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Abstract

According to the transformational approach to similarity, two
objects are judged to be more similar the simpler the trans-
formation of one of the object representations into the other.
This approach draws inspiration from the mathematical the-
ory of Kolmogorov complexity, but otherwise remains an in-
formal theory to this day. In this paper we investigate sev-
eral different ways in which the informal theory of transforma-
tional similarity can be understood, providing a formalization
for each possible reading. We then study the computational
(in)tractability of each formalization for a variety of parame-
ter settings. Our results have both theoretical and empirical
implications for transformational approaches to similarity.

Keywords: similarity; representational distortion; computa-
tional complexity; intractability; parameterized complexity

Introduction

The roots of RD seem to be cause for worry about RD’s
ability to meet the tractability constraint. The theory of RD
is inspired by the mathematical notion of Kolmogorov com-
plexity. The Kolmogorov complexitK(a) of an object rep-
resentatiora is the length of the shortest program that, when
run on the empty input, construas The notion can also be
used to express the transformational distance from an object
representatio to a, by replacing in the former statement
‘empty input’ by b. The resulting conditional Kolmogorov
complexity is denoted(a | b). It is known thatK is an un-
computable function—i.e., there does not exist any algorithm
that compute& (a) orK(a|b) for allaandb. This means that
conditional Kolmogorov complexity as a measure of similar-
ity, as proposed by Chater and Hahn (1997) and elaborated
in Chater and Vianyi (2003)! does not even meet the com-

Consider the two sequencesececece andoeceoceceo putability constraint, let alone the tractability constraint on

Even though these two sequences differ in every element thegpmputat|onal-I(fvel'theorles. )
are nevertheless quite similar. Moreover, these two sequencesChater and Vinyi (2003, p. 347) acknowledge that their
may be judged to be more similar than two sequences thdpeasure of similarity is an “ideal’ notion in the sense that
share more elements, such as, for examplesoecece it ignores the limitations on processing capacity.” To render
andeeocoeecoe. A possible explanation for this is that the the transformational approach to similarity more psycholog-
first two sequences are related by a single simple transformag@lly and computationally realistic, Hahn et al. (2003) pro-
tion (e.g., inversion), whereas no such simple transformatiof©Sed the current version of RD. This version holds on to the
seems to relate the second two sequences. This explanati$i§a that similarity between object representatiaandb is
accords with the Representational Distortion (RD) theory of® function of their transformational closeness, but rather than
similarity (Chater & Hahn, 1997; Chater & \dityi, 2003; referring to the shortest program transformido b, it re-
Hahn, Chater, & Richardson, 2003). stricts attention to programs that are sequential applications

According to RD, in general, two object representations ar®f operations from a particular set of ‘basic transformations’.
judged to be more similar the fewer basic transformations are The question now arises if RD is tractably computable.
required to transform one object representation into the othefzurrently, it is impossible to answer this question, because
The basic idea underlying RD already existed in the late 70§D remains so far a verbal theory. In order to determine
(Imai, 1977), but in recent years it has gained in explanator)t'he (in)tractability of RD we need to make the computational
strength both on empirical (Hahn et al. (2003); but see als@roblem of finding shortest transformations mathematically
Larkey and Markman (2005)) and theoretical grounds (Chate!f
& Vit anyi, 2003). As with any computational-level theory, . ~For completeness, we remark that Chater andnit (2003)

N . formulated a symmetric measure of similarity (basedkda|b) +

the plausibility of RD depends not only on how well it can g p|a)) because they were interested in its metric properties and
predict or describe human similarity judgments, but also ordemonstrating that it can explain Shepard’s Universal Law of Gen-
the existence of tractable algorithms for computing similar-eralization. Empirical studies show that similarity judgments need

. LS . . not be symmetrical (Tversky, 1977). As our focus is on the compu-
'éy u?d;z(r)(t)g()a RD model (Frixione, 2001; Tsotsos, 1990; Vanational (in)tractability of transformational approaches to similarity,
00ij, .

we do not force transformational distances to be symmetric.
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precise. In this paper we investigate several different Waysi‘able 1:
in which this can be done. We will show that each proposal :
if unrestricted, faces the problem of intractability. Our in-
vestigation does not stop at this observation, however. We —jnqex a b C d
adopt a method for identifying sources of this intractability 1
(van Rooij, Stege, & Kadlec, 2005; van Rooij, Evand]lMr, 2
Gedge, & Wareham, 2008) and having identified such sources
we make recommendations to RD theorists on how their the-
ories may be restricted so as to ensure tractability.

lllustration of the effect of context on the type of
transformations used to related pairs of objects.
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. idea is expressed by the following reformulation of the com-
Computational-level Models putational problem underlying RD.
According to Hahn et al. (2003) “RD theory seeks to charac-
terize the computational level problem involved in determin-
ing similarity.” A first possible, informal characterization of
the computational problem involved is the following:

REPRESENTATIONALDISTORTION (version 2) [RD2]
Input: Two representationa andb, a set of basic trans-
formationsT, and a ‘contextC.

