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Abstract @

People exhibit the ability to imagine new category instance

and new categories, with examples ranging from everyday ac- -
tivities like cooking to scientific discovery. This abiljtyhich /

we callcategory generatigris not addressed by standard mod- Y
els of category learning, which focus on classifying instm h
rather than generating them. We develop a probabilistic ac- TN FTN TN
count of category generation and evaluate it using two behav @ @ @ T4 ) @ NN
ioral experiments. Our results confirm that people find it nat

ural to generate new category instances and suggest that our
model accounts well for this ability.
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Figure 1: Category generation may take place at any level in a

concept hierarchy. Two cases are illustrated here. Egistin

observed knowledge is denoted by solid nodes and generated

instances and categories are represented by dashed nodes.
Humans exhibit a wide variety of creative abilities, includ The Caesar salad bra_nch illustrates a situation in whiclkesom

ing the ability to imagine entirely new objects never beforeONe observes several instances of a Caesar salad and then gen

observed. Evolutionary biologists predict transitionssies ~ ©rates a new instancesJ. The Cobb salad branch illustrates
on the basis of gaps in the fossil record (eTGktaalik a the 5|mL_1Itaneous crgatlon of a brand new type of salad and
species with features characteristic of both aquatic and la S€Veral instances of it.
animals); designers develop new products that combine and
improve upon the strengths of existing products (e.g., the ) o o
spork); professional and amateur chefs create new recipdat category. This case is illustrated in Figure 1 by the-Cae
by swapping and mixing ingredients (e.g., the Cobb saladS&" salad branch of the h|erarchy:_after observing ||jsta>qce
invented by Robert H. Cobb by combining a collection of throughxs, @ new Caesar salag, is generated. This paper
ingredients that happened to be available in his restasrant€Xplores a Bayesian approach, which proposes that cagegori
kitchen). Henceforth, we will refer to this capability eate- ~ @ré represented as probability distributions, and thapieeo
gory generation* can generate new instances of categories by sampling from
In addition to inventing new categories of objects, peoplen€se distributions. _ _ _ _
create new instances of existing categories relatively-com Although category generation has received relatively lit-
monly. While the invention of the Cobb salad might be char-tlé attention, it has been addressed by some previous studie
acterized as the creation of a new category of salad, peopl¥/ard (1994) asked participants to invent and draw animals
frequently create new instances of existing salads—swappi from a distant plangt, requiring them to essentially create
romaine lettuce for iceburg lettuce to obtain a variatiorson NeW category of animal. Feldman (1997) showed people a
Caesar salad, for example. This hierarchy of category gene?'”gle instance of category—a line segment with a circle on
ation problems is illustrated in Figure 1. Although the figur it for example—and asked them to generate new examples
only shows a few levels in a hierarchy, category generatior‘i’f the category. Both studies confirm that people are able to
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could in principle take place at any level. generate new instances of a category, but neither provides a
These examples cannot be captured by standard accoug@mPrehensive formal account of this ability.
of categorization that focus arassification(e.g., deciding if We describe a computational account of category genera-

anew dish is a Caesar salad or a Greek salad). Whereas cl|d@n that relies on Bayesian inference. Previous authors (A
sification involves assigning an object to an existing catgg d_erson, 1991) have developed Bayesian model_s_of c_ategorlza
category generation involves creating a new instance ofan etion, but most of these models focus on cla55|f|ca_1t|on. Our
isting category or creating a brand new category. Inthigpap aPProach uses some of the same methods as previous models,
we focus on one case of category generation: the generatidtit focuses on category generation rather than classdficati
of new instances of a category after observing examples of We begin by reviewing some general approaches to classi-
fication, and explain why a Bayesian approach is well suited
Il(The ter:_rnh“categpry generation” is sometimes used to describfor category generation. We then describe a specific model
tasks in whic [cks” i i i i
o instanCesﬁ{&g'?pigtéeﬁ;?"('ggsi iatﬁg‘r)gm‘aliggé')‘fﬂ%g;’ of category generation and compare its behavior with human
lem that we consider involves the creation of new categaniesmt- ~ "€Sponses. We conclude with some general remarks about the
egory instances, rather than the retrieval of familiargate labels.  efficacy of the Bayesian approach to category generation.
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Figure 2: Discriminative classification, generative cificsgtion,

and category generation. (a) Given three instareach of

categories 1 and 2, a discriminative model (solid arrowgaly learns a classification distributid®(y = 2|xnew) that can
be used to assign category labels to new instarggs A generative model (dashed arrows) learns generatioritgitons

P(Xnewly = 1) andP(xnewly = 2) for each category, and these

distributions induce a cleadn distribution via Bayes' rule.

