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Abstract

Statistical learning (SL) research aims to clarify the potential
role that associative-based learning mechanisms may play in
language. Understanding learners’ processing of nonadjacent
statistical structure is vital to this enterprise, since language
requires the rapid tracking and integration of long-distance
dependencies. This paper builds upon existing nonadjacent
SL work by introducing a novel paradigm for studying SL on-
line. By capturing the temporal dynamics of the learning
process, the new paradigm affords insights into the time
course of learning and the nature of individual differences.
Across 3 interrelated experiments, the paradigm and results
thereof are used to bridge knowledge of the empirical relation
between SL and language within the context of nonadjacency
learning. Experiment 1 therefore charts the micro-level
trajectory of nonadjacency learning and provides an index of
individual differences in the new task. Substantial differences
are further shown to predict participants’ sentence processing
of complex, long-distance natural dependencies in Experiment
2. SRN simulations in Experiment 3 then closely capture key
patterns of human nonadjacency processing, attesting to the
efficacy of associative-based learning mechanisms that appear
foundational to performance in the new, language-linked task.

Keywords: Nonadjacent Dependencies; Sentence Processing;
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Introduction

Statistical learning is an inextricably temporal phenomenon,
involving the encoding of sequential regularities unfolding
over time and space, and the simultaneous shaping of
distributional  knowledge through ongoing learning
experience. Within the past decade, statistical learning (SL)
has especially emerged as a key proposed mechanism for
acquiring probabilistic dependencies inherent in the time-
dependent signal of the speech stream (for reviews, see
Gomez & Gerken, 2000; Saffran, 2003).

While traditional artificial grammar learning (AGL;
Reber, 1967) tasks have been fruitfully deployed towards
studying SL, they fail to provide a clear window onto the
temporal dynamics of the learning process. In contrast,
serial reaction time (SRT; Nissen & Bullemer, 1987) tasks
widely used in sequence-learning research trace individuals’
trial-by-trial progress, yet aim to investigate learning for
primarily repeating structure. Rarely have methodological
advantages of each paradigm been jointly subsumed under a
single task for exploring properties of SL.

Nonetheless, notable exceptions include the work of
Cleeremans and McClelland (1991), who implemented a
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noisy finite-state grammar within a visual SRT task to study
the encoding of contingencies varying in temporal distance;
and of Hunt and Aslin (2001), who employed a visual SRT
paradigm for examining learners’ processing of sequential
transitions varying in conditional and joint probabilities.
Howard, Howard, Dennis and Kelly (2008) also adapted the
visual SRT to manipulate the types of statistics governing
triplet structures; and Remillard (2008) controlled nth-order
adjacent and nonadjacent conditional information to probe
SRT learning for visuospatial targets. Across these studies,
participants evinced complex, procedural knowledge of the
sequence-embedded relations upon extensive training over
20, 48, 6 or 4 sessions, respectively, spanning separate days.
Reaction time measures throughout exposure enabled
insights into the processing of the structural dependencies.
In similar vein, we introduce a new paradigm that directly
instantiates an artificial language within an adapted SRT
task. Distinct from the aforementioned work, the paradigm
specifically endeavors to capture the continuous timecourse
of statistical processing, rather than contrasting/altering the
forms of statistical information. The paradigm is designed
for the briefer exposure periods prototypic of many AGL
studies and flexibly accommodates the use of linguistic
stimuli-tokens and auditory cues. More generally, the task
shares similarities to standard AGL designs in the language-
like nature of string-sequences, the smaller number of
training exemplars, and the greater transparency to natural
language structure. Crucially however, it uses the dependent
variable of reaction times and a modified two-choice SRT
layout to indirectly assess learning while focusing attention
through a cover task. By coupling strengths intrinsic to AGL
and SRT methods respectively, the ‘AGL-SRT paradigm’ is
intended to complement existing approaches in SL research.
Understanding how learners process nonadjacent relations
constitutes an ongoing area of SL work, with importance for
theories implicating SL in language acquisition/processing.
Natural language abounds with long-distance dependencies
that proficient learners must track on-line (e.g., as in
subject-verb  agreement, clausal embeddings, and
relationships between auxiliaries and inflected morphemes).
Even with the growing bulk of SL work aiming to address
the acquisition of nonadjacencies (e.g., Gomez, 2002;
Newport & Aslin, 2004; Onnis, Christiansen, Chater &
Gomez, 2003; Pacton & Perruchet, 2008; inter alia), it is yet
unknown exactly how such learning unfolds, the precise
mechanisms subserving it, and the degree to which SL of



nonadjacencies empirically relates to natural language
processing. Our AGL-SRT paradigm offers a novel entry
point into this study by augmenting current knowledge with
finer-grained, temporal data of how nonadjacency-pairs may
be processed over time. As such, Experiment 1 implements
Gomez’s (2002) high-variability language within the AGL-
SRT task to reveal the timecourse of nonadjacent SL.
Experiments 2 and 3 then probe the task’s relevance to
language and its computational underpinnings.

