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Abstract 

Humans are very sensitive to symmetry in visual patterns. 
Reaction time experiments show that symmetry is detected 
and recognized very rapidly. This suggests that symmetry is a 
highly salient feature. Existing computational models of sali-
ency, however, have mainly focused on contrast as a measure 
of saliency. In this paper, we discuss local symmetry as a 
measure of saliency. We propose a number of symmetry 
models and perform an eye-tracking study with human par-
ticipants viewing photographic images to test the models. The 
performance of our symmetry models is compared with the 
contrast-saliency model of Itti, Koch and Niebur (1998). The 
results show that the symmetry models better match the hu-
man data than the contrast model, which indicates that sym-
metry can be regarded as a salient feature. 

Keywords: visual perception; overt visual attention; symme-
try; saliency; saliency models  

Introduction 

While viewing the world, humans constantly make eye 

movements to fixate on interesting parts of the visual field. 

In this way, the relevant information can be viewed with 

high resolution, while irrelevant information can be ignored. 

The process of focusing attention by making an eye move-

ment is called overt visual attention. The eye movements 

are influenced both top-down, emerging for instance from 

past experiences, personal interests, and the task, as well as 

bottom-up, purely from the stimulus. In the current research, 

we are interested in the stimulus-driven influences on eye 

movements, without semantic control. What in the stimulus 

causes our eyes to move to a certain location? What causes 

certain parts of the visual field to catch attention? More spe-

cifically, we investigate how well the locations of eye fixa-

tions can be predicted on the basis of local symmetry. 

Most current models of visual attention base their predic-

tions on contrast in the image. The model of Itti and Koch. 

(Itti & Koch, 2001; Itti, Koch, & Niebur, 1998), for in-

stance, is based on contrasts in luminance, color and orien-

tation. Their saliency model is an implementation of the 

feature integration theory of human visual search (Treisman 

& Gelade, 1980). The saliency model of Itti and Koch has 

been compared to human eye fixations by Parkhurst, Law 

and Niebur (2002). They tested the model on photographic 

images and showed that it matches the human fixation 

points significantly better than expected by chance. Ouer-

hani, von Wartburg, Hügli and Müri (2004) also found a 

positive correlation between the model and human fixations. 

Also other saliency models, like the model of Le Meur, 

Le Callet, Barba and Thoreau (2006) are based on contrast 

calculations. They found a positive correlation between their 

model and human data that was slightly higher than the per-

formance of Itti and Koch’s model. Privitera and Stark 

(2000) investigated a set of simpler saliency operators in-

cluding other features than contrast. The operators were also 

found to predict human fixation points to some extent. It 

must be noted that Privitera and Stark also used a simple 

symmetry operator that weakly resembled the human data. 

However, even though most existing models are based on 

contrast, Figure 1 shows that humans have a clear prefer-

ence to fixate on the center of symmetry for some images 

(second column). This can not be explained using contrast. 

Instead, the contrast model gives high response at the 

boundaries, where the flowers contrast with the background 

(third column). This apparent deficiency in current vision 

models was the motivation for the present study.  

The human response, shown in Figure 1, suggests that 

humans pay attention to symmetrical forms. In this paper we 

will investigate if eye fixations can be predicted on the basis 

of local symmetry. As can be appreciated in the last column 

in Figure 1, our symmetry saliency model does predict fixa-

tions in accordance with the human data. We will show that 

this is not only valid for images that contain explicit sym-

metrical forms like those in Figure 1, but more generally in 

complex photographic images with different types of con-

tent. 