(b) Given three instances of a single category, our modehtea generation distributid?(xew), here assumed to be Gaussian.
New instances such ag can then be generated by sampling from this distribution.

Classification

The standard classification problem can be formulated as fo
lows. A set of training exemplarg = {x,...,X:}, and a
corresponding set of category labsjlsare provided. Eack

Our distinction between generative and discriminative ap-
proaches is standard in the machine learning literature, bu
terms like “generative” and “discriminative” are sometine
used differently by psychologists. Some authors reserge th

is a vector of feature values. After seeing how the instancet®rm “generative” for approaches that make infinite use of fi-

in the training set are labeled, the classification taskliras
assigning a category lab&hew, t0 a novel instancegew

nite means, and use “discriminative” to refer to settingsxgh
participants must learn to distinguish between stimuliteNo

There are two standard approaches to classificatiorfhat neither usage maps perfectly onto our own.

the generativeapproach and theliscriminative approach.
A generative model learns a probability distribution
P(Xnew Ynew, X, ¥), Which we call a generation distribution, and
then computes a classification distributi®fynew Xnew, X, ¥),
using Bayes' rule:

classification distribution generation distribution
P(YnewXnew: X,Y) T P(XnewYnews X, Y) P(Ynewly) (1)

By contrast, a discriminative model learns the classificati
distribution directly (Bishop, 2006). The difference betn

Generative and discriminative models are both able to
make predictions about human behavior on classification
problems. By contrast, tasks that depend on the genera-
tion distribution,P(XnewYnews X, ¥), are naturally much better
suited to a generative approach. We propose that category
generation is one such task, and that learning a generation
distribution allows people to generate novel instancesabf ¢
egories.

A Bayesian Model of Category Generation
The generation distributior®(Xpew|Ynew X, ¥), is defined for

the two types of models is illustrated in Figure 2a. As themultiple values ofy,ewand can be used to generate instances

figure shows, discriminative models directly learn the clas
sification distribution, which corresponds to a soft demisi
boundary, while generative models begin with the intermedi
ate step of learning the underlying distribution that gatent
the training data.

Most formulations of exemplar models (Nosofsky, 1985)

of multiple categories. Here, however, we consider the case
where there is a single category of interest. Because all ex-
emplars have the same category lapelve drop the labels
and work with the generation distributioR(XhewX). Given
training examples irx, new examples can be generated by
sampling from this distribution.

and prototype models (Reed, 1972) are discriminative Suppose that the single category of interest is charaetériz
models—they can classify new instances without needing ty a vector of parametefsthat is not observed. Integrating

learn the generation distribution over new instances. Ande
son’s (1991) rational model of categorization, howevel, fo
lows a generative approach.
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over all possible values &, we have

P(Xnen]X) — /5 P(Xnewl8)P(8]X)d6 @)



the category can now be created by sampling a vertical piece
@ se {@ @ @ 7 } fromn! and a horizontal piece from?.
To formalize these generative assumptions, we assume that
() s: @ structureSis drawn from a uniform distribution over the 15
possible partitions, that each distributighis drawn from a
! ? Dirichlet prior with parameten, and that each piece is
sampled from a multinomial distributiari:

n n
oﬂmm’—‘ oﬂmm’—‘ S~ Uniform([1: 15)

VR XF MG RB LP HN KsS DZ

(S, ) n'|S~ Dirichlet(a) (3)

%\ X |n' ~ Multinomial(n')
@ We assume that the alphabet of symbols is fixed in advance,
and that the distributiom' is defined over all possible per-

mutations of symbols that could fill slet For example, if

the slot includesn cells and there ark symbols, then there
arek™ possible pieces that could fill the slot. We set the pa-
rametem by assuming that the prior probability that any two
category instances have the same piece for a given slot.is 0.5
distributionn)' over pieces for each slat Here,S specifies Anderson’s (1991) model of categorization makes a related

one slot made up of the top and bottom features, and one sIgSSUMPtion, and refers to the parameter 0.5 as a “coupling

HES 1 1
made up of the left and right features. probability.” It follows thato = (s —K”LZ)’ where the
a value for a given slot depends on the simef that slot.