Experiment 1: Statistical Learning of
Nonadjacencies in the AGL-SRT Paradigm

In infants and adults, it has been established that relatively
high variability in the set-size from which an ‘intervening’
middle element of a string is drawn facilitates learning of
the nonadjacent relationship between the two flanking
elements (Gomez, 2002). In other words, when exposed to
artificial, auditory strings of the form aXd and bXe,
individuals display sensitivity to the nonadjacencies (i.e.,
the a_d and b_e relations) when elements composing the X
are drawn from a large set distributed across many
exemplars (e.g., when |X| = 18 or 24). Performance is at
chance, however, when variability of the set-size for the X is
intermediate (e.g., |X] = 12) or low (e.g., |X] = 2). Similar
findings of facilitation from high-variability conditions have
also been documented for adults when the grammar is
alternatively instantiated with visual shapes as elements
(Onnis et al., 2003). Thus, findings have begun to document
supportive learning contexts for both infants and adults, but
we know little about the timecourse of high-variability non-
adjacency learning as it actually unfolds. Here, we address
this gap by using the novel AGL-SRT paradigm.

Method

Participants Thirty monolingual, native English speakers
from among the Cornell undergraduate population (age:
M=20.6, SD=4.2) were recruited for course credit.

Materials During training, participants observed strings
belonging to Gomez’s (2002) artificial high-variability,
nonadjacency language. Strings thus had the form aXd, bXe,
and cXf, with initial and final items forming a dependency
pair. Beginning and ending stimulus tokens (a, b, ¢, d, e, f)
were instantiated by the nonwords pel, dak, vot, rud, jic, and
tood; middle X-tokens were instantiated by 24 disyllabic
nonwords: wadim, kicey, puser, fengle, coomo, loga, gople,
taspu, hiftam, deecha, vamey, skiger, benez, gensim, feenam,
laeljeen, chila, roosa, plizet, balip, malsig, suleb, nilbo, and
wiffle. Assignment of particular tokens (e.g., pel) to
particular stimulus variables (e.g., the ¢ in cXf) was
randomized for each participant to avoid learning biases due
to specific sound properties of words. Mono- and bi-syllabic
nonwords were recorded with equal lexical stress from a
female native English speaker and length-edited to 500 and
600 msec respectively. Ungrammatical items were produced
by disrupting the nonadjacent relationship with an incorrect
final element to produce strings of the form: *aXe, *aXf,
*bXd, *bXf, *cXd and *cXf. Written forms of nonwords (in
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Arial font, all caps) were presented using standard spelling.
Procedure A computer screen was partitioned into a grid
consisting of six equal-sized rectangles: the leftmost column
contains the beginning items (a, b, ¢), the center column the
middle items (X;...X54), and the rightmost column the
ending items (d, e, f). Each trial began by displaying the grid
with a written nonword centered in each rectangle, with
each column containing a nonword from a correct and an
incorrect stimulus string (foils). Positions of the target and
foil were randomized and counterbalanced such that each
occurred equally often in the upper and lower rectangles.
Foils were only drawn from the set of items that can legally
occur in a given column (beginning, middle, end). E.g., for
the string pel wadim rud the leftmost column might contain
PEL and the foil DAK, the center column WADIM and the foil
FENGLE, and the rightmost column RUD and the foil TOOD,
as shown in Figure 1 across three time steps.

WADIM TOCO TOCD WADIM TOCD

\NA*

°l FencLe

FENGLE PEL RUD FENGLE

R

“...rud" (time 3)

x

Figure 1: The sequence of mouse clicks associated with a
single trial for the auditory stimulus string “pel wadim rud”.