Symmetry is a prominent visual feature in our daily envi-

ronments. Many living organisms, for instance, have clear 

left-right symmetry in their bodies. This symmetry is even 

Figure 1: Examples of images containing symmetrical 

forms. The second column shows the human fixation den-

sity maps, the third shows the contrast-saliency maps, and 

the last shows the symmetry-saliency maps. The preference 

of humans to fixate on the center of symmetry is correctly 

reproduced by the symmetry model. The bright regions are 

the parts of the maps above 50% of its maximum value. 
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an indication of the fitness of the individual. For instance, 

manipulated images of faces with enhanced symmetry are 

judged more attractive than the original faces (Grammer & 

Thornhill, 1994). Also in art, symmetry is usually preferred 

over asymmetry (Tyler, 2000). According to Gestalt psy-

chologists symmetry improves the figural goodness 

(Palmer, 1991). Because symmetry is so prominent, it is 

likely that it plays a role in the visual system. 

It is also known that humans are sensitive to symmetry. 

Symmetrical patterns are detected very rapidly, especially 

when having multiple axes of symmetry (Palmer & He-

menway, 1978). Also recognition performances increase 

with symmetrical patterns (Royer, 1981). The increase in 

performance might be explained by the intrinsic redundancy 

present in symmetrical forms, which gives rise to simpler 

representations (Barlow & Reeves, 1979). Humans further-

more have the tendency to interpret symmetrical regions as 

figure, and asymmetrical regions as background (Driver, 

Baylis, & Rafal, 1992). 

Symmetry also influences eye movements. Fixations on 

symmetrical forms are concentrated at the center (Richards 

& Kaufman, 1969) of the form, or at the crossing points of 

the symmetry axes (Kaufman & Richards, 1969). For im-

ages with a single symmetry axis, the fixations are concen-

trated along this axis, whereas the fixations are more spread 

out for non-symmetrical images (Locher & Nodine, 1987). 

These studies, however, use simple stimuli with only one 

symmetrical pattern presented. 

In this paper, we investigate the role of local symmetry on 

overt visual attention in complex photographic scenes, and 

compare it to the role of contrast. We propose extended 

symmetry-saliency models, and compare their performances 

with the contrast saliency model of Itti and Koch, hence-

forth referred to as the contrast model. We show that the 

symmetry models correspondd significantly better with the 

human eye fixations. 

Methods 

To investigate the role of symmetry in visual attention, we 

developed a number of symmetry-saliency models and com-

pared them with human eye tracking data. To establish a 

point of reference, the contrast-saliency model of Itti et al. 

(Itti et al., 1998) is also compared with the human data. In 

this section, the developed symmetry-saliency models are 

explained, followed by a description of the eye-tracking 

studies and the method to compare the models with the hu-

man data. 

Symmetry operators 

Our models are based on the isotropic symmetry and radial 

symmetry operator of Reisfeld, Wolfson and Yeshurun 

(1995), and on the color symmetry operator of Heidemann 

(2004). We extended the operators to multi-scale symmetry-

saliency models. 

The isotropic symmetry operator (Reisfeld et al., 1995) 

calculates the amount of symmetry at a given position, x, 

based upon gradients of the intensity in surrounding pixels. 

This is done by comparing pairs of pixels i and j at positions 

xi and xj, where ( ) / 2= +
i j

x x x  (see Figure 2a). Every pixel 

pair contributes to the local symmetry by  

 ( , ) ( , , ) ( , )
i j

c i j d i j p i j m mσ= ⋅ ⋅ ⋅  (1) 

Where mi is the magnitude of the gradient at point i, 

( , , )d i j σ  is a Gaussian weighting function on the distance 

between the two pixels with standard deviation σ, and the 

symmetry measurement ( , )p i j  is calculated by 

 ( ) ( )( , ) 1 cos( ) 1 cos( )i j i jp i j γ γ γ γ= − + ⋅ − −  (2) 

