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Abstract cantly both between and within categories. This more ab-

Learning to categorize objects in the world is more than just stract kr_10vv_|edge, or 0verhyp0¥he"slsupport$econd-ord.er
learning the specific facts that characterize individuak-ca generalizations about categories one has never seen: upon

gories. We can glso learn n(]ore ti:\bstract _kntéwledge a}jbout how seeing a new animal with six legs and a tail, it is reasonable
categories in a domain tend to be organized — extending even i i

to categories that we've never seen examples of. These ab- t‘? conclude that Other examples of th{?‘t animal will also h‘f’“’.e
stractions allow us to learn and generalize examples of new SiX l€gs and no tail, but not necessarily the same superficial

categories much more quickly than if we had to start from markings. This higher-order overhypothesis is what allows

scratch with each category encountered. We present a model e |aarner to form a reasonable prototype of an entirely new
for “learning to learn” to categorize in this way, and demon- . . -

strate that it predicts human behavior in a novel experimient  Kind of animal from only one instance, as well as how to gen-
task. Both human and model performance suggest that higher- eralize to new instances.

order and lower-order generalizations can be equally asteas .

acquire. In addition, although both people and the modeksho Children as young as 24 months are able to form ab-

impaired generalization when categories have to be irderre ~ stract inferences about how categories are organizedzveal
compared to when they don't, human performance is more jng that categories corresponding to count nouns tend te hav

strongly affected. We discuss the implications of these-find
ings. Keywords overhypotheses; word learning; Bayesian & common shape, but not a common texture or color (Lan-

modelling; shape bias dau, Smith, & Jones, 1988; Soja, Carey, & Spelke, 1991),
) whereas categories corresponding to foods often have a com-
I ntroduction mon color but not shape (e.g., Macario, 1991; Booth & Wax-

Learning is often thought of as acquiring knowledge, as ifman, 2002). The advantages of acquiring this overhypahesi
it simply consists of gathering facts like pebbles scattere Of “shape bias”, is clear: teaching children a few novel cat-
on the ground. Very often, however, effective learning also®gories strongly organized by shape results in early aequis
requires learnindiow to learn: forming abstract inferences tion of the shape bias as well as faster learning even of other
about how those pebbles are scattered — how that knowledd®@n-taught words (Smith, Jones, Landau, Gershkoff-Stowe,
is organized — and using those inferences to guide one’s fu& Samuelson, 2002). This is a noteworthy result because it
ture behavior. Indeed, most learning operates on many levlemonstrates that overhypotheses can rapidly be acquired o
els at once. We do gather facts about specific objects aniél€ basis of little input, but it raises questions about vemat
actions, and we also learn about categories of objects ar@Ples such rapid acquisition. The work in this paper is mo-
actions. But an even more powerful form of human learn-tivated by these questions about how knowledge is acquired
ing, evident throughout development, extends to even highe®n higher levels of abstraction, and how that kind of leagnin
levels of abstraction: learning about kinds of categories a interacts with lower-level learning about specific items.
making inferences about what categories are like in general In a broader sense, acquiring knowledge on a higher, more
This knowledge enables us to learn entirely new categoriegbstract level — learning to learn — is important in many con-
quickly and effectively, because it guides the generadtinat  texts besides categorization. In the causal domain, people
we can make about even small amounts of input. must draw general conclusions about different novel causal
Consider, for instance, a learner acquiring knowledgdypesand their characteristic interactions as well as the causal
about different kinds of animals. He might realize toars  roles fulfilled by specific objects (Kemp, Goodman, & Tenen-
have four legs and a taPIDERShave eight legs and no tail, baum, 2007). Children learning language must simultane-
MONKEYS have two legs and a taikisH have no legs and ously acquire knowledge about specific verbs and which ar-
a tail, and so on. The knowledge supports what we call guments they take, as well as higher-order knowledge about
first-order generalization: given a new animal that has eightentire classes of verbs, some of which may take a certain
legs and no tail, it is more likely to be some kind of spiderkind of argument (e.g., a direct object) and others of which
rather than a cat or a monkey. However, the learner magannot. It is this higher-order knowledge that enables [geop
also have realized something more abstract: that while thto make intelligent second-order generalizations aborts/e
number of legs or the presence of a tail varies @ktiveen they have never seen before (Pinker, 1989).
categories, these features tend to be homogewdha cat-
egories. By contrast, surface colorings might vary signifi- 1This terminology is borrowed from Goodman (1955).
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For computational theories of learning, the ability to fear z ~ CRP()