“pel...” (time 1) *...wadim...” (time 2)

After 250 msec. of familiarization to the six visually
presented nonwords, the auditory stimuli were played over
headphones. Participants were instructed to use a computer
mouse to click upon the rectangle with the correct (target)
nonword as soon as they heard it, with an emphasis on both
speed and accuracy. Thus, when listening to pel wadim rud
the participant should first click PEL upon hearing pel (Fig.
1, left), then WADIM when hearing wadim (Fig. 1, center),
and finally RUD after hearing rud (Fig. 1, right). After the
rightmost target has been clicked, the screen clears, and a
new set of nonwords appears after 750 msec. An advantage
of this design is that every nonword occurs equally often
(within a column) as target and as foil. This means that for
the first two responses in each trial (leftmost and center
columns), participants cannot anticipate beforehand which is
the target and which is the foil. Following the rationale of
standard SRT experiments, however, if participants learn the
nonadjacent dependencies inherent in the stimulus strings,
then they should become increasingly faster at responding to
the final target. The dependent measure is thus the reaction
time (RT) for the predictive, final element on each trial,
subtracted from the RT for the nonpredictive, initial element
to serve as a baseline and control for practice effects.

Each training block involved the random presentation of
72 unique strings (24 strings x 3 dependency-pairs). After
exposure to these 432 strings (across the first 6 training
blocks), participants were surreptitiously presented with 24
ungrammatical strings, with endings that violated the
dependency relations (in the manner noted above). This
short ungrammatical block was followed by a final training



(‘recovery’) block with 72 grammatical strings. Block
transitions were seamless and unannounced to participants.
Upon completing all 8 blocks, participants were informed
that the sequences they heard had been generated according
to rules specifying the ordering of nonwords. For an ensuing
‘prediction task,’ participants were instructed to select string
endings for 12 trials upon being cued with only preceding
sequence-elements. L.e., participants viewed the same grid
display as before and followed the same procedure for the
first two string-elements (e.g., pel wadim... in Fig. 1) but
had to indicate which of the two nonwords in the 3™ column
(e.g., TOOD or RUD) they thought best completed the string
without hearing the final nonword (and without feedback).

Results and Discussion

Analyses were performed on only accurate string trials (with
no more than one selection response for each of the three
targets); these comprised grand averages of 90.0% (SD=5.6)
of training block trials, 84.7% (SD=15.7) of ungrammatical
trials, and 87.1% (SD=12.3) of recovery trials." Mean RT
difference scores were then computed for each block.

A one-way repeated-measures analysis of variance
(ANOVA) with block as the within-subjects factor was
performed. As Mauchly’s test indicated a violation of the
sphericity assumption (3°(27) = 111.82, p <.001), degrees of
freedom were corrected using Greenhouse-Geisser estimates
(e = .36). Results indicated that mean RT difference was
affected by block, F' (2.55, 73.96) = 8.97, p <.001. Figure 2
plots group averages for the mean RT difference scores (i.e.,
initial-element RT minus final-element RT), with positive
values reflecting nonadjacency learning. RT differences
gradually increased throughout, albeit with an expected
decline in the ungrammatical 7™ block. Cleeremans and
McClelland (1991) have previously found that sensitivity to
long-distance contingencies emerges more gradually than
for adjacent dependencies; our temporal trajectory in Figure
2 also indicates that sensitivity to nonadjacent dependencies
requires considerable exposure (5 blocks on average) before
it reliably affects responses.

Planned contrasts confirmed that mean RT differences in
the ungrammatical block significantly decreased compared
to both the preceding training block, #29) = 2.11, p =.04,
and the following recovery block, #29) = 3.22, p <O0l.
Following interpretations in the implicit learning literature
for comparing RTs to structured versus unstructured
material, this decrement in performance (Block 6 minus
Block 7: M= -34.8 ms, SE=16.5) provides evidence for
participants’ sensitivity to violations of the sequential
structure, with improved performance demonstrated upon
the reinstatement of grammatical sequences in the recovery
block (Block 8 minus Block 7: M= 77.3 ms, SE=24.0 ms).

' As analyzed trials required accuracy for all 3 string-elements
composing a string-trial (rather than for single-selection responses
defining one ‘trial’ in standard SRT designs), this criterion is quite
conservative, and may underestimate participants’ total accuracy
across all single responses. E.g., final-element selection accuracy
across trial-types was 95.9% (2.4), 93.2% (6.5), and 94.2% (6.1).
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Prediction task accuracy scores averaged 61.1%
(SD=21.4%) reflecting substantial interindividual variation.
Group-level performance was above chance, (#(29) = 2.85,
p <.01), providing another gauge of nonadjacency learning.
Such scores further provide a sensitive index of individual
differences for the on-line language processing of complex
long-distance dependencies, as the next experiment shows.
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Figure 2: Group learning trajectory (as a plot of mean RT
differences) and prediction accuracy in Experiment 1.