Output: A number that equals the length of a shortest

REPRESENTATIONAL DISTORTION (version 1) [RD1] sequence of basic transformations frdgmc 7 trans-
Input: Two representationa andb and a set of basic formingato b, whereTc is a set of transformations that
transformationd’ . is ‘most relevant’ for ‘contextC.3

Output: The length of a shortest sequence of basic trans-

. . Generally both ‘context’ and ‘relevance’ remain elusive con-
formations fromT transformingato b.

cepts in cognitive science, but in the specific context of RD-
based similarity judgments we may nevertheless try to make
more precise what they could mean.

We start with the notion of ‘context’. The illustration in
Table 1 shows that one form of context for a comparison of
A2 andb is other comparisons that are made at the same time

as or briefly before the comparison betweeandb. This
special type of context yields the following special case of
the foregoing problem:

Note that in this problem formulation, the set of basic trans
formationsT is not a constant but can in principle vary inde-
pendently froma andb. This seems in line with the thinking
of Hahn et al., as they hypothesized differ@nfor the dif-
ferent types of stimuli that they used in their experiments.
guestion raised by the possibility of varyifigs how the cog-
nizer knows whichT to adopt in a particular situation. One
possibility could be that the modality @fandb determines

T (e.g., a picture can be rotated and a sound can be ChangeREPRESENTATIONALDISTORTION(VerSion 3) [RD3]
in pitch, but not vice versa). This cannot accommodate, how- Input: Two representations andb, a set of basic trans-

ever, the variations i allowed by Hahn et al., as all their formationsT’, and a set of pairs of object representations

stimuli were in the visual modality. X with (a,b) € X.

It is also theoretically plausible thdt depends not on the Output: A number that equals the length of a shortest
nature ofa andb alone, but also the context in whieghandb sequence of basic transformations frdC 7" trans-
are being comparet!.To illustrate consider the example se- formingato b, whereTy is a set of transformations ifi
guences in Table 1. In this table, we hage= c3 andbs = ds. that is most relevant for context

Ignoring the context in which the comparisons are made, the

comparison obg with bz may appear equivalent to the com- Two possible interpretations seem open for RD2 and RD3:
parison ofcz with d3. But note that in the context in which the

pair ag, bs appears it is more natural to see the two sequences(i) The setTc may be (non-inferentially) given to the
as related via the transformation of ‘mirroring’, simply be- cognizer; or

cause alb;, b; pairs are related by the transformation ‘mirror- (ii) the cognizer needs to computg per context.

ing’. On the other hand, in the context in which the pairds

appears it is more natural to see the two sequences as relat@gcording to option (i), it is assumed that no computation is
via the transformation of ‘inversion’, simply becausealti ~ "équired to know what subs&¢ C ‘7" is considered relevant
pairs are related by the transformation ‘inversion’. for the context at hand. In the remainder of this paper, let

The preceding shows that the context in whicandb are ~ RD2 and RD3 be so interpreted. _
compared determines in part which basic transformations are According to option (ii), part of the problem of computing

in the set of transformations used for their comparison. Thi¢he similarity betweer andb is the computation of thiSc.
The latter is consistent with the view expressed by Larkey and
2This view seems consistent with Imai's: “let us define four cog- Markman (2005, p. 1071), when they write “transformational
nitive transformations which we assume basic ... within the context——M—
of the set of configurations used in our experiment ... [but] whenthe SHere, T may be thought of as the master set of all possible
set of configurations are less restricted, the basic set of transform#éransformations associated with a specific ‘sensory modality’, e.g.,
tions must be expanded” (Imai, 1977, pp. 434-435). all basic visual transformations.
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accounts require additional processing to determine the trans- “[each object we are interested in] can be described by using,

formations that distort one representation into the other.” for example, English. That means we can describe every object

Interpretation under option (ii) requires us to make precise by a finite string in some fixed finite alphabet. By encoding
what makes a set of transformatiois C 7 ‘relevant’ for the different letters of that alphabet in bits (0’s and 1's) we
some context, which in turn requires an elaboration of what reduce every description or representation of the object to a
‘context’ is in RD2. For the special type of contextde- finite binary string. A similar argument presumably holds for
fined in RD3, we propose the following hypothesis: Cogniz- the physical manner by which an object is represented in an
ers consider a s@t to berelevantfor judging the similarity agent’s cognitive system.”

