refutations for all three sorts of claim in
Experiment 1 (Wilcoxon tests: for causes, z=2.43, p < .01,
one-tail probability here and throughout; for enables, z =
2.52, p <.01; for prevents, z=3.37, p < .005). There was no
reliable difference in the number of single refutations
requested for causes (70%) and enables (77%; z = .78, p >

197



.22). In Experiment 2, we asked the participants whether the
one observation they had chosen (either 4 and not-B, or not-
A and B) was sufficient to refute the assertion. On 87% of
the trials the participants stated that one observation was
sufficient. But, as Figure 1 shows, they were more likely to
request multiple observations for enables (21% of trials)
than for causes (6% of trials; Wilcoxon test, z = 2.35 p <
.01). In Experiment 3, as Figure 1 also shows, the
participants were satisfied with a single observation for
causes (91% of trials, Wilcoxon test, z = 4.07, p < .00005)
and for enables (63% of trials, Wilcoxon test, z = 2.1, p <
.025), and the increase in multiple refutations for enables
compared to causes was reliable (Wilcoxon test, z = 3.35, p
=.0005).

100 ~
90 ~
80 ~
70 A
60 -
50 ~
40 4
30 ~
20 ~
10 4

m Causes
O Enables
O Prevents

Percentage of single refutations

Exp1 Exp2 Exp3

Figure 1. The percentages of single refutations for causes,
enables in the three experiments; the balances of the
percentages were for multiple refutations. The data for
prevents are from Experiment 1.

Figure 2 presents the percentages of the two critical sorts
of refutation for assertions based on causes and on enables:
A and not-B, and not-A and B, respectively. In all three
experiments, the predominant response was an observation
of A4 and not-B. For Experiment 1, we derived these
percentages by categorizing the responses, and the coding
was verified by a second coder who was blind to the
hypotheses, and the 9% of disagreements were resolved
through discussion. In Experiments 2 and 3, the percentages
in the Figure are based on the participants’ explicit choices
about which contingency would refute the assertions. In
Experiment 1, the participants tended to require an
observation of 4 and not-B to refute both causes and
enables, whereas on 70% of trials they required an
observation of 4 and B to refute 4 prevents B. They tended
to require an observation of not-4 and B more often for
enables (11% of trials) than for causes (7% of trials), but the
trend was not reliable (Wilcoxon test, z = 1.2, p > .1).
Experiment 2 yielded the same pattern of results, but the
participants selected an observation of not-4 and B more
often for enables (25% of trials) than for causes (10% of
trials, Wilcoxon test, z = 2.53, p < .01). Those who chose
the refutation of not-4 and B for enables tended not to

request multiple observations: ten participants required them
on fewer than half of such trials, only two participants
required them on more than half of such trials, and there
were two ties (Binomial test, p < .02). Experiment 3
replicated the results: the participants opted for an
observation of not-4 and B more often for enables (38% of
trials) than for causes (12% of trials; Wilcoxon test, z = 2.5,
p<.01).

100 1 Onot-AB
90 1 M Anot-B
80 1

70 -
60 -
50 -
40 4
30 ~
20 ~

Percentage

Causes [Enables

Figure 2. The percentages of 4 and not-B and not-A and B
refutations for causes and enables across the three
experiments.

Among the requests for multiple refutations in
Experiment 1, 88% referred to the observation of
conjunctions between the antecedent and the outcome.
Some requested evidence of 4 and not-B as well as not-A
and B, whereas others requested multiple observations of
the same kind, e.g. ‘Showing that, through scans of muscle
or strength tests, that the particular sort of regular exercise
does not aid in building muscle’. The remaining 12% of
multiple refutations were of a different nature, requesting
information about other potential factors that might
contribute to the outcome, e.g. ‘would need to see how
many people seek medical attention regardless of reforms’.