on multiple levels at once poses something of a chicken-anc Levei s: prior expectations on A ~ Exponential (1)
7\..,u u ~ Exponential (1)

egg problem: the learner cannot acquire overhypotheshs wit categories in general - (i)
. . ipe . o ~ Exponentia
out having attained some specific item-level knowledge, first | | B~ Dir[;chlet(y)
but acquiring specific item-level knowledge would be grgatl Level 2: Categories in general o, B &/ ~ Dirichlet(of)
facilitated by already having a correct overhypothesisuabo | ¥i ~ Multinomial(6%)
how that knowledge might be structured. Often it is simply Lovel 1- Ingividual
.. . evel 1: Individual
presumed that acquiring knowledge on the .hllg_her (overhy categories /=1 gi=2 gi=3 /=4
pothesis) level must always follow the acquisition of more 1 |
SpeCIfIC knOWIGdge ltems i Vsl z=l issos 12220 oo 12330 (el 2=4)
H H H 42057217 73105210 52061320 30024754
Recgntly, a co_mputatlonal framewgrk called hlerarch|cql 42057778 vononiee 52161467 0424251
Bayesian modelling has emerged which can help to explail 42157006 73305070 52461540 30324215
42657245 73205431 52361611 30524043

how learning on multiple levels might be possible. This
framework has been applied to domains as disparate as caugajure 1: Our hierarchical Bayesian model. Each settinguop)
reasoning (Kemp, Goodman, & Tenenbaum, 2007), the ads an overhypothesig3 represents the distribution of features across
quisition of abstract syntactic principles (Perfors, Tene 't€ms within categories, anai represents the variability/uniformity

. . ... of features within categories (i.e., the degree to whictheategory
baum, & Regier, 2006), and learning about feature varigbili ends to be coherently organized with respect to a givemifeaor
(Kemp, Perfors, & Tenenbaum, 2007). In the hierarchicahot). The model is given data consisting of the featuresorre-
Bayesian framework, inferences about data are made on musponding to individual items depicted here as a sequence of digits
tiple levels: the lower level, corresponding to specifierite gﬁ_‘thF’Ught rt(re]present;ng Iﬁatur?s ?Sd dt|g|ts ll_mplle_s thaﬂ’tfo'"“ht_tersi
based information, and the overhypothesis level, cormegpo Is is not the case for the actual data). Learning categaoere-

) . sponds to identifying the correct assignmenof items to categories.
ing to abstract inferences about the lower-level knowledge P ing g 9

In this paper we present a model of category learning which M odel
acqu_ires knowledge a_bout how specific items should be Catomputational details
egorized as well as higher-order overhypotheses about how — ™ ) i o
categories in general are organized. It is an extension dPur hierarchical Bayesian model supports the acquisition o
an earlier model by Kemp, Perfors, and Tenenbaum (2007§Wo kinds of knowledge: the ability to put uncatgorized iem
which was capable of making inferences at the overhypothdt0 sensible categories on the basis of their featurallaimi
sis level but required specific items to be grouped into basicity; and the ability to acquire more abstract knowledge abou
level categories as part of the input. Our new model can disthe formation of categories in general. An example of the for
cover how to cluster items at the category level on the basi§e" would be the realization that two entities that shareyrnan
of their featural similarity, at the same time that it makes i features (e.g., eat bananas, have two legs, have longaesls)
ferences about higher-level parameters (or overhypasheseex@mples of the same category (SRgNKEYS); an example
indicating which features are most important for organgzin of the latter would be the r_eallzat|0n that categories in-gen
items into basic-level categories. We show that both first€ral tend to be coherent with respect to some features (like
and second-order generalizations can emerge in tandem, evBUmber of legs) and not others. The former ability is realize
when category information is not given; it is not necessary f N our model by performing Bayesian inference over possible
the lower-level knowledge to be acquired first. We comparé&ategory assignments; the latter by performing inferenee o
model predictions with human performance on a novel cateth® hyperparameters governing the overhypotheses.
gorization task with second-order generalization, andatem e depict this type of learning graphically in Figure 1 and

ci;\ted with a vector of feature counts which are drawn from

8§1tegoryj = z. Giving the model category information con-
Sists of presenting the model with a partition of items into
possible categories, represented by a vextidthe model is

Our model is also capable of performing both supervise
and unsupervised category learning, which enables us to a
dress the question of how useful category labels are to @h ide