Where 
i i

γ θ α= −  is the angle between the direction of the 

gradient angle 
i

θ  and the angle α  of the line between pi 

and pi (see Figure 2b). The first term in equation (2) has a 

maximum value when 
i j

γ γ π+ = , which is true for gradi-

ents that are mirror symmetric with respect to p. Using only 

this term would result in high values for points on a straight 

edge, which are not considered symmetrical. To avoid this 

problem, the second term demotes pixel pairs with similar 

gradient orientation. In this way, the contributions of all 

pixel pairs, ( )pΓ , within the radius, r, are summed up to 

give the isotropic symmetry value for p:  

 iso

( , ) ( )
( , ) ( , )

i j p
x y c i j

∈Γ
=∑M  (3) 

To make the symmetry operator more sensitive to sym-

metrical patterns with multiple axes of symmetry, Reisfeld 

Figure 2: The basis of our symmetry models. (a) gives three examples of pixel pairs whose gradients are compared by the 

symmetry operator. The geometry of the contribution of a pixel pair is shown in (b) and further explained in the text. (c) 

gives an overview of the multi scale setup of the symmetry models. 
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et al. (1995) developed the radial symmetry operator as an 

extension of the isotropic symmetry operator. First, the ori-

entations of the contribution of the pixel pairs are calculated 

by ( , ) ( ) / 2
i j

i jϕ θ θ= + . Next, the symmetry orientation is 

determined as ( ) ( , )p i jφ ϕ=  for ( , )i j  that give the highest 

contribution ( , )c i j . This value is then used to promote the 

contributions of pixels pairs with dissimilar orientations: 

 ( )rad 2

( , ) ( )
( , ) sin ( , ) ( )

i j p
c i j i j pϕ φ

∈Γ
= ⋅ −∑M  (4) 

The two symmetry operators mentioned above work on 

intensity values only. Since some color transitions are not 

detectable in gray-valued images, Heidemann (2004) 

adapted the isotropic symmetry operator to the color sym-

metry operator. This operator uses three color channels, red, 

green and blue. Equation (3) is adapted so that not only the 

gradients of pixels in one channel, but also between differ-

ent channels are compared:  

 col

( , ) ( , )

( , ) ( , , , )
i j

i j

i j k k K

x y c i j k k
∈Γ ∈

= ∑ ∑M  (5) 

where K contains all combinations of color channels, and 

( , , , )
i j

c i j k k is the symmetry contribution calculated by 

comparing pixel i in color channel ki with pixel j in color 

channel kj. Furthermore, equation (2) is altered to: 

 
2 2

( , ) cos ( ) cos ( ) cos( )
i j i j

p i j γ γ γ γ= + ⋅ ⋅  (6) 

so that the function gives the same result for gradients that 

are rotated 180°. The second term keeps the same function-

ality as the second term in equation (2). 

Symmetry-saliency models 

The human visual system is thought to process information 

on multiple spatial scales. We therefore adapted the above 

described operators to multi-scale saliency models, similarly 

to (Itti et al., 1998). 

The process to calculate the symmetry maps is depicted in 

Figure 2c. First, five spatial scales of the input image are 

created by progressively applying a Gaussian filter followed 

by a downscaling of the image by a factor of two. The dif-

ferent scales are then processed to symmetry feature maps 

using the symmetry operators as discussed in the previous 

section, where we use 24r =  and 36σ = . Next, the five 

feature maps are normalized using the normalization opera-

tor, N, used in (Itti et al., 1998). This normalization consists 

first of scaling the feature map values to the range [0..1], 

and then multiplying the feature map with 2(1 )− m , where 

m  is the average value of all local maxima in the map. This 

normalization promotes feature maps that contain a small 

number of symmetrical patterns that really stand out, as op-

posed to feature maps that contain many patterns with simi-

lar symmetry values. Finally, the feature maps are combined 

into a symmetry saliency map by resizing all feature maps 

to the same size and summing them.  

 
4

0
( )

s
s

N
=

= ⊕S M  (7) 

Where ⊕  is the summation operator that resizes all parts to 

the same size, and 
s

M  is the symmetry feature map at scale 

s. This procedure results in three symmetry saliency maps: 
iso
S  for isotropic symmetry, rad

S  for patterns with multiple 

symmetry axes, and col
S  which uses color information. 