Now that we have formally specified our assumptions

Our account of category generation is illustrated in Fi _aboutthe category we can use Equation 2 to model how novel
gory g — Y instances of the category are generated. W8 setS n) and
ure 2b for the case of a single category. Héregpresents

) . 7 and the second term in the integral by applying Bayes’
the mean and variance of a Gaussian distribution. The mod p. 9 y applying Bay
first infers these parameters from a set of examples and then

generates new instances by sampling from that distribution P(XnewlX) = Z/ﬁp(xneMSa M)P(S,AIX)dR

Figure 3: Stimuli for the category generation task desdribe
in the text. (a) A set of stimuli is created by first selecting
a structureS—a partition of features into slots. The number
in each feature position signifies the partition it belongs t

(b) Given S, the stimuli are generated by sampling from a

Although this procedure is simple, it cannot be carried qut b
a standard exemplar model, which provides a way to classify, _ _ _
but not generate, new instances. Note, however, that in this = Z/ﬁP(xnewlS,r])P(i[S,rT)P(r]|S)P(S)dr] (4)
simple setting, new instances can be created by an approach
that takes an existing exemplar and slightly varies somesofi  Each distribution on the right hand side of Equation 4 is
feature values. We therefore move to a richer setting whergpecified by the generative assumptions in Equation 3.
this “copy and tweak” strategy is likely inadequate. _
Instead of considering cases where category instances are Experiment 1
characterized by values along a single dimension, supposge designed a category generation experiment using stim-
that category instances are now represented as featumgsiect y|j like the circles in Figure 3 in order to test two main hy-
Furthermore, suppose that there are one or more latentcaussotheses: (1) that people are capable of category generatio
that generate multiple features simultaneously, whictidéa  evidenced by their ability to generate new instances of the
groups or clusters of features. category, and (2) that the model presented here approxdmate
Here we work with a case where category instances are cr¢ruman performance on the task.
ated by filling four locations in a circular figure with letser
Four of these instances are shown at the bottom of Figure 3Mlethod
The four locations are partitioned into one or melats and  Participants. Seventeen Carnegie Mellon undergraduates
we refer to this partition asstructure There are 15 possible completed the experiment for course credit.
partitions, a subset of which are shown in Figure 3a. GiverDesign and MaterialsThree different sets of of stimuli were
the structuré&of a category, instances of the category are creereated using the first three structures in Figure 3a, iagult
ated by filling each slot with a piece. Figure 3b shows a casé three conditions. Each participant was exposed to two of
where the structure includes a horizontal slot and a vérticathese conditions in a randomized order.
slot, each of which includes two locations. The paramgter  For each set, 16 different capital letters were chosen as
specifies a distribution over pieces for each slot. In Fi@lre features. All vowels were eliminated from consideration to
n' is a distribution over pieces that can fill the vertical slot, avoid the possibility of accidental formation of pronounce
andn? is a distribution for the horizontal slot. An instance of able syllables or actual words. The letters, A, C, T, and G
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Figure 4: The stimuli used in Experiments 1 and 2. In each § ** 04
grid, the rows represent the possible pieces for one slot an g s s
the columns represent the possible pieces for the other slo £ ~ ‘
The rows and columns are numbered so they may be ident o o
fied in the text. The hatched cells indicate which combina- = S88sSgess
tions were shown to participants. (a) Experiment 1 stimuli. Responses Responses

An example set of feature values are also shown along the _
right and bottom edges of the grid. (b) Experiment 2 stimuli.Figure 5: Comparison of human responses and model pre-

(c) An example stimulus corresponding to item (1,1) in (a). dictions for (a) Experiment 1 and (b) Experiment 2. The
black bars indicate the frequency of the eight most popular

responses, which are equivalent to the eight most probable

o . L responses according to the model. The white bars show the
were also eliminated because of their semantic significance

- : L combined frequencies for all other responses. The human re-

within the context of the experiment, which included a story . .
: inSponses in both cases are averaged over the three conditions

about genomes, described below. Letters were grouped intgd.,, . .