Experiment 2: Individual Differences in
Language Processing and Statistical Learning

Individual  differences in  tracking long-distance
dependencies in natural language have been extensively
studied in relation to the contrastive processing of subject
and object relatives. Object relative (OR) sentences
(illustrated in 2) involve a head-noun that is the object of an
embedded clause, and are generally more difficult to process
and comprehend than subject relatives (SRs; such as /), in
which the head-noun is the subject of the modifying clause.
ORs are of keen interest here because successfully tracking
their structure entails integrating nonadjacent dependencies
over lexical constituents (i.e., relating the embedded verb to
the nonlocal head-noun and relating the head-noun to the
main verb from across the embedded clause).

(1) The reporter that attacked the senator admitted the error.
(2) The reporter that the senator attacked admitted the error.

Differential processing difficulty between ORs and SRs is
most acute at the main verb, where protracted reading times
(RTs) for ORs are evidenced. Individual differences in the
degree of comparative difficulty have been first reported by
King and Just (1991) and linked to variations in verbal
working memory (VWM) as assessed by a reading span task.
Interpretations of these findings, however, have been in
dispute between experience-based versus capacity-based
accounts (e.g., Just & Carpenter, 1992; MacDonald &
Christiansen, 2002; see also Waters & Caplan, 1996).

While capacity-based views impute low-span individuals’
poorer processing of ORs to limitations in memory
resources, experience-based views emphasize experiential
learning factors that modulate the processing difficulty that
readers encounter. In support of the latter approach,
MacDonald and Christiansen (2002) conducted simple



recurrent network (SRN) simulations that reproduced the
SR/OR RT patterns of low- and high-span individuals as a
function of the amount of training received by the networks.
In addition, a human training study by Wells, Christiansen,
Race, Acheson and MacDonald (2009) showed that greater
SR/OR reading experience (compared to that of a control
condition) tuned RT profiles towards resembling those of
high-span individuals and qualitatively fit the performance
of the aforementioned SRN’s after the most training epochs.
These studies suggest that SL plays a crucial underlying
role in shaping readers' experience of the distributional
constraints that govern the less frequent and irregular ORs,
which in turn facilitates subsequent RTs. If SL is indeed an
important mechanism for such processing phenomena and is
meaningfully captured by the new AGL-SRT task, then
individual differences in nonadjacent SL (as observed and
indexed in Exp. 1) should systematically contribute towards
interindividual variation for the ability to track the nonlocal
dependency structure of OR sentences. Exp. 2 thus aims to
empirically test the strength of this predicted relationship.

Method

Participants Nineteen of the last 20 participants (age:
M=20.0, SD=1.4) in Experiment 1 participated afterwards in
this experiment for additional credit. Data from one
participant was omitted due to equipment malfunction.
Materials Two experimental sentence lists were prepared,
each incorporating 12 initial practice items, 40 experimental
items (20 SRs, 20 ORs), and 48 filler items. Yes/No
comprehension probes accompanied each sentence item.
The SR/OR sentence pairs were taken from Wells et al.
(2009) and counterbalanced across the two lists. Semantic
plausibility information for subject/object nouns was
controlled in the experimental materials.

Procedure Each participant was randomly assigned to a
sentence list, whose items were presented in random order
using a standard word-by-word, moving-window paradigm
for self-paced reading (Just, Carpenter & Woolley, 1982).
Millisecond RTs for each sentence-word and accuracy for
each following comprehension question were recorded.

Results and Discussion

Raw RTs corresponding to practice items and those in
excess of 2500 ms (0.86% of data) were excluded from
analyses. RTs were length-adjusted by computing a
regression equation per participant based on the character-
length of a word, and subtracting observed RT values from
predicted values (Ferreira & Clifton, 1986). Means from
residual RTs were then calculated for the same sentence
regions as used in Wells et al. (2009) and prior related work.

Overall comprehension rate was high (87.3%). Consistent
with past studies, comprehension was poorer for ORs
(75.8%) compared to SRs (86.1%). To test the involvement
of SL in mediating individual differences in corresponding
RT patterns, participants were first classified as ‘low’ or
‘high’ in SL skill according to their prediction task scores
from Exp. 1 (with 50% as the cutoff-level). RTs from ‘low
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pred’ (n=11, M= 42.4%, SD=8.7) and ‘high pred’ (n=7, M=
73.8%, SD=14.8) participants were then compared.