between a palr of representatidasb) € X if many pairs inX As for the formalization of the notion of transformation we

can be transformed with a short sequence of transformationsn L )
choose to be equally general, defining a transformation as a

from Tc, while Tc is as small as possible with this property. Boolean circuit (see Fig. 1 and 2). Again, this entails no

Here, “many” and "short” can be interpreted as being IargerIoss of generality because any function from binary strings (of

or smaller then a given threshold. Following these stlpula-sOme fixed length) to binary strings (of some fixed length

tions, the_task of finding a s_et of relevant_ transformations carrln) can be computed by a Boolean circuit. Transformations,
be formalized by the following computational problem.

like ‘mirroring’ and ‘inversion’, acting on strings as a whole
are viewed as families of circuits, one circuit for each length
doing the transformation.

RELEVANCE
Input: A set of basic transformations, a set of pairs of
object representations, and integers andw.

Output: A set of transformation3x C 7 of minimum A Boolean Circuit
size such that for at leasipairs(a,b) € X there exists a
sequence of transformationsig having length at most Input nodes (can take { o o o An OR-gate (its outputis 1
w that when applied ta yieldsb. binary values. 1 or ) e O e b
Our operationalisation of ‘relevance’ can be seen as adopt- )7 e =0 ’
ing the same principle of parsimony (or simplicity) that has  Oifitsinputis 1) A AND-gate (s vt
been argued to underly RD (Chater & &fityi, 2003), i.e., as- o is 1 if both ts inputs are
sume no more basic transformations than necessary to relate  oupu nodges (can take{@ 0100 POy
as many as possible representation pairs in the current set in  binary values, 10r0)
ways as simple as possible. This operationalisation yields the
fourth and final version of RD considered in this paper: Figure 1: lllustration of a Boolean circuit. In our formaliza-
) tion of RD, the binary string on the input nodes represents an
REPRESENTATIONALDISTORTION (version 4) [RD4] encoding of objeca and the binary string on the output nodes

Input: Two representatiom andb,.a set of basic tr_ans— represents an encoding of objéct
formations7, a set of pairs of object representatiofs
with (a,b) € X, and integers andw.

Output: A number that equals the length of a short-
est sequence of basic transformations frdm C

T transforminga to b where Tx is a solution of
RELEVANCE(T,X,s,W).

Now that we have formalized the notions of ‘object repre-
sentation’ and ‘transformations’, RD1 and RD4 have become
well-defined problems whose (in)tractability can be subjected
to formal mathematical analysis. Although RD2 and RD3 re-
main informal, as they leave e.g. the notion of ‘relevance’ un-

The notions of ‘object representation’ and ‘transformations’d€finéd, formal (in)tractability results for RD1 can be trans-

have so far remained informal. Below we present formaliza/ated to informal (in)tractability results for RD2 and RD3.
tions for each. For technical reasons, formal results cannot be derived for in-

formal problems such as RD2 and RD3, but for purposes of
Formalizing Representation and assessing the plausibility of cognitive models the distinction
Transformation between formal and informal (in)tractability results can be
) ) safely ignored, as we will do in the remainder of this paper.
Following Chater and Vanyi (2003) we assume that an ob-
jectrepresentation is a finite binary string. Nothing seemslost - Representational Distortion is Intractable
with this assumption, as any finite object can be represented

by a finite binary string. Chater and Hityi (2003, p. 354) Using the formalizations above, it can be shown that com-
argued for this generality as follows: puting similarity under the considered RD models can only

be done by algorithms that use a superpolynomial (e.g., ex-
4We think that option (ii) is theoretically to be preferred, because——

the number of possible contexts simply seems too vast to explicitty °To do so we will assume that for all possiblein RD1 there

storeTc for every possible contex@. Be that as it may, we present exists a context such thaflc =T in RD2, and there exists a context

(in)tractability results for both interpretations, leaving it up to the X such thafTx = T in RD3. Then any algorithm solving RD2 or

RD modeler which of these to adopt. RD3 also solves RD1.
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o o ° ’ 0 0 o First, one identifies a set of probleparameters K=
{Ki,K2,...,km} in the problemP under study (for us, the dif-
: : F ferent versions of RD discussed in the Introduction each con-
T TT TT stitute such a problerR). Then one tests if it is possible to
solveP in a time that is exponential (or worse) onlyknbut
@ @ @ @ @ @ @ @ o @ @ @ polynomial in the size of the inp&tif this is the case, theR

is said to bdixed-parameter (fp-) tractablfor parameter set

OOOG OO0 OWOMHG) K, and otherwise it is said to Hp-intractablefor K.
Observe that if a parameter $ets found for whichP is fp-
@ @ @ @ @ @ tractable then the problef can be solved quite efficiently,
even for large inputs, provided that the member&oére
relatively small. In this sense the “unbounded” naturéof
can be seen as a reason for the intractabiliti?.of herefore
0 ° 0 @ 0 0 ° @ 0 0 o @ we callK asource of intractabilityof P.