) ) . . within the groups shown in brackets.
pairs to make a total of eight pairs, four of which made up
the possible values of pieces for slot 1, and the other four of
which made up the possible values of pieces for slot 2. As a h ith ith hi bi h
result, there were 16 possible combinations of pieces fdr ea ing them with a pen on paper or with a graphics tablet on the

set of stimuli, of which participants were shown halfThe ~ computer. _ _
exact set of items shown to participants is indicated by the After making their guesses, they proceeded to a rating task
hatched cells in Figure 4a. in which they were shown a series of new genomes and asked

In addition to the training stimuli, a set of testing stim- to rate thte (Ij'keflllhoF)d (ct)r? ? scallg tf)rombl to 73 ttrl':_at eachTohne
uli were prepared for a rating task. These items includedEPresentedaltiu virus that would be observedthis year., Thus

some valid but unseen combinations of letter pairs (i.e. th§he first phase of the experiment was a category generation

unhatched cells in Figure 4), some seen and unseen com ESk ar_ld_ the second phase_ was a classification taSk‘. .
nations rotated 90 degrees (thus violating the structutkeof Participants were then given a new se’_[ of cards with a dif-
category), and some distortions of seen items that matche;&rent structure and repeated the preceding procedure.
between one and three individual features but were not corgesylts

sistent with the structure of the set. The rating task tloeeef
was a typical classification task in which participants had t
decide which novel items belonged in the category. The ex

act rating stimuli and the order in which they were presented’.” > .
tribution, and sampled from it.

were both randomized across participants. - , ,
These predictions and human responses are summarized in

Pr_ocedure._ Participants were presented with the stimuli Figure 5a. The model predicts that the eight most probable
printed on index cards and were told that each item repre- . -
) . responses correspond to the white cells in Figure 4a. These
sented the genome of a strain of flu virus that had been ob: ; s
. items constitute a majority (53%) of human responses. The

served in the current year. They were encouraged to sprea

cells in the grid are not uniquely identifiable across condi-
the cards out on a table and rearrange them as they exam- . :
. . ions, which used different sets of letters, so the reshltss
ined them. They were told that enough funds existed only

to produce a flu vaccine for one additional strain of flu and " Figure 5a are averaged across all possible alignments of

. . . “cells. This averaging procedure is the reason for the remark
were instructed to make their three best guesses of a flu viru : .
ably uniform appearance of the behavioral data. A break-

genome that was likely to be observed but was not already i e R
e . . own of responses per condition is shown in Figure 6a. Al-
the current set. Participants made their guesses by dlustr . . .
though these results are noisy, two important observatians

T 2Gimilar stimuli were used by Fiser and Aslin (2001), in which be made. First, with the exception of structure 2, the major-

participants successfully learned to differentiate betwtchunks” ity Of participants’ responses (46% for structure 2) weréva
of symbols arranged in ambiguous grid. recombinations of letter pairs. Second, among the mostprob