While the two groups did not differ on their processing of
SR regions, RTs considerably diverged at the main verb of
ORs, as depicted in Figure 3. This performance contrast for
ORs (and lack thereof for SRs) precisely mirrors the reading
patterns documented in the literature for those with ‘low’
and ‘high’ vWM span scores respectively. Importantly then,
individual differences in SL prediction task scores were not
predictive of RTs for any SR/OR sentence regions except,
crucially, at the main verb of ORs (R’= .34, p= .01)—the
anticipated locus of observed processing difficulty.

These findings suggest that skill in learning and applying
statistical knowledge of distributional regularities, as
indexed by prediction task scores from the novel AGL-SRT
paradigm, is substantially involved in natural language
processing of relative clauses. This conclusion is also
supported by results from an individual-differences study by
Misyak and Christiansen (2007), in which both adjacent and
nonadjacent statistical learning performance was an even
better predictor of sentence comprehension than vWM span
scores. The current study thus expands on those findings by
documenting that differences in nonadjacent SL vary
systematically with the on-line tracking and integration of
nonadjacent dependencies exemplified by OR sentences.
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Figure 3: Length-adjusted reading times by sentence region
of obj.-relatives for ‘low’ and ‘high’ pred score participants.

Experiment 3: Computational Simulations of
On-line Nonadjacency Learning

While Experiment 2 supports the relevance of the new
AGL-SRT task for the processing of complex long-distance
dependencies in natural language, the kind of computational
mechanisms underpinning task performance remains to be
probed. MacDonald and Christiansen’s (2002) simulations
of relative clause processing suggest that mechanisms akin
to those of simple recurrent networks (SRNs; Elman, 1990)
may suffice. Moreover, Cleeremans and McClelland (1991)
have formerly shown that the SRN can capture performance
on AGL-like SRT tasks. We thus chose to closely model on-
line performance from our task with SRN simulations based
on the exact same exposure and input as in the human case.



The SRN is essentially a standard feed-forward network
equipped with context units containing a copy of hidden
unit activation at the previous timestep, thus providing
partial recurrent access to prior internal states. The context
layer’s limited maintenance of sequential information over
past timesteps allows the SRN to potentially discover
temporal contingencies spanning varying distances in the
input. Next, we use the SRN’s graded output values and
prediction-based learning mechanism to model human RTs
and prediction scores from Experiment 1.

Method

Networks Simulations were conducted with 30 individual
networks, one corresponding to each human participant, and
each randomly initialized with a different set of weights
within the interval (-1,1) to approximate learner differences.
Localist representations were employed for the 30 input and
output units, with one unique unit corresponding to each
nonword item. The hidden layer had 15 units. The networks
were trained using standard backpropagation with a learning
rate of 0.1 and momentum at 0.8.

Materials The SRNs received the same input as human
participants, presented using the same randomization
process as in Experiment 1, and tested on the same
‘prediction task’ strings (with the same target-foil pairings).

Procedure SRNs were trained on the strings following an
identical trial-type sequence as that in Exp. 1 and given a
subsequent ‘prediction task.” Networks received the exact
same amount of exposure to the statistical dependencies as
the human participants (i.e., 6 grammatical blocks of 72
string-trials, an ungrammatical block of 24 trials, a recovery
block of 72 trials, and a 12-item prediction task)—and no
additional training. Context units were reset between string-
sequences by setting values to 0.5; this simulated the screen-
clear and between-trial pauses that human participants
observed. Weight changes were updated continuously
throughout training, except for the prediction task items at
the very end, when weights were ‘frozen’ (reflecting the fact
that human participants received no auditory input/feedback
for selecting the final elements of prediction-task strings).
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Figure 4: Comparison of group learning trajectories.

Results and Discussion

The networks’ continuous outputs were recorded, and
performance was evaluated by computing a Luce ratio
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difference score for string-final predictions on each trial. A
Luce ratio is calculated by dividing a given output-unit’s
activation value by the sum of the activation values of all
output units. During processing, the representation formed
at the output layer of the SRN approximates a probability
distribution for the network’s prediction of the next element.
Thus, on the timestep where a middle (X) element is
received as input, if the network has become sensitive to the
nonadjacent dependencies, it should most strongly activate
the output unit corresponding to the correct, upcoming
string-final nonword. The Luce ratio essentially quantifies
the proportion of total activity owned by this output unit.

