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Abstract

According to the transformational approach to similarity, two
objects are judged to be more similar the simpler the trans-
formation of one of the object representations into the other.
This approach draws inspiration from the mathematical the-
ory of Kolmogorov complexity, but otherwise remains an in-
formal theory to this day. In this paper we investigate sev-
eral different ways in which the informal theory of transforma-
tional similarity can be understood, providing a formalization
for each possible reading. We then study the computational
(in)tractability of each formalization for a variety of parame-
ter settings. Our results have both theoretical and empirical
implications for transformational approaches to similarity.

Keywords: similarity; representational distortion; computa-
tional complexity; intractability; parameterized complexity

Introduction
Consider the two sequences•◦•◦•◦•◦• and◦•◦•◦•◦•◦.
Even though these two sequences differ in every element they
are nevertheless quite similar. Moreover, these two sequences
may be judged to be more similar than two sequences that
share more elements, such as, for example,• ◦ • ◦ • ◦ • ◦ •
and••◦◦••◦◦•. A possible explanation for this is that the
first two sequences are related by a single simple transforma-
tion (e.g., inversion), whereas no such simple transformation
seems to relate the second two sequences. This explanation
accords with the Representational Distortion (RD) theory of
similarity (Chater & Hahn, 1997; Chater & Vitányi, 2003;
Hahn, Chater, & Richardson, 2003).

According to RD, in general, two object representations are
judged to be more similar the fewer basic transformations are
required to transform one object representation into the other.
The basic idea underlying RD already existed in the late 70s
(Imai, 1977), but in recent years it has gained in explanatory
strength both on empirical (Hahn et al. (2003); but see also
Larkey and Markman (2005)) and theoretical grounds (Chater
& Vit ányi, 2003). As with any computational-level theory,
the plausibility of RD depends not only on how well it can
predict or describe human similarity judgments, but also on
the existence of tractable algorithms for computing similar-
ity under the RD model (Frixione, 2001; Tsotsos, 1990; van
Rooij, 2008).

The roots of RD seem to be cause for worry about RD’s
ability to meet the tractability constraint. The theory of RD
is inspired by the mathematical notion of Kolmogorov com-
plexity. The Kolmogorov complexityK(a) of an object rep-
resentationa is the length of the shortest program that, when
run on the empty input, constructsa. The notion can also be
used to express the transformational distance from an object
representationb to a, by replacing in the former statement
‘empty input’ by b. The resulting conditional Kolmogorov
complexity is denotedK(a | b). It is known thatK is an un-
computable function—i.e., there does not exist any algorithm
that computesK(a) orK(a | b) for all aandb. This means that
conditional Kolmogorov complexity as a measure of similar-
ity, as proposed by Chater and Hahn (1997) and elaborated
in Chater and Vit́anyi (2003),1 does not even meet the com-
putability constraint, let alone the tractability constraint on
computational-level theories.

Chater and Vit́anyi (2003, p. 347) acknowledge that their
measure of similarity is an “‘ideal’ notion in the sense that
it ignores the limitations on processing capacity.” To render
the transformational approach to similarity more psycholog-
ically and computationally realistic, Hahn et al. (2003) pro-
posed the current version of RD. This version holds on to the
idea that similarity between object representationsa andb is
a function of their transformational closeness, but rather than
referring to the shortest program transforminga to b, it re-
stricts attention to programs that are sequential applications
of operations from a particular set of ‘basic transformations’.

The question now arises if RD is tractably computable.
Currently, it is impossible to answer this question, because
RD remains so far a verbal theory. In order to determine
the (in)tractability of RD we need to make the computational
problem of finding shortest transformations mathematically

1For completeness, we remark that Chater and Vitányi (2003)
formulated a symmetric measure of similarity (based onK(a|b) +
K(b|a)) because they were interested in its metric properties and
demonstrating that it can explain Shepard’s Universal Law of Gen-
eralization. Empirical studies show that similarity judgments need
not be symmetrical (Tversky, 1977). As our focus is on the compu-
tational (in)tractability of transformational approaches to similarity,
we do not force transformational distances to be symmetric.
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precise. In this paper we investigate several different ways
in which this can be done. We will show that each proposal,
if unrestricted, faces the problem of intractability. Our in-
vestigation does not stop at this observation, however. We
adopt a method for identifying sources of this intractability
(van Rooij, Stege, & Kadlec, 2005; van Rooij, Evans, Müller,
Gedge, & Wareham, 2008) and having identified such sources
we make recommendations to RD theorists on how their the-
ories may be restricted so as to ensure tractability.