RD models have several natural parameters, each of which
Figure 2: lllustration of RLEVANCE under the Boolean may be a source of the intractability inherent in the gen-
circuit formalization. The three pairs of obje¢tsl11,0111),  eral problems postulated by these models. Table 2 gives an
(0102,1111), and(111Q0111) can be each be transformed overview of the parameters that we consider here.
by one of the three circuits shown at the top. No one of
these circuits can transform these three pairs of object§able 2: Overview of parameters that may be sources of in-
and pair (0011,1001) in Figure 1, but the circuit at the tractability for Representational Distortion models.
bottom is capable of transforming them all. If all these
circuits were psychologically possible, i.e. 1ih, then in

Name Definition

our formalization of RLEVANCE the circuit at the bottom k length of the shortest sequence of
would be considered relevant for the set of paks= transformations transformirgto b
{(1111,0111),(0101,1111),(111Q0111), (0011, 1001}, t size of the seT
whereas the other circuits would not be.

l1 maximum of the lengths af andb
ponential) amount of time—i.e., the time cannot be upper- ¢2 maximum of the lengths o, b, and
bounded by a function®, wheren is a measure of input size all intermediate representations created in
andc is some constarft. Super-polynomial time algorithms transformingainto b
are generally considered computationally intractable because tc size of the sel¢
they take unrealistically long for all but small inputs. To il-
lustrate, consider an exponential-time algorithm runningina m size of the sel’
time proportional to 2. Such an algorithm would need to
make on the order of 1,000,000,000 computational steps for w the maximum dissimilarity of pairs iX that
an input of sizen = 30. For larger inputs, say = 60, the can be related by transformations frdm
number of computational steps gets close to the humber of
seconds that has past since the birth of the universe. Results and Discussion

The upshot of the intractability of the considered RD mod-\ye present a list of fp-tractability and fp-intractability re-
els is that they are all psychologically implausibimless the ¢ ,is tor sets of parameters selected from TableBor the

right restrictions are posed on the hypothesized domain Oﬁroofs we refer to th&upplementary Materiajsublished on-
inputs. To find such restrictions we will attempt to identify ;4 (see footnote 6). We start by considering RD1:
sources of intractability in RD models. '

RD1 is:

1. fp-intractable for parameter sfit /1 }.
2. fp-intractable for parameter sk, ¢1}.
3. fp-tractable for parameter sgt k}.

4. fp-tractable for parameter sgty }.

Identifying Sources of Intractability

We adopt the method for identifying sources of intractability
described in van Rooij et al. (2008) (see also van Rooij and
Wareham (2008)). The method works as follows.

5For proofs see the onliBupplementary Materialavailableat ——
http://www.nici.ru.nl/ irisvr/supplement09.pdf. These 8More formally, this would be a time on the order of
results assume that £ NP, a mathematical conjecture that is un- f(ky, ko, ...,km)n®, wheref is an arbitrary computable function,
proven but has strong empirical support. The interested reader is a measure of the overall input size, anid a constant
referred to Garey and Johnson (1979) for more details. 9We will work under the assumption FRFWI[1]. Like P # NP,

"For a full treatment of common objections (based on, e.g.this mathematical conjecture is unproven but has strong empirical
heuristics, approximation, parallelism) to the tractability constraintsupport. The interested reader is referred to Downey and Fellows
that we assume here, see van Rooij (2008). (1999) and Flum and Grohe (2006) for more details.
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By Result 3, the assumption thathe number of transforma- Recall that RD4 is the model based instead on option (ii),
tions) is relatively small and the assumption tkéthe length  in which computing the relevant s&t is a subcomputation

of the shortest transformation sequence) is relatively smalhvolved in computing the similarity between objeatandb.

are together sufficient to render RD1 tractaleBy Re-  In RD4 this subcomputation is modeled by the computational
sults 1 and 2, neither of these assumptions can be dispensptbblem RELEVANCE. We have the following results:

with. Results 1 and 2 also show that small valueg¢the RD4 is:

maximum length of the two given representations) cannot it- :
self make RD1 tractable; this, in combination with Result 4 7. fp-intractable for parameter sgin,¢1}.