To approximate human RT difference scores, we
subtracted the Luce ratio for the foil unit from the Luce ratio
for the target unit. Since networks cannot erroneously select
a foil in the same way that humans occasionally do (and
which were excluded from analyses, as noted earlier and in
line with standard SRT protocol), accurate trials for the
networks were defined as those in which the Luce ratio for
the target exceeded that for the foil. As in Exp. 1, only
responses/outputs from accurate trials were analyzed.

A one-way repeated-measures ANOVA with block as the
within-subjects factor was performed. As Mauchly’s test
indicated a violation of the sphericity assumption (}°(27) =
66.947, p <.001), degrees of freedom were corrected using
Greenhouse-Geisser estimates (¢ = .60). There was a main
effect of block on mean Luce ratio difference, F (4.21,
121.96) = 35.57, p <.001. As in the human case, difference
scores gradually increased, with a performance decrement in
the 7™ (ungrammatical) block. This drop was significant in
relation to both the preceding and succeeding grammatical
blocks, #(29) = 6.76, p <.0001; #29) = 7.80, p <.0001.

As the analog to the human prediction task, in which
SRNs received the same test-strings with foil-pairings as the
humans, we considered the network’s selection to be the
nonword corresponding to the unit with a higher Luce ratio
(from among the 2 choices for an ending). Prediction task
accuracy as a proportion correct out of the 12 items was
then computed accordingly. The SRNs’ scores averaged
56.4% (SD=13.4%), which was above chance-level, #29) =
2.61, p =.01. The networks’ score distribution was also not
significantly different from that of humans’, #(58) = 1.025, p
>30. Although the networks exhibited somewhat less
variability, they captured the identical full range of human
performance from 25 - 100% accuracy.

The networks’ mean Luce ratio difference scores across
blocks are plotted in Figure 4, alongside the human learning
trajectory from Exp. 1.° Both trajectories are indicative of a
gradually developing sensitivity to the mnonadjacent
dependencies, with a steeper ascent from blocks 4 to 6. The
simulated block scores further account for 78% of the
variance in human RT difference scores (p <.01).

% Because the learning metric for humans subtracts final- from
initial-element RTs (to control for potential motor effects) whereas
that for the SRNs uses only final-element values, Y-axes are
equalized with block 1 level performance as the baseline.



General Discussion

Nonadjacent dependency learning was investigated here
across three interconnected experiments, using results from
a novel AGL-SRT paradigm. The new task investigated
individuals’ learning of nonadjacencies as it unfolded on-
line. Task performances were further shown to predict
processing for complex, long-distance dependencies
occurring in natural language, as well as to compellingly
appear to recruit upon the kind of associative-based learning
principles exemplified by SRNs.

Our close modeling of human performance with SRNs
further argues against the assumption that vWM capacity
operates as a basic constraint for results in Exp. 1 and 2; it
also establishes a connection with results from MacDonald
and Christiansen (2002) in terms of common mechanisms.
Their SRN simulations had predicted that ORs should be
differentially affected by increased exposure to relative-clause
sentences. Wells et al. (2009) empirically confirmed those
predictions and further hypothesized that SL may be
centrally involved—but did not otherwise speak to what the
underlying mechanisms may be. Our Exp. 2, however,
directly supports Wells et al.’s hypothesis. Namely, SL
prediction performance for high- and low-performing
individuals on SR/OR processing closely conformed to the
pattern obtained for participants measured to have high/low
vWM spans in King and Just (1991), as well as those of the
high/low experience manipulations for SRNs and humans in
MacDonald and Christiansen and Wells et al., respectively.
Together with previous findings that SL overall is a better
predictor of sentence processing skills than vVWM (Misyak
& Christiansen, 2007), these results provide converging
evidence for SL as a key contributing factor to individual
differences in language processing.

But how do high- and low-SL performers differ? Added
inspection of micro-level trajectories from Exp. 1 for high/
low SL groups reveals distinct differences during non-
adjacency learning. Thus, there are contrasts in the shape of
the SL training trajectory, final training performance, and
the response to ungrammatical items. In particular, the low-
SL performers do not show evidence of learning until the
final block, contributing to the strong recovery effect on this
block observable in Figure 2. As in this paper, future work
studying such SL differences (using sensitive paradigms and
computational modeling) should be fruitful for further
elucidating the interrelationships among SL, language, and
nonadjacency processing, as well as the extent of their
shared dependence on complex, association-based learning
mechanisms (as captured by networks like the SRN).
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