Eye-tracking experiment 

We recorded human fixation data in an eye-tracking ex-

periment using the Eyelink head-mounted eye-tracking sys-

tem (SR research). Fixation locations were extracted using 

the accompanied software. The images were displayed full-

screen with a resolution of 1024 by 768 pixels on an 18’’ 

CRT monitor of 36 by 27 cm at a distance of 70 cm from 

the participants. The visual angle was approximately 29º 

horizontally by 22º vertically. Before the experiment, the 

eye tracker was calibrated using the Eyelink software. The 

calibration was verified prior to each session, and recali-

brated when needed. 

Since we are interested in the bottom-up components of 

visual attention, the participants were asked to freely view 

the images. We did not give them a task, since that would 

give a strong bias on the eye movements. Our approach is 

similar to (Kootstra, Nederveen, & De Boer, 2008; Le Meur 

et al., 2006; Parkhurst & Niebur, 2003). 

31 students (15 female) of the University of Groningen 

took part for course credits. The age of participants ranged 

from 17 to 32. All had normal or corrected-to-normal vi-

sion. In the experiment, 99 images in five different catego-

ries were presented, 19 images of natural symmetrical ob-

jects, 12 images of animals in a natural setting, 12 images of 

street scenes, 16 images of buildings, and 40 images of 

natural environments (see Figure 3). Only the images in the 

first category were selected for their symmetrical content. 

The other categories represent a wide variety of images, 

containing natural and cultural scenes, with organic and 

rectilinear shapes. All these images were taken from the 

McGill calibrated colour image database (Olmos & King-

dom, 2004). The experiment was split up into sessions of 

approximately 5 minutes. Between the sessions, the experi-

menter had a short relaxing conversation with the partici-

pants, in order to get them motivated and focused for the 

next session. Before starting a new session, the calibration 

of the eye tracker was verified. After each presented images, 

drift was measured and corrected if needed using the Eye-

Figure 3: Examples of images used, one for each category: flowers, animals, street scenes, buildings and nature. 
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link software. The participants could decide when to con-

tinue and were allowed to take a short break. 

Analysis methods 

To compare the saliency models with the human data, we 

use two methods. A correlation method similar to that used 

in (Le Meur et al., 2006; Ouerhani et al., 2004), and a fixa-

tion-saliency method, similar to that used in (Parkhurst et 

al., 2002).  

The correlation method correlates the saliency maps with 

fixation-distance maps calculated from the human fixation 

data. For every single trial of every participant, the fixation-

distance map is calculated using the inverse distance trans-

form. The distance transform of the human data gives the 

distance to the nearest human fixation for all the pixels in 

the image. At the points of fixation, the values are thus zero, 

and they increase linearly for pixels farther from the fixa-

tions. We then take the inverse of the distance transforma-

tion. This is done by subtracting all distance values from the 

maximum distance value. The inverse distance map, which 

we call the fixation-distance map, therefore contains high 

values close to the fixation points, and lower values at 

points far from the fixations, and can be seen as a probabil-

ity distribution for fixations. This is slightly different from 

the approach in (Kootstra et al., 2008; Le Meur et al., 2006; 

Ouerhani et al., 2004), where a fixation density map is cal-

culated using Gaussian kernels. Our method puts emphasis 

on the location of fixations, rather than on their density. 

Moreover, our method is parameter free, i.e., there is no 

width of the kernel to be set. 

The value of the comparison between the saliency map 

and the fixation-distance map is then given by the correla-

tion coefficient, ρ: 

 

( ) ( )( )
,

2 2

( , ) ( , )
x y

x y x yµ µ

ρ
σ σ

− ⋅ −

=
⋅

∑ F S

F S

F S

 (8) 

where F is the fixation-distance map, S is the saliency map 

and µ and σ2
 are respectively the mean and the variance of 

the values in these maps. The correlation coefficient has a 

value between –1 and 1. A ρ of 0 means that there is no cor-

relation between the two maps, which is true when correlat-

ing with random fixation-distance maps. Values for ρ  close 

to zero indicate that a model is a poor predictor of human 

fixation locations. Positive correlations show that there is 

similar structure in the saliency map and the human fixation 

map. 

