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A robust body of research has shown that some perceptual 
dimensions, such as those composing color, are perceived in 
an integral fashion.  Variation along one dimension 
interferes with processing of another, and people cannot 
selectively attend to one dimension without effort (Garner, 
1974).  The fused nature of integral dimensions suggests 
they may be better thought of as composing a single 
perceptual dimension with multiple physical degrees of 
freedom.  The question is how to model such dimensions. 

A perceptual dimension with a single degree of freedom, 
such as the length of a line, has a natural ordering that 
allows it to be identified with the real numbers.  In modeling 
a stimulus space defined by multiple, separable dimensions, 
it is common to use Cartesian space (e.g., the Cartesian 
plane).  This product-space representation is justified by the 
analyzable nature of the stimuli.  However, this approach 
does not clearly apply to integral dimensions, because they 
are not trivially decomposable.  Therefore, although 
Cartesian space is commonly used to model integral 
perceptual spaces just as it is with separable spaces, the rich 
geometric structure implied by this representation may not 
be psychologically meaningful. 

One strong hypothesis is that integral spaces have no 
more structure than that of a topological manifold.  Past 
findings taken to indicate stable geometrical structure may 
depend on the set of stimuli present in the task rather than 
indicating pre-existing geometry.  The present experiments 
tested this idea using the dimension differentiation paradigm 
of Goldstone and Steyvers (2001).  In that study, subjects 
were trained to classify stimuli from a two-dimensional 
integral space into two categories.  They were then 
transferred to a different category structure using the same 
stimuli.  Performance on the second task was better if the 
category boundaries for the two tasks differed by 90 degrees 
than by 45 degrees.  Goldstone and Steyvers concluded that, 
in learning the first task, subjects learned to differentiate the 
relevant dimension from the complementary dimension.  
When the learned complementary dimension became the 
diagnostic dimension in the second task (i.e., in the 90-
degree condition), learning was facilitated. 

According to geometrical models of integral dimensions, 
the complementary dimension is defined as being 
orthogonal to the diagnostic dimension.  According to the 
topological model, orthogonality is meaningless; instead, 
the complementary dimension is statistically uncorrelated 
with the diagnostic dimension under the distribution of 
stimuli present in the task.  These competing explanations 

are indistinguishable in Goldstone and Steyvers’ (2001) 
study because stimuli were arranged in a circle (in objective 
coordinates).   

To de-confound geometrical and statistical relationships 
among dimensions, we used an elliptical stimulus 
arrangement as illustrated in Figure 1.  Two experiments 
built on this basic design, one using colors varying in 
brightness and saturation and another using morphed faces.  
In both experiments, transfer performance averaged 6% 
greater when the transfer bound was orthogonal, rather than 
uncorrelated, to the training bound (both ps < .05).  These 
results support the geometrical model of integral dimensions 
and suggest that integral spaces have an inherent geometry 
despite their unanalyzable nature. 

 

Figure 1.  Key aspects of experimental design.  Dots 
represent stimuli.  The horizontal line represents the 
category bound in the training task.  The geometrical 
hypothesis predicts subjects will show greatest transfer 
to the vertical bound.  The topological hypothesis 
predicts transfer will be greatest for the dashed bound. 
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