The model learns a category distribution that assigns rmonze
probabilities to training items. To produce our predictipn
e set these probabilities to 0, normalized the resultiisg di
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able items, participants do not appear to favor any item irpiece in each slot appeared three times, two pieces in each
particular, again predicted by the model. slot appeared two times, and one piece in each slot appeared
Due to the small training set and the highly unconstrainednce. Eighteen Carnegie Mellon undergraduates completed
nature of the task, the model also predicted a fairly larga-nu the experiment for course credit.
ber of other responses, indicated by the white bar. Howeveh
the predicted likelihoods fandividual responses beyond the esults
top eight are nearly negligible(3 x 10~4). The human re- The model predictions were generated the same way as in
sponses were consistent with this prediction, and no respon Experiment 1. The predictions and experimental results are
other than the top eight most frequent items was generategdmmarized in Figure 5b. Again, not all responses were
more than once. alignable across the different structures, and the avdrage
Responses to the rating task (see Figure 7a) provide addgroups are indicated by brackets. Unlike in Experiment 1,
tional evidence that participants understood the streoctfir  SOme responses were uniquely identifiable across conslition
the category. Each participant’s set of responses were cofffor example, itenf1, 1) is the only item made of pieces that
verted to z-scores and then the mean scores for the diffeach appeared three times in the training set. It€2nB)
ent types of rating items were compared. There was a sigand (3,3), however, are each made up of pieces that were
nificant difference between the mean scores per participarféen twice, and therefore must be averaged across corsdition
for valid (M = 0.64, SD= 0.60) and invalid 1 = —0.26,  With the exception of a small deviation from the model’s pre-
SD= 0.24) items,t(33) = 6.26,p < .001. The figure also diction for the frequency of itert4,4), human responses are
shows mean scores for some specific types of distractors-well predicted by the model.
namely, those that included between one and three preyious| A breakdown of responses per condition is shown in Fig-
observed pairs of features. Of particular interest aretémas ~ ure 6b. In all three cases, the most frequently generated ite
with three previously seen pairings (3 SP in the figure). Ifwas the most probable item according the model. In two of
participants had based their judgments only on observed paithe three cases, the top three most frequently generates ite
wise correlations, they would give higher ratings to the 3 SPvere the model's three most probable items. Individual re-
items than the valid items, which only contain two previgusl sponses that did not match the top eight most probable items
seen pairings. There was a significant difference between tHvere generated no more than twice.
scores for these itemd(= —0.42, SD= 0.59) and valid Again, data from the rating task were analyzed (see Fig-
items, t(33) = 6.25,p < .001. These results suggest that peo-ure 7b). Two sets of ratings were excluded because the par-
ple’s responses are not primarily driven by a simple notibn oticipants did not rate every item. There was a significant
feature similarity. difference between the mean scores per participant fod vali
Taken together, our results for Experiment 1 suggest thaM = 0.55,SD= 0.61) and invalid {1 = —0.22,SD= 0.24)
people were able to generate new members of the categoiigms,t(32) =5.23p < .001.
we considered, and that this ability cannot be explained by a These results replicate our previous finding that people are
simple similarity-based account. The two main predictiohs able to discover the structure of a category and generate new
our model were supported: people generate valid items moreategory members that fit this structure. Our data also sigge
frequently than invalid items, but invalid items account fo that people are sensitive to frequency differences, a fgndin
some proportion of responses. that is predicted by our probabilistic approach but appears
less compatible with alternative rule-based accounts.
Experiment 2

Although Experiment 1 provides some initial support for our Conclusion

model, our results are broadly consistent with an alteveati This paper was motivated by the observation that people are
model that learns rules (e.g., the rule that items are aidgte  able to generate new instances of a category. Our experimen-
combining two pieces) but that does not rely on probabilitytal results confirmed this observation even in cases inuglvi
distributions in any fundamental way. We therefore designe relatively small training sets. These results also prosise-

a second experiment that tests the probabilistic aspeatrof o port for our computational approach to category generation
approach more directly. The training stimuli in Experimentwhich is general enough that it can be applied to many differ-
1 were created using pieces that appeared equally frequentent cases of category generation.

In Experiment 2 we replaced this balanced set of frequencies We focused on category generation at the exemplar level,
with a skewed set (see Figure 4b), and explored whether pe®ut the same basic approach may help to explain how entirely
ple would respond to these frequency differences as pestlict New categories are generated. For example, suppose one first

by our model. learns categories that can be characterized by bivariais-Ga
sian categories with different means but equal covariances
Method Then, if asked to generate a new category in the same fea-

The materials and procedure in Experiment 2 were identicalure space, we might expect people to choose a new mean but
to Experiment 1. The two experiments differed only in which preserve the covariance of the training categories. The ap-
set of items were shown to participants. In Experiment 2, on@roach presented in this paper can account for such behavior
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Figure 6: Comparison of human responses and model preusdiio the three conditions in (a) Experiment 1 and (b) Experi
ment 2. In all cases, the black bars correspond to the eight pnobable responses according to the model.

(a) (b) demand more creativity. The task modeled in this paper
o 1 1 is not especially creative, but future applications of our
£ o5 05 approach can consider tasks that require more imagination.
5 0 Characterizing the computational basis of creativity igiob
§ 05 05 ously a challenging problem, but a generative probalilisti
= 1 1 approach may provide part of the solution.
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= Two seen pairings; 1 SP = One seen pairing.
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