Computational-level Models
According to Hahn et al. (2003) “RD theory seeks to charac-
terize the computational level problem involved in determin-
ing similarity.” A first possible, informal characterization of
the computational problem involved is the following:

REPRESENTATIONALDISTORTION (version 1) [RD1]
Input: Two representationsa and b and a set of basic
transformationsT.
Output:The length of a shortest sequence of basic trans-
formations fromT transforminga to b.

Note that in this problem formulation, the set of basic trans-
formationsT is not a constant but can in principle vary inde-
pendently froma andb. This seems in line with the thinking
of Hahn et al., as they hypothesized differentT for the dif-
ferent types of stimuli that they used in their experiments. A
question raised by the possibility of varyingT is how the cog-
nizer knows whichT to adopt in a particular situation. One
possibility could be that the modality ofa andb determines
T (e.g., a picture can be rotated and a sound can be change
in pitch, but not vice versa). This cannot accommodate, how-
ever, the variations inT allowed by Hahn et al., as all their
stimuli were in the visual modality.

It is also theoretically plausible thatT depends not on the
nature ofa andb alone, but also the context in whicha andb
are being compared.2 To illustrate consider the example se-
quences in Table 1. In this table, we havea3 = c3 andb3 = d3.
Ignoring the context in which the comparisons are made, the
comparison ofa3 with b3 may appear equivalent to the com-
parison ofc3 with d3. But note that in the context in which the
paira3,b3 appears it is more natural to see the two sequences
as related via the transformation of ‘mirroring’, simply be-
cause allai ,bi pairs are related by the transformation ‘mirror-
ing’. On the other hand, in the context in which the pairc3,d3

appears it is more natural to see the two sequences as related
via the transformation of ‘inversion’, simply because allci ,di

pairs are related by the transformation ‘inversion’.
The preceding shows that the context in whicha andb are

compared determines in part which basic transformations are
in the set of transformations used for their comparison. This

2This view seems consistent with Imai’s: “let us define four cog-
nitive transformations which we assume basic ... within the context
of the set of configurations used in our experiment ... [but] when the
set of configurations are less restricted, the basic set of transforma-
tions must be expanded” (Imai, 1977, pp. 434-435).

Table 1: Illustration of the effect of context on the type of
transformations used to related pairs of objects.

index a b c d
1 ••◦◦◦◦ ◦◦◦◦•• ••◦◦◦◦ ◦◦••••
2 ••◦◦•◦ ◦•◦◦•• ••◦◦•◦ ◦◦••◦•
3 •••◦◦◦ ◦◦◦••• •••◦◦◦ ◦◦◦•••

idea is expressed by the following reformulation of the com-
putational problem underlying RD.

REPRESENTATIONALDISTORTION (version 2) [RD2]
Input: Two representationsa andb, a set of basic trans-
formationsT , and a ‘context’C.
Output: A number that equals the length of a shortest
sequence of basic transformations fromTC ⊆ T trans-
forming a to b, whereTC is a set of transformations that
is ‘most relevant’ for ‘context’C.3

Generally both ‘context’ and ‘relevance’ remain elusive con-
cepts in cognitive science, but in the specific context of RD-
based similarity judgments we may nevertheless try to make
more precise what they could mean.

We start with the notion of ‘context’. The illustration in
Table 1 shows that one form of context for a comparison of
a andb is other comparisons that are made at the same time
as or briefly before the comparison betweena andb. This
special type of context yields the following special case of
the foregoing problem:

REPRESENTATIONALDISTORTION (version 3) [RD3]
Input: Two representationsa andb, a set of basic trans-
formationsT , and a set of pairs of object representations
X with (a,b) ∈ X.
Output: A number that equals the length of a shortest
sequence of basic transformations fromTX ⊆ T trans-
forminga to b, whereTX is a set of transformations inT
that is most relevant for contextX.

Two possible interpretations seem open for RD2 and RD3:

(i) The setTC may be (non-inferentially) given to the
cognizer; or

(ii) the cognizer needs to computeTC per context.

According to option (i), it is assumed that no computation is
required to know what subsetTC ⊆ T is considered relevant
for the context at hand. In the remainder of this paper, let
RD2 and RD3 be so interpreted.