This method calculates the correlation for individual par-

ticipants. However, the photographic images viewed by the 

participants are highly complex stimuli that generate many 

fixations, with substantial variation among participants. Be-

cause of this variation, the correlations of individual fixa-

tion-distance maps with the saliency maps will be low. 

However, some of the fixations are shared by all partici-

pants. To see how well our models predict this consensus 

among participants, we also calculate the correlation coeffi-

cient for the combined fixation-distance maps, 

1

N

tot i i=
=∑F F , using equation (8). 

The second comparison method, the fixation-saliency 

method, measures the saliency value, according to the sali-

ency models, at the points of human fixation relative to the 

average saliency value at a large number of randomly cho-

sen locations:  

 
1000

1
( ) (rnd)

i i j
s f sλ

=
= ∑  (9) 

Where 
i

λ  is the fixation-saliency value for the ith fixation, 

fi is the ith human fixation location and rnd is a randomly 

determined location in the image, excluding the borders. 

s(p) is the average saliency value in a patch of the saliency 

map, S, centered at point p and with a radius of 28 pixels. If 

λi > 1, the saliency at human fixation points is higher than in 

the rest of the image, meaning that the given saliency model 

has predictive powers. 

Results 

In Figure 4a, the results of the correlation between the indi-

vidual fixation-distance maps and the saliency methods are 

Figure 4: (a) The correlations results with the individual fixation-distance maps. The groups give the results for the different 

image categories. The error bars are the 95% confidence intervals. The horizontal gray bars with the solid line show the mean 

and 95% confidence interval of the inter-participant correlation. The dashed lines show the correlation of the human data 

with random fixations (close to zero). (b) The correlation results with the combined fixation-distance maps, representing the 

consensus among the participants. The patterns in both plots are similar, but with higher correlations for the later. 
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shown. The five groups of bars contain the results for the 

different image categories. Within each group, the bars 

show the mean correlation coefficients for the saliency 

models. The error bars give the 95% confidence intervals on 

the mean. The scores of the saliency methods are plotted 

along with the inter-participant correlation, and the correla-

tion of the human data with random fixations. The first is 

depicted by the horizontal gray bar with a solid mid-line, 

giving the mean and 95% confidence interval. The correla-

tion with random fixations is depicted by the horizontal 

dashed line, which is, as expected, virtually zero for all 

categories. All means and confidence intervals are calcu-

lated using multi-level bootstrapping. Significant differ-

ences can be appreciated by looking at the 95% confidence 

intervals. 

The inter-participant correlation is calculated for every 

image by correlating the fixation-distance maps of the par-

ticipants with those of all other participants, resulting in a 

similarity measure among participants. The plot shows that 

there is variability among the participants. The saliency 

methods are also faced with this variability, which pulls 

down the correlation values. The inter-participant correla-

tion can therefore be used to put the scores of the saliency 

methods into perspective. The correlation scores of the 

models can be higher when the variation is high. 

Looking at the bars and the 95% confidence intervals in 

Figure 4a, it can be appreciated that the performance of the 

three symmetry models is significantly higher than that of 

the contrast model. This is not only true for the natural sym-

metry images containing explicit symmetrical forms, also 

for the other categories the symmetry models significantly 

outperform the contrast model. For all categories, the per-

formance of the symmetry models is in the same range as 

the inter-participant score. Among the three symmetry mod-

els, there is no significant difference in performance. 

The values in Figure 4a are relatively low, caused by the 

variability among participants. Figure 4b shows the results 

of the comparison of the human data with the combined 

fixation-distance maps. This gives the similarity between 

the saliency models and the consensus among participants. 