General Discussion

The three experiments showed that single observations were
likely to be judged sufficient to refute causal claims, such
as: ‘Regular exercise of this sort causes a person to build
muscle’. In Experiment 1, participants tended to suggest
single refutations, such as: ‘The person did regular exercise
of the particular sort and didn't gain muscle’. They also
required single observations to refute assertions about
enables and prevents. Experiments 2 and 3 clarified the
difference between the relations by adding a rider that
causes means brings about, and enables means makes
possible. Participants continued to request single refutations
of A and not-B, but there were now reliable differences
between the two assertions. As the model theory predicts,
the participants tended to require single refutations for
causes but a greater proportion of multiple refutations for
enables. Similarly, they were more likely to require
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observations of not-A and B to refute enables than to refute
causes. Both the preference for single refutations and the
difference between causes and enables are difficult to
explain from a probabilistic standpoint, which implies that
refutations should be statistical: the weight of evidence
should accumulate to depress the conditional probability of
B given A below some given criterion (e.g., Cheng, 1997).
Probabilistic accounts also have little to say about enabling
relations. One such view is that an enabling condition is
constant in the situation, whereas the cause is inconstant
(Cheng & Novick, 1991). But, this constraint is not
invariable, e.g.:

Mary threw a lighted cigarette into a bush. Just as the
cigarette was going out, Laura deliberately threw petrol on
it. The resulting fire burnt down her neighbor’s house.

Naive individuals identify Mary’s action as the enabler of
the fire and Laura’s action as its cause, but the enabler is not
a constant (Frosch, Johnson-Laird, & Cowley, 2007).

Why, then, should anyone suppose that causation is
probabilistic? Luhmann and Ahn (2005) suggest that causal
inferences sometimes appear to be probabilistic, because
individuals make no explicit reference to hidden causes
responsible for counterexamples. We propose three further
factors that enhance the popularity of the probabilistic view
of causation.

The first factor is philosophical. The success of quantum
mechanics in the Twentieth century replaced Newtonian
determinism with an irreducible probabilistic physics. This
view, in turn, has inculcated a probabilistic metaphysics
(Suppes, 1984).

The second factor is methodological. Systematic evidence
pertinent to causation is often statistical, in part because
noise and erroneous observations are bound to occur, and in
part because hidden causes and disabling factors may be
uncontrolled in samples of data. For instance, if you observe
that 99 out of 100 smokers develop cancer, whereas only 9
out of 100 nonsmokers from the same population do, then
you have prima facie evidence that smoking causes cancer,
but it is not the whole story. Some hidden disabling
component is at work sparing the single survivor, granted
that the observation is not spurious.

The third factor is psycholinguistic, and perhaps the most
relevant to psychological theories of causation. Many causal
claims are couched in the form of generic assertions. A
‘generic’ assertion contains a noun phrase as its subject
thatlacks a specific quantifier, such as ‘all’ or ‘some’, e.g.:
Ducks lay eggs (Leslie, 2008). And generic assertions are
compatible with counterexamples, e.g., drakes don’t lay
eggs (Khemlani, Leslie, Glucksberg, & Fernandez, 2007).
An assertion, such as:

Smoking causes cancer

is generic, and it too tolerates counterexamples. But, if we
introduce an explicit universal quantifier, e.g.:

Smoking always causes cancer

then individuals are likely to judge that a single
counterexample refutes the claim. Generic causal assertions
tolerate exceptions, but that is because they are generic, not
because they are causal. With a universal quantifier, the
deterministic nature of everyday causality is so obvious that
we deliberately chose to use generic assertions in our
experiments. Yet, in all three of them, the participants
tended to require just a single observation of the form 4 and
not-B in order to refute claims of the form: 4 causes B. This
result is contrary to a probabilistic concept of causation.

One defense of the probabilistic view is that it allows that
the probability of an effect given a cause could be 1, and so
at the limit it is a deterministic theory. But, granted a
probabilistic concept, why should individuals make the limit
interpretation so often? The probabilistic theory needs to
explain the occurrence of this phenomenon. Consider, for
instance, these two assertions: “The spark will probably
cause a fire” and “The spark will cause a fire”. If the spark
doesn't cause a fire, the second assertion is false, but not the
first one. On a probabilistic account, the two assertions
should be synonymous. Likewise, as the model theory
predicts, participants require a greater proportion of multiple
refutations for enabling assertions than for causal assertions.
Probabilistic theories offer no ready account for this
phenomenon, either. Our findings add to the mounting
evidence that causation is, mnot probabilistic, but
deterministic. When one event causes another, the
antecedent suffices for the consequent to occur.
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