According to option (ii), part of the problem of computing
the similarity betweena andb is the computation of thisTC.
The latter is consistent with the view expressed by Larkey and
Markman (2005, p. 1071), when they write “transformational

3Here, T may be thought of as the master set of all possible
transformations associated with a specific ‘sensory modality’, e.g.,
all basic visual transformations.
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accounts require additional processing to determine the trans-
formations that distort one representation into the other.”4

Interpretation under option (ii) requires us to make precise
what makes a set of transformationsTC ⊆ T ‘relevant’ for
some context, which in turn requires an elaboration of what
‘context’ is in RD2. For the special type of contextX de-
fined in RD3, we propose the following hypothesis: Cogniz-
ers consider a setTC to berelevantfor judging the similarity
between a pair of representations(a,b)∈X if many pairs inX
can be transformed with a short sequence of transformations
from TC, while TC is as small as possible with this property.
Here, “many” and “short” can be interpreted as being larger
or smaller then a given threshold. Following these stipula-
tions, the task of finding a set of relevant transformations can
be formalized by the following computational problem.

RELEVANCE

Input: A set of basic transformationsT , a set of pairs of
object representationsX, and integerss andw.
Output: A set of transformationsTX ⊆ T of minimum
size such that for at leasts pairs(a,b) ∈ X there exists a
sequence of transformations inTX having length at most
w that when applied toa yieldsb.

Our operationalisation of ‘relevance’ can be seen as adopt-
ing the same principle of parsimony (or simplicity) that has
been argued to underly RD (Chater & Vitányi, 2003), i.e., as-
sume no more basic transformations than necessary to relate
as many as possible representation pairs in the current set in
ways as simple as possible. This operationalisation yields the
fourth and final version of RD considered in this paper:

REPRESENTATIONALDISTORTION (version 4) [RD4]
Input: Two representationsa andb, a set of basic trans-
formationsT , a set of pairs of object representationsX
with (a,b) ∈ X, and integerss andw.
Output: A number that equals the length of a short-
est sequence of basic transformations fromTX ⊆
T transforming a to b where TX is a solution of
RELEVANCE(T ,X,s,w).

The notions of ‘object representation’ and ‘transformations’
have so far remained informal. Below we present formaliza-
tions for each.

Formalizing Representation and
Transformation

Following Chater and Vit́anyi (2003) we assume that an ob-
ject representation is a finite binary string. Nothing seems lost
with this assumption, as any finite object can be represented
by a finite binary string. Chater and Vitányi (2003, p. 354)
argued for this generality as follows:

4We think that option (ii) is theoretically to be preferred, because
the number of possible contexts simply seems too vast to explicitly
storeTC for every possible contextC. Be that as it may, we present
(in)tractability results for both interpretations, leaving it up to the
RD modeler which of these to adopt.

“[each object we are interested in] can be described by using,
for example, English. That means we can describe every object
by a finite string in some fixed finite alphabet. By encoding
the different letters of that alphabet in bits (0’s and 1’s) we
reduce every description or representation of the object to a
finite binary string. A similar argument presumably holds for
the physical manner by which an object is represented in an
agent’s cognitive system.”

As for the formalization of the notion of transformation we
choose to be equally general, defining a transformation as a
Boolean circuit (see Fig. 1 and 2). Again, this entails no
loss of generality because any function from binary strings (of
some fixed lengthn) to binary strings (of some fixed length
m) can be computed by a Boolean circuit. Transformations,
like ‘mirroring’ and ‘inversion’, acting on strings as a whole
are viewed as families of circuits, one circuit for each length
doing the transformation.

0 10 1

1 0 0 1

NOT

AND

OR

Input nodes (can take
binary values, 1 or 0)

Output nodes (can take
binary values, 1 or 0)

An AND-gate (its output 
is 1 if both its inputs are 
1, and in all other cases 

its output is 0)

An OR-gate (its output is 1 
if at least one of its inputs
are 1, and 0 otherwise)

A NOT-gate (its output 
is 1 if its input is 0, and 

0 if its input is 1)

A Boolean Circuit

Figure 1: Illustration of a Boolean circuit. In our formaliza-
tion of RD, the binary string on the input nodes represents an
encoding of objecta and the binary string on the output nodes
represents an encoding of objectb.