:g‘zr?:rif:hg;;gr:;O(;renbg?:ﬁ:?rl:é?g%ﬁ \(/)vr(])rrglljeltzlaelr?ir:evliet:;—u not given category information, it tries to find the best poss
P 9 ble z.2 The prior distribution orz is induced by the Chinese

(Xu, 2002; Smith, Jones, Yoshida, & Colunga, 2003). WeRestaurant Process, which can be defined recursively by ex-
demonstrate that both human and ideal learners benefit from ! y by

L : : tending a partition over items 1 througgh- 1 to a new item
receiving category information, but human learners benefi .
more; this may suggest that humans differ from the ideal in~
their ability to infer the correct category assignments whe nl n>o
category information is given. Both types of learners make P(&=¢lz1,...,21) = { Y
stronger generalizations on the basis of highly coherent ca
egories. We discuss the implications and limitations oféhe  27,0yghout the paper boldfacedand y refer to the entire
findings. dataset — the full set of, andz; for every itemi.

o kis a new category
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Herenl is the number of items previously assigned to cat-Whenz is not given, the process of inference alternates be-
egoryj andyis a hyperparameter which captures the degreéween fixing the category assignmemtsand sampling the
to which the process favors simpler category assignmers (wspace of hyperparametars3, A, andy, vs. fixing the hyper-
sety = 1, consistent with previous work with this model). The parameters and sampling from category assignments. Learn-
Chinese Restaurant Process prefers to assign items to categ in an HBM thus corresponds to making inferences about
gories that already have many members, and therefore tendategory assignmenis as well as the parameters and hy-
to prefer partitions with fewer categories. perparameters, based on the input data. First- and second-
At the same time that the model is attempting to identifyorder generalization are calculated by compuptm = zy),
the best category assignments, it is also performing infare  which is the likelihood of a new iterk being in the same cat-
about the nature of those categories and the overhypothesegory as some iteriy given their observed feature vectors
that govern them. Level 1 knowledge about the features anyk,yi, and all the other observed datayinThis can be calcu-
items associated with a specific categiig represented by lated® by integrating over all of the hyperparameters and all
8!, which can be understood as the parameters of multinomipossible category assignmeats
als that govern how the featurgsof itemsi in that category
are distributed. This knowledge is acquired with respeetto Pz =12zly) = / \ > P(a, B, 1. 2]y)ds—z dadBdAdp
more abstract both of knowledge, Level 2 knowledge, which HBART
in this case is knOW|8dge about the distribution of features The difference between first and second order genera”za_
across categories in general. Itis represented in our nbydel tion is whether iteni is already represented in the training set

two parametersy andp: roughly speakinga captures the y or is a new item altogether. All results represent averages
extent to which each individual category is organized by agcross 4 runs of the model.

given feature (or not), an@ captures the average distribution
of features across all categories in the wotld. Datasets

Level 2 knowledge depends on knowledge at a higher levelas the category-learning experiments of Smith et al. (2002)
Level 3, which is represented in our model by two hyper-demonstrated, it is possible for children to acquire anloyer
parameterd andp. They capture prior knowledge abaut  pothesis about the role of shape in categorization aftergoei
andp, respectively: the range of values expected about theaught only a few novel nouns; however, it is not clear pre-
uniformity of features within a category), and the range of cisely what aspects of the input enabled such rapid acquisi-
values of the expected distribution of featuresinthe w@u)d  tion. Was it the fact that the categories were organized en th
Our model learna andpin addition toa andf3, and assumes  basis of highly coherent features, or because the individua
that knowledge at the next highest level is gieimferences  items were consistently labelled, effectively providinigpag
aboufA, I, a, andB —in conjunction with inferences aboutthe evidence about category assignments? Was it because a cer-
category assignments— can be made by drawing a sample tain number of items or categories is required to effegjivel

from P(a,B,A, 1, z|y), which is given by: form overhypotheses, and the children were at the precise
critical point in development? Or perhaps people are biased
P(a, B\, 1 zly) O P(yla,B,z)P(alA)P(B|w)P(A)P(u)P(z) to form overhypotheses about salient features, such agshap