(which shows that small values of the closely-related param- 8. fp-intractable for parameter st t;,¢1}.

eter(; canmake RD1 tractable), highlights the importance g fp-tractable for parameter sgh, w}.

of |ntermed|§te (and not just given) object-representations to; o fp-tractable for parameter s ).

the complexity of RD1.

How plausible is it that,, k and/ort are relatively small? Result 9 shows that the model RD4 is tractable if the modeler
It seems psychologically implausible to assume a relativelys willing to assume that botm andw are relatively small.
small/1, because humans often judge the similarity of quiteln the light of Results 7 and 8 one cannot dispense with ei-
complex objects (e.g., two buildings, two faces, two movies)ther of these assumptions. Yet, once again, we must ask how
as/1< /s, this limits the utility of Result 4 for rendering RD1 plausible these assumptions are.
tractable in practice. It seems plausible, however, khiat As for assuming a small bound @n(the maximum dissim-
severely limited in size, as humans unlikely have unboundedarity of pairs in the context seX), we are unsure if this is
sensitivity for degrees of (dis)similarity of highly dissimi- plausible or not. One may imagine that in real-world settings
lar objects and it is reasonable to assume a relatively smafinly those objects that can be related to each other by simple
threshold ork above which no further transformation is at- transformations will naturally come to be seen as belonging
tempted and the two objects are simply judged as maximalljo the same seX. This could be the case, for example, if dif-
dissimilar (Hahn et al., 2003, p. 26). Tfwould be interpreted ~ ferentXs were to correspond to natural categories of objects
as ‘all psychologically possible transformations, independentPothos & Chater, 2002; Rosch & Mervis, 1975). However,
of context’ then its sizet, would unlikely be small. Yet, a inexperimental settings, it may well be possible to create arti-
small bound ot may be psychologically plausible if we con- ficial setsX with largew. An empirical prediction that we can
sider the set of transformatiori, to be selected per context. derive from RD4 is that humans would take particularly long
In that case, however, the RD modeler could better adopt on® determine the set of transformations that is relevant for a
of the models RD2, RD3 or RD4, in which this extra selectionsetX with large associated, and consequently also long to
step is explicated. compute the similarity between objects in such a set.

Recall that we consider RD2 and RD3 under option (i), i.e., Granting even that in the real-world may reasonably be
that the context specific set of transformatioks,is givento ~ assumed to be small, we are nevertheless left with the prob-
the cognizer at no computational cost. Under quite mild aslem thatm (the size of the master s&t) can be quite large.
sumptions on possible formalizations of RD2 and RD3 undeiVe see no psychologically plausible way to ensure haan
option (i) we were able to prove the following two results.  be kept small, as there seems to be an in principle unbounded

number of ways in which cognizers may learn to see relation-

RD2 and RD3 are both: ships between pairs of objects (French & Anselme, 1999).
5. fp-tractable for parameter sfit, k}.

6. fp-tractable for parameter sgt}. Conclusion

We have presented computational-level models for Represen-

Result 5 shows that RD models which assume no computaational Distortion theory. As it turns out, all RD models con-
tional cost in selecting the set of transformations relevant fokjdered are computationally intractable in general. We inves-
a particular context can be rendered tractable by making thggated which assumptions may render the models tractable
psychologically plausible assumptions that bitndk are  and found several options open to RD modelers.
relatively small. Animportant question raised by this obser- o start, the two-part assumption that similarity judgments
vation is whether it is psychologically plausible to assumepnly concern rather simple objects (i.e. objects with a short
thatTc is non-inferentially given (cf. footnote 4). representationgnd all intermediate object-representations

We investigated whether it was really necessary to mak@ncountered in the transformation process are rather simple
this assumption by analyzing the fp-(injtractability of RD4. a5 well (let us call this Assumption 1) suffices to render RD
1079 pe more precise, using the best algorithm known to date,mOdeIS tractablg. It seems reasor_1ab|e in general to_assume
RD1 can be computed in a tinté times a polynomial in the input  that transformations do not dramatically blow up the sizes of
size. This means that the similarity @to b can be efficiently com- manipulated object-representations, but as human cognizers

puted on inputs in which the set of possible transformatibisnot m [ i he similari f qui molex ob-
too large (sayt < 10) and the object representatianandb are not seem to be able to judge the similarity of quite complex ob

too dissimilar (sayk < 5). If a more efficient algorithm is found, J€CtS in the real world, Assumption 1 as a whole lacks psy-
feasible values df andk will increase. chologically plausibility.
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rendering tractable RD models may become available.
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