Now that we have formalized the notions of ‘object repre-
sentation’ and ‘transformations’, RD1 and RD4 have become
well-defined problems whose (in)tractability can be subjected
to formal mathematical analysis. Although RD2 and RD3 re-
main informal, as they leave e.g. the notion of ‘relevance’ un-
defined, formal (in)tractability results for RD1 can be trans-
lated to informal (in)tractability results for RD2 and RD3.5

For technical reasons, formal results cannot be derived for in-
formal problems such as RD2 and RD3, but for purposes of
assessing the plausibility of cognitive models the distinction
between formal and informal (in)tractability results can be
safely ignored, as we will do in the remainder of this paper.

Representational Distortion is Intractable
Using the formalizations above, it can be shown that com-
puting similarity under the considered RD models can only
be done by algorithms that use a superpolynomial (e.g., ex-

5To do so we will assume that for all possibleT in RD1 there
exists a contextC such thatTC = T in RD2, and there exists a context
X such thatTX = T in RD3. Then any algorithm solving RD2 or
RD3 also solves RD1.
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0 11 0

1 1 1 1

NOT

1 01 1

0 1 1 1

1 11 1

0 1 1 1

NOT

AND
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0 11 0

1 1 1 1

NOT

AND

OR

1 01 1

0 1 1 1

NOT

AND

OR

NOT

Figure 2: Illustration of RELEVANCE under the Boolean
circuit formalization. The three pairs of objects(1111,0111),
(0101,1111), and(1110,0111) can be each be transformed
by one of the three circuits shown at the top. No one of
these circuits can transform these three pairs of objects
and pair (0011,1001) in Figure 1, but the circuit at the
bottom is capable of transforming them all. If all these
circuits were psychologically possible, i.e. inT , then in
our formalization of RELEVANCE the circuit at the bottom
would be considered relevant for the set of pairsX =
{(1111,0111),(0101,1111),(1110,0111),(0011,1001)},
whereas the other circuits would not be.

ponential) amount of time—i.e., the time cannot be upper-
bounded by a functionnc, wheren is a measure of input size
andc is some constant.6 Super-polynomial time algorithms
are generally considered computationally intractable because
they take unrealistically long for all but small inputs. To il-
lustrate, consider an exponential-time algorithm running in a
time proportional to 2n. Such an algorithm would need to
make on the order of 1,000,000,000 computational steps for
an input of sizen = 30. For larger inputs, sayn = 60, the
number of computational steps gets close to the number of
seconds that has past since the birth of the universe.

The upshot of the intractability of the considered RD mod-
els is that they are all psychologically implausible7 unless the
right restrictions are posed on the hypothesized domain of
inputs. To find such restrictions we will attempt to identify
sources of intractability in RD models.

Identifying Sources of Intractability
We adopt the method for identifying sources of intractability
described in van Rooij et al. (2008) (see also van Rooij and
Wareham (2008)). The method works as follows.

6For proofs see the onlineSupplementary Materials, available at
http://www.nici.ru.nl/˜irisvr/supplement09.pdf. These
results assume that P6= NP, a mathematical conjecture that is un-
proven but has strong empirical support. The interested reader is
referred to Garey and Johnson (1979) for more details.

7For a full treatment of common objections (based on, e.g.,
heuristics, approximation, parallelism) to the tractability constraint
that we assume here, see van Rooij (2008).

First, one identifies a set of problemparameters K=
{k1,k2, ...,km} in the problemP under study (for us, the dif-
ferent versions of RD discussed in the Introduction each con-
stitute such a problemP). Then one tests if it is possible to
solveP in a time that is exponential (or worse) only inK but
polynomial in the size of the input.8 If this is the case, thenP
is said to befixed-parameter (fp-) tractablefor parameter set
K, and otherwise it is said to befp-intractablefor K.

Observe that if a parameter setK is found for whichP is fp-
tractable then the problemP can be solved quite efficiently,
even for large inputs, provided that the members ofK are
relatively small. In this sense the “unbounded” nature ofK
can be seen as a reason for the intractability ofP. Therefore
we callK asource of intractabilityof P.

RD models have several natural parameters, each of which
may be a source of the intractability inherent in the gen-
eral problems postulated by these models. Table 2 gives an
overview of the parameters that we consider here.

Table 2: Overview of parameters that may be sources of in-
tractability for Representational Distortion models.