. implying that it would be more difficult to acquire overhy-
Inferences about the category-specific distributi®hare  potheses about less salient features.
computed by integrating out, 3, A, 11, andz: To address these questions we design datasets that vary sys-
tematically in terms of (a) coherence of category features;
P(Bly) :/ zp(ejw,g,;\,u, 2)P(at, B\, 1, zly)dadBdAdy  (B) the number of items and _cat_egories to be learned; and
oaBAMG (c) whether category information is given (tB@PERVISED
) ) _condition) or must be inferred (theNsuPERVISEDcondi-
Inference is performed by performing a standard numeriyion). How do these factors affect first-order and secortteor
cal stochastic integration technique known as Markov Chaiyeneralization? Our goal is to obtain predictions from our
Monte Carlo (Gilks, Richardson, & Spiegelhalter, 1996).model about what an ideal Bayesian learner would do when
mf thinking about the relationship betweé®m, and Ipresented .Vﬁltg this sort .Orf] Input., alndr':hen to prﬁsen.t hu_man
Bis thata captures how close, on average, each indiviligitop ~ '€arners with datasets witn precisely the same charainteris
(i.e., how close each individual category’s feature disttion is to In all datasets, items are associated with eight indepen-
the overall distribution across all categories). Lowvould indicate  dent features. four of which have values that are randomly as
that each item in a category tends to share a certain feaslue,v sianed these' are denot and four of which are coherent
but does not say anything abauhatvalue that might be: if a cat- 9 ( &9,
egory had lowa for the shape feature, one would know that it was with respect to category membershig). A coherence level
organized by shape, but not know precisely what shape itwas.  of ¢ means that a feature value has a (209% chance of

4We also evaluated performance of a model that assumed thaj.: ; : .
knowledge abouh and i is given @ = i — 1, as in Kemp, Per- "b‘emg random. By systematically varying the factors ofiinte

fors, and Tenenbaum (2007); results were qualitativelylairin all  €St, we obtain datasets that correspond to a particularfatt
cases, but learning at Level 3 as well as Level 2 resulted iraatf ——————
tatively better match to human data. 53 is the Kronecker delta function, equal to Zzjf= z, 0 if not.
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(a) 100% coherence, categories given tween first-order and second-order generalization in eithe
42057217 || 73105210 || 52061320 | | 30024754 condition ( > 0.05, n.s., two-tailed). This result may seem
42057773 73405446 52161467 30424251 . oy . o
42157006 | | 73305070 || 52461540 | | 30324215 counterintuitive, but further reflection suggests thas isén-
42657245 73205431 52361611 30524043 . . . . .
—! sible: second-order generalization occurs on the basis-of i
(b) 75% coherence, categories given . )
13057217 | | 23105210 || 52084320 | [ 30074754 ferences about the overhypothesis, and these inferences ef
12057773 73415446 50161467 31424251 i i i
ioaaTirs || Taroaa || aoaiass || Sazazet fectively have more data bearing on them (all datapoints, no
42650245 || 73201431 || 12361611 || 60524043 jUSt the specific ones).
(c) 75% coherence, no categories given (d) 1< order (e) 2 order Generalization is better in truPERVISEDcoNdition than
43057217 12361611 52064320 | Which is in the Which is in the H e _ .
rasotast 12057778 SOT4TSH | ame category  same category in theunsup _ERVISEDCOI’]dItIO.n (o= 0.0006, two-tailed), al- _
11490 2028215 RIBT006 e | 0TS as B8688888: though the size of the effect is not large: though category in
rsoro s e | formation helps somewnhat, especially when the features are

less coherent, the fairly high performance of the modelén th
Figure 2: A schematic depiction of the nature of differentadats ~ UNSUPERVISEDcondition suggests that to the extent that the
presented to both humans and our model. Items are assowitted faatyres of a category are coherent enough to support denera

four coherent featured) and four random onedg); here we de- ___. o .
pict each feature as a digit, and its value as the digit vaagAn ization, they also support categorization, and an ideahiza

example dataset in treuPERVISEDcoNdition with 16 items four of ~ €aN t_ake advantage of this. _Since there will a|Wff‘yS k_)e un-
whosefc features are 100% coherent (all items in the category sharéertainty about which categories are most appropriateftiser

the same feature value). (b) As an illustration, we show am@te  some benefit to being given category information, but it is no
dataset whose foufc features are 75% coherent: for each featurehuge_ The affect of coherence on generalization in the model

and item, there is 25% probability that its value will difieom the . "= .. 7 o S . .
value shared by most members in the category. (c) The samsedat 'S significant, which is sensible: if categories are more inco-

as in (b), but in thesnSUPERVISEDcondition. Here the model must  herent, less generalization is appropriate.

learn both the proper categorization as well as the higraerdn- To what extent do humans look like our learner? Do people
ference about which features are coherent. (d) A samplediid®r  g|so find first-order and second-order generalization equiv
generalization task: given an item seen already, which eftést alently easy? Is category information useful? Do they too
items are in the same category, the one sharing feafigres the . " )

one sharing featuretz? (e) Second-order generalization, which is ShOW differential performance based on how coherent the cat
the same except that the model is presented with entirelyiteens ~ €gories are? We address these questions in the next section.
and feature values.