Figure 4b shows a very good match between the symmetry 

models and the human data for all images, suggesting that 

the common fixations of the participants are captured. The 

difference with the contrast-saliency model is significant. 

Figure 5 shows the fixation-saliency values as a function 

of the fixation number. For all image categories, the sym-

metry models have high values for the early fixations, and 

gradually dropping values for later fixations. This shows 

that humans first fixate on highly symmetrical parts of the 

images. The fixation-saliency scores for the contrast model, 

on the other hand, are more or less constant over time, ex-

cept for the animal category. For the images containing 

natural symmetries, the difference with the contrast saliency 

model is highly significant for all fixations. But also for 

most other categories, the symmetry models score better, 

especially at the first few fixations. For the street-scene, the 

building, and the nature categories, symmetry at early fixa-

tions is significantly higher than contrast. For later fixations, 

the difference is less apparent, but still in favor of the sym-

metry models, and significant for the nature category. For 

the animal category, we see a different picture. There, the 

symmetry and contrast model do not significantly differ, 

with higher scores for the contrast model. Furthermore, the 

contrast values are not constant for this category, but drop 

over time. This difference can be explained by the fact that 

the animal images contain objects (the animals) that are 

highly distinguishable from their, often, more or less uni-

form and blurry background. In contrast, the fore- and back-

ground in the other categories are less distinct, and more 

cluttered. 

Discussion 

We proposed three symmetry saliency models to investigate 

the role of local symmetry in guiding eye fixations. To test 

the performance of the models, we conducted an eye-

tracking study, and evaluated the prediction of the models 

with the human data. We used the contrast saliency model 

of Itti and Koch (Itti et al., 1998) to compare our results. 

The results clearly show that human eye fixations can be 

significantly better predicted with our symmetry models 

Figure 5: The plots give the saliency values at the fixation points relative to the average saliency in the image for the five 

image categories. Time, measured in fixation units is plotted on the horizontal axis. The fixation-saliency values for the three 

symmetry models and the contrast model of Itti and Koch are shown. The horizontal dotted line gives the expected value 

when fixations are random (i.e., 1.0), and the error bars are the 95% confidence intervals. 
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than with the contrast model. Our models show a signifi-

cantly better correlation with the human data, comparable 

with the inter-participant correlation, for the individual par-

ticipants. Particularly when we look at the combined fixa-

tion-distance maps, we see a very good match, showing that 

the proposed models predict the general consensus. The 

proposed models are general models in the sense that they 

do not only perform well on the images containing natural 

symmetrical objects, but also on images that are not selected 

for their symmetrical content. Moreover, the fixation-

saliency analysis shows that especially early fixations are on 

highly symmetrical content, suggesting that symmetry is a 

good predictor of involuntary eye fixations, which are pre-

sumably more bottom-up controlled.  

A possible explanation that symmetry is a good predictor 

of eye fixations is that eye movements are object oriented. 

Symmetry is known to play a role in figure-ground segrega-

tion (Driver et al., 1992). Local symmetry can therefore 

serve as a bottom-up cue for the presence of an object in the 

image, which is then further inspected by making a fixation.  

We expected the radial symmetry model to outperform 

the isotropic symmetry model since psychophysical studies 

showed that humans are more sensitive to forms with multi-

ple symmetry axes (Palmer & Hemenway, 1978). However, 

this did not result in a significant increase in performance. 

This can be explained by the fact that the isotropic model 

already gives a stronger response to patterns with multiple 

symmetry axes. Also color does not improve the model. 

Contrast obviously also plays a role in bottom-up atten-

tion. In future research, we would like to study the combina-

tion of contrast and symmetry for the prediction of fixations. 

To conclude, the symmetry models that we developed are 

good predictors of visual attention, suggesting that humans 

pay attention to symmetry. 
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