Name Definition
k length of the shortest sequence of

transformations transforminga to b
t size of the setT

`1 maximum of the lengths ofa andb
`2 maximum of the lengths ofa, b, and

all intermediate representations created in
transforminga into b

tc size of the setTC

m size of the setT

w the maximum dissimilarity of pairs inX that
can be related by transformations fromTC

Results and Discussion
We present a list of fp-tractability and fp-intractability re-
sults for sets of parameters selected from Table 1.9 For the
proofs we refer to theSupplementary Materialspublished on-
line (see footnote 6). We start by considering RD1:

RD1 is:

1. fp-intractable for parameter set{t, `1}.
2. fp-intractable for parameter set{k, `1}.
3. fp-tractable for parameter set{t,k}.
4. fp-tractable for parameter set{`2}.

8More formally, this would be a time on the order of
f (k1,k2, ...,km)nc, where f is an arbitrary computable function,n
is a measure of the overall input size, andc is a constant

9We will work under the assumption FPT6= W[1]. Like P 6= NP,
this mathematical conjecture is unproven but has strong empirical
support. The interested reader is referred to Downey and Fellows
(1999) and Flum and Grohe (2006) for more details.
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By Result 3, the assumption thatt (the number of transforma-
tions) is relatively small and the assumption thatk (the length
of the shortest transformation sequence) is relatively small
are together sufficient to render RD1 tractable.10 By Re-
sults 1 and 2, neither of these assumptions can be dispensed
with. Results 1 and 2 also show that small values of`1(the
maximum length of the two given representations) cannot it-
self make RD1 tractable; this, in combination with Result 4
(which shows that small values of the closely-related param-
eter`2 can make RD1 tractable), highlights the importance
of intermediate (and not just given) object-representations to
the complexity of RD1.

How plausible is it that̀ 2, k and/ort are relatively small?
It seems psychologically implausible to assume a relatively
small `1, because humans often judge the similarity of quite
complex objects (e.g., two buildings, two faces, two movies);
as`1≤ `2, this limits the utility of Result 4 for rendering RD1
tractable in practice. It seems plausible, however, thatk is
severely limited in size, as humans unlikely have unbounded
sensitivity for degrees of (dis)similarity of highly dissimi-
lar objects and it is reasonable to assume a relatively small
threshold onk above which no further transformation is at-
tempted and the two objects are simply judged as maximally
dissimilar (Hahn et al., 2003, p. 26). IfT would be interpreted
as ‘all psychologically possible transformations, independent
of context’ then its size,t, would unlikely be small. Yet, a
small bound ont may be psychologically plausible if we con-
sider the set of transformations,T, to be selected per context.
In that case, however, the RD modeler could better adopt one
of the models RD2, RD3 or RD4, in which this extra selection
step is explicated.

Recall that we consider RD2 and RD3 under option (i), i.e.,
that the context specific set of transformations,TC, is given to
the cognizer at no computational cost. Under quite mild as-
sumptions on possible formalizations of RD2 and RD3 under
option (i) we were able to prove the following two results.

RD2 and RD3 are both:

5. fp-tractable for parameter set{tc,k}.
6. fp-tractable for parameter set{`2}.

Result 5 shows that RD models which assume no computa-
tional cost in selecting the set of transformations relevant for
a particular context can be rendered tractable by making the
psychologically plausible assumptions that bothtc andk are
relatively small. An important question raised by this obser-
vation is whether it is psychologically plausible to assume
thatTC is non-inferentially given (cf. footnote 4).

We investigated whether it was really necessary to make
this assumption by analyzing the fp-(in)tractability of RD4.

10To be more precise, using the best algorithm known to date,
RD1 can be computed in a timetk times a polynomial in the input
size. This means that the similarity ofa to b can be efficiently com-
puted on inputs in which the set of possible transformationsT is not
too large (say,t ≤ 10) and the object representationsa andb are not
too dissimilar (say,k ≤ 5). If a more efficient algorithm is found,
feasible values oft andk will increase.

Recall that RD4 is the model based instead on option (ii),
in which computing the relevant setTC is a subcomputation
involved in computing the similarity between objectsa andb.
In RD4 this subcomputation is modeled by the computational
problem RELEVANCE. We have the following results:

RD4 is:

7. fp-intractable for parameter set{m,`1}.
8. fp-intractable for parameter set{w, tc,`1}.
9. fp-tractable for parameter set{m,w}.

10. fp-tractable for parameter set{`2}.

Result 9 shows that the model RD4 is tractable if the modeler
is willing to assume that bothm andw are relatively small.
In the light of Results 7 and 8 one cannot dispense with ei-
ther of these assumptions. Yet, once again, we must ask how
plausible these assumptions are.