Experiment

Our experiment is designed to present participants with the
exact task and dataset presented to our model, in order to mos
tlosely compare performance between the two.

experimental design: Z(PERVISEDOr UNSUPERVISED X
3 (coherence level of 60%, 80%, or 100%) x 2 (containing
8 or 16 items total) x 3 (categories made of 2, 4, or 8 items)

slightly complicated by the constraint that each categaugtm -
have at least two items. As a result of this constraint, tee la Items. Because the model was presented with items that

two factors, when crossed, lead to 5 possible category-strucgaz:] ?ad i'gr;t |r:dne]p(renderr:tlyrgneﬁner?’tvedJeaitur:ez, i:oumr ran
tures at each coherence level, once in shweERVISEDand (')th tﬁR) a Orl: ote-ctc? efe tr(f), € desig te The s
once in theUNSUPERVISEDcondition. wi e same characteristics for the experiment. They con-

We assess model performance by examining first-order an%i'Sted of a square with four characters (one in each qugdrant

second-order generalization. First-order generalinatior- surr(;qtnded byT(;:rcIehs at trt1e cornet, eachdczrltalrr:m? aﬁihara
responds to presenting the model with an item that occur,%;ﬁr ?t 'ni’ O\ilxrllh ne10d alrgcters forrizp\?vnred Oi ne ;? rﬁs Or
in the dataset and querying whether it is more likely to be € 1ems € Mmogel datasets, a ere designed to ensure

in the same category as an item that shares coherent fet%at they were salient and discrete, as in the model. Which of

tures fc (a “correct” generalization) or random featurge e four features varied coherently changed from trialitd tr

Second-order generalization is identical, except the nede and participant to participant, 1o eliminate order or sufie

presented with an item and features that have not occurre%rfec.tS of any particular feafcure or feature combination.
before. Figure 2 contains further details Trial structure. Each trial had several phases. In the

first phase, participants were shown a set of novel objects
Results on a computer screen and either asked to sort them by mov-

Figure 3 shows the model’s probability of correct genegaliz ing them around the screen with a mouse and drawing boxes
tion as a function of three factors — whether categories wer@round the ones they thought would be in the same category
given for the training data or had to be inferreadfERVISED (in the uNSUPERVISEDtrials) or were shown the objects al-
VersusUNSUPERVISED), whether the generalization was first- réady sorted with boxes drawn around them (in sER
order or second-order, and the coherence level of the train¢/SED trials.

ing dataset — averaged across all trials with the same levels After the first phase, each participant was asked two gen-
of these factor§. Interestingly, there is no difference be- eralization questions, presented in random order. In the fir

we also examined effects of the number of categories and numpe deferred to a longer report.
ber of items per category, but for space reasons these asaljll 7One-way ANOVA, p < 0.0001F = 7.19.
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Figure 3: (a) Model generalization averaged across alkdtddased Figure 4: (a) Subject performance on categorization taskdy
on the nature of the category information given. There isige s dition. Like the model, participants performed equally Wfer
nificant difference between first- and second-order geizetain. both first- and second-order generalizatisn#ERvISEDcondition,
Although category information aids in generalization, #ffect is p=0.1176, n.s.UNSUPERVISEDcondition,p = 0.7551, n.s., both
small. (b) Coherence affects generalization, especiallgé UNSU- two-tailed). However, they did worse without category imfiation
PERVISEDcondition. than with it (p = 0.0001, one-tailed). (b) Subject generalization,
like in the model, was affected by coherence (one-way regeat

it ; ; easures (within-subject) ANOVAINSUPERVISEDcondition,p =
order ge_nerallzatlon questl_ons, they were shown an item Cog]OOSJ, F — 5,16 SUPERVISEDCONdition, p — 0.0446 F — 3.25).
responding to one of the items they had already seen, and

asked which of two other novel items were most likely 10 reciness of category assignments using the adjusted rand in
belong in the same category as that one. The second-ordggy 4djR (Hubert & Arabie, 1985), a measure of similarity
generalization questions were identical except that thécpa  perween two clusterings (in this case, the correct categori
ipants were presented with items and feature values they hagl he category assignments made by the participants)t Mos
not seen before. All of the sorted items were visible to pary,i4s (67%) in theuNsUPERVISEDcondition had highadjR
ticipants throughout the task. To maintain interestin &kt o) o (over 0.5), indicating substantial agreement berwe
after completing both questions participants were told howe correct categories and the category assignments made:
many of the two they got correct, but not which ones. a full 92% were better than chance. Figure 5(a) suggests

Procedure. Each participant was shown 30 trials, half-  that people’s relatively poorer performance in thesuPER
PERVISED and halfUNSUPERVISED in random order. The ,sep condition is carried by the minority of situations in

factorial design of the experiment corresponded preci&ely \hich they were unable to find the correct categories, since

the design of the datasets presented to the model. when they found the correct ones their generalization perfo
Participants. 18 subjects were recruited from a paid par- mance was quite high. As Figure 5(b) shows, the effect of

ticipant pool largely consisting of undergraduate psyobgl  coherence disappears when considering only those trials in

students and their acquaintances. The experiment tookrl hoihich people found the correct categories; they look more
to complete and participants were paid $12 for their time.  |ike the model in thesUPERVISEDcondition.

Results Discussion

Figure 4(a) demonstrates that, as predicted by the modebne interesting finding of our work is that both the model and
first-order and second-order generalization do not signifiour participants show that first-order and second-ordentea
cantly differ for human learners. This may be somewhat coning — learning to learn — can occur at the same time as each
trary to intuition, but the fact that this is evident for bdth-  other; it need not be harder to perform second-order general
man learners as well as the model lends further support to thigation than it is to perform first-order generalizationsurO
notion that higher-order generalization need not be mdre di model predicted this result, and we confirmed it empirically
ficult than lower-order. Learning to learn is not only useful in human performance as well. The fact that higher-order
but apparently not too difficult either. generalization may at times be easier (or at least equithalen
Figure 4(b) shows that people’s generalizations depend osasy) to lower-order generalization has interesting icagli
coherence, although this result is far noisier than shown byions for questions of innateness: although we generaiy in
the model. We also see that humans, like the model, werthat higher-order generalizations must be innate if they ar
aided by being given category information; however, pesple observed early in development, this result implies thahsuc
generalizations deteriorated substantially more inikeu-  an inference may not always be valid.
PERVISEDcondition. Why do humans have poorer general- Another interesting aspect of this work is the comparison
ization when the categories were not given? One possibilityf model and human performance when given category infor-
is that they simply fail to identify the correct categoriaad  mation and when not. For both humans and the model, gen-
in these cases generalize incorrectly. Another possibidit eralization worsened when not given the category informa-
that they succeed in identifying the correct categoriestmibs tion, but human performance worsened substantially more.
the time, but are less confident in those categories or ldes abThis is probably because people had a harder time idengifyin
to make generalizations on the basis of them. the correct categories than the model, perhaps due to capac-
To decide between these hypotheses, we evaluate the cdty limitations. It may be possible to model such limitation
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Wirst order eo% categories (Love, Medin, & Gureckis, 2004). Although SUS-
[ Isecond-order| [ s0% . .
i C100% TAIN and other unsupervised category learning models have
not (to our knowledge) been applied to problems of “learning
to learn”, they could be. Our framework would still offer dis
' ree parameters.
’ f t
In the real world, unlike in our experiments or our mod-
0 0 . ..
lowest - middle highest ighest els, knowledge about which features matter for categagizin
Figure 5: (a) Subject performance on categorization taskdan is usually restricted to just a certain domain of categories
the correct categories (haatljR scores above 0.5); thelDDLE egories of solid artifacts, not to living kinds or non-solid
group hadadjR scores above chance, but not substantially; and th&ubstances. An extension of our model can simultaneously
LOWESTgroup were below chance performance in sorting items intogjscover categories and multiple overhypotheses, as well a
categories. Participants who succeeded in finding the ctocee- ) . .
which overhypotheses are applicable to which subsets of cat
relatively poorer performance in thensupERVISEDcondition was ~ €dories. It incorporates a higher-level nonparametris-clu
probably due to a difficulty in identifying the correct cateigs. (b)  tering of categories into ‘ontological types’ (Kemp, Pesio
Among t”%'_s in which the CHOWGCt c?teg_orles V\lflefe f%und.,(ntleef_ & Tenenbaum, 2007), in addition to clustering objects into
HIGHESTadjRgroup), overall generalization (collapsed across 'rSt'Categories; overhypotheses about categories are shaed on
through the use of particle filters, a limited MCMC process,&Xténded model is an important avenue for future work.
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