As for assuming a small bound onw (the maximum dissim-
ilarity of pairs in the context setX), we are unsure if this is
plausible or not. One may imagine that in real-world settings
only those objects that can be related to each other by simple
transformations will naturally come to be seen as belonging
to the same setX. This could be the case, for example, if dif-
ferentXs were to correspond to natural categories of objects
(Pothos & Chater, 2002; Rosch & Mervis, 1975). However,
in experimental settings, it may well be possible to create arti-
ficial setsX with largew. An empirical prediction that we can
derive from RD4 is that humans would take particularly long
to determine the set of transformations that is relevant for a
setX with large associatedw, and consequently also long to
compute the similarity between objects in such a set.

Granting even that in the real-worldw may reasonably be
assumed to be small, we are nevertheless left with the prob-
lem thatm (the size of the master setT ) can be quite large.
We see no psychologically plausible way to ensure thatT can
be kept small, as there seems to be an in principle unbounded
number of ways in which cognizers may learn to see relation-
ships between pairs of objects (French & Anselme, 1999).

Conclusion
We have presented computational-level models for Represen-
tational Distortion theory. As it turns out, all RD models con-
sidered are computationally intractable in general. We inves-
tigated which assumptions may render the models tractable
and found several options open to RD modelers.

To start, the two-part assumption that similarity judgments
only concern rather simple objects (i.e. objects with a short
representation)and all intermediate object-representations
encountered in the transformation process are rather simple
as well (let us call this Assumption 1) suffices to render RD
models tractable. It seems reasonable in general to assume
that transformations do not dramatically blow up the sizes of
manipulated object-representations, but as human cognizers
seem to be able to judge the similarity of quite complex ob-
jects in the real world, Assumption 1 as a whole lacks psy-
chologically plausibility.
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A more promising option for RD modelers is to assume
that humans compute exact transformational distances only
for objects that are at least somewhat similar (Assumption
2). This assumption is consistent with the view expressed
by Hahn et al. (2003, p. 26), who write “for pairs of items
for which no transformational relationship is discernible, RD
predicts simply that these items are maximally dissimilar.”
Third, there is the option to assume that the set of transfor-
mations that is used for a given context of comparisons is
quite small (Assumption 3). This assumption holds for the
situations investigated by Imai (1977) and Hahn et al. (2003),
where the similarity of objects could be rated by only a hand-
ful of basic transformations. Fourth, the RD modeler could
assume that the set of transformations to be used in a par-
ticular context is non-inferentially given to the cognizer (As-
sumption 4). This assumption seems inconsistent with the
view of critics of RD, such as Larkey and Markman (2005,
p. 1071), but to our knowledge RD theorists themselves have
not explicitly rejected this assumption. Our results show that
Assumptions 2–4 suffice to render RD models tractable.

For the RD theorist feeling uncomfortable with Assump-
tion 4, we note that the assumption could be dropped, but in
that case it seems that one is forced to assume that the number
of transformations in total (i.e., that could ever be used in any
context) is not too large (Assumption 5). We see evidence for
doubting this in the apparently unbounded ability of people
to detect relationships between seemingly unrelated objects
(French & Anselme, 1999). Also Hahn et al. (2003, p. 28)
note that their results “point in the direction of the candidate
set of cognitively salient transformations being at least rather
large.” That being said, as long as Assumption 5 cannot be
rejected with confidence, it remains a possibility to use the
assumption in rendering RD models tractable.

In closing, we remark that our analyses are of course not
exhaustive, in the sense that we only considered a small set
of candidate sources of intractability (those listed in Table 2).
There may exist other sources of intractability in RD models
that we have not considered. With our analyses we hope to
have illustrated how systematic intractability analyses can aid
RD modelers, and cognitive modelers in general, in building
computationally plausible models. As argued by Hahn et al.
(2003, p. 28), transformational models of similarity ideally
take into account:

“(I) the nature of the mental representations that are rel-
evant to making a similarity judgement, (II) the set of
transformations or instructions that can be used to distort
one representation into another, and (III) any constraints
on the ability of the cognitive system to discover simple
transformations between mental representations.”

Notably, our analyses have contributed significantly towards
(III), even without making any detailed assumptions about (I)
and (II). If RD modelers find a way to introduce some moti-
vated constraints on the nature of relevant representations and
the nature of relevant transformations, many new options for
rendering tractable RD models may become available.
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