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Abstract

In previous work, we modeled Mondloch’s behav-
ioral data [Mondloch et al., 2002] on adult face dis-
crimination [Zhang and Cottrell, 2004]. We found
that our standard model [Dailey and Cottrell, 1999,
Dailey et al., 2002] was overly holistic and that by
adding local feature processing we could qualitatively
match the human data. However, further investigation
has lead us to reconsider our conclusions. In particu-
lar, we have found that the form of the Gabor filters we
used were not biologically realistic, in that the spatial
frequency range was overly limited. In this paper, we
show that biologically realistic Gabor filters allow us to
match the adult data using only the first two processing
steps of our model. No neural network is necessary. In
addition, we find that we can also model the develop-
mental data qualitatively using a very simple manipu-
lation of this preprocessing, i.e., how many people the
model knows, and how many principal components it
uses to represent the data. These two variables are suf-
ficient to account for the slower development of configu-
ral processing compared to featural processing, and how
the child’s performance improves with age.

Introduction

We have developed a model of visual categorization that
accounts for a number of important phenomena in face
and object processing and visual expertise [Dailey and
Cottrell, 1999, Cottrell et al., 2002, Dailey et al., 2002,
Joyce and Cottrell, 2004, Tran et al., 2004, Tong et al.,
2005]. Here, we investigate the model’s ability to ac-
count for human sensitivity to variations in faces that
are considered theoretically important for face identifi-
cation. Face processing is typically described as holis-
tic or configural. Holistic processing is typically taken
to mean that the context of the whole face has an im-
portant contribution to processing the parts: subjects
have difficulty recognizing parts of the face in isolation,
and subjects have difficulty ignoring parts of the face
when making judgments about another part. Configural
processing means that subjects are sensitive to the re-
lationships between the parts, e.g., the spacing between
the eyes. Holistic processing can easily be captured by a
model that uses whole-face template-like representations
as ours does: interference from incongruent halves of a
face occurs when making judgments about a different
part (e.g, expression on top when a different expression
is on bottom [Cottrell et al., 2002]). However, configu-
ral effects related to spacing information are attenuated
by the alignment procedure that we typically use, which

warps the image so the eyes and mouth are always in the
same three positions.

Diamond and Carey [Diamond and Carey, 1986] were
among the first to discriminate between the types of
processing involved in face/object perception and recog-
nition. Based on studies looking at the inversion ef-
fect to faces, landscapes and dogs in both dog novices
and dog experts, they proposed that first-order rela-
tional information, which consists of the coarse spa-
tial relationships between the parts of an object (i.e.
eyes are above the nose), is sufficient to recognize most
objects. By contrast, second-order relational informa-
tion, which is needed for face recognition and recogni-
tion of individuals within categories of expertise, is re-
served for visually homogeneous categories where slight
differences in configuration must be used to distinguish
between individuals (e.g. a slight change in the dis-
tance between the eyes and the nose). Diamond and
Carey [Diamond and Carey, 1986] suggest that experi-
ence allows people to develop a fine-tuned prototype and
to become sensitive to second-order differences between
that prototype and new members of that category (e.g.
new faces).

One implication of the Diamond and Carey study
is that the inversion effect (a large reduction in
same/different performance on inverted faces, com-
pared to inverted objects) is based on a relative re-
liance on second-order relational information, and that
perhaps this characteristic distinguishes face/expert-
level processing from regular object recognition. Farah
et al. [Farah et al., 1995] found that encouraging
part-based processing eliminated the inversion effect,
whereas allowing/encouraging non-part-based process-
ing resulted in a robust inversion effect. Thus Farah
et al. conclude that the inversion effect, in faces and
other types of stimuli, is associated with holistic pattern
perception.

However, this emphasis on holistic and configural pro-
cessing has led to less consideration of the obvious fact
that subjects are also quite sensitive to changes in the
features themselves — substitutions of different eyes or
mouths can make the face look quite different. The
Thatcher illusion [Thompson, 1980] suggests that parts
are processed somewhat independently, and only loosely
connected to the representation of the whole face. A
study by Mondloch et al. (2002) that varied these dif-
ferent aspects of a face (configuration, feature changes,
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and changes to contour of the face) found differing
levels of sensitivity to the type of manipulation in a
same/different paradigm (the stimuli are shown in Fig-
ure 1). Importantly, they investigated sensitivity to
these manipulations in adults and children of three dif-
ferent age levels in order to investigate how face pro-
cessing changes over development. While the manipula-
tions were not performed parametrically (no equating of
the difficulty of discrimination was performed), but in a
rather ad hoc manner, the results are consistent across
subjects. Hence this is a crucial set of data to account
for with our model.

In our previous work [Zhang and Cottrell, 2004], we
made a first attempt at modeling the adult data. We fol-
lowed the model in [Dailey et al., 2002] and found that
our model was overly holistic. I.e. the human adults
found the featural set more discriminable than the con-
figural set while our model found the opposite. In that
work, we introduced a representation of the important
parts of the face (eyes and mouth) to the model and
found that only a relatively small amount of holistic
representation, compared to parts representations, was
necessary to account for the data. However, further in-
vestigation has lead us to reconsider our conclusions. In
particular, we have found that the form of the Gabor
filters we used was not biologically realistic, in that the
spatial frequency range was overly limited.

Here we will show that with biologically realistic Ga-
bor filters, our model can match the adult data using
only the first two processing steps, i.e. no neural net-
work classifier is necessary. Furthermore, we found that
our model can account for the developmental data as
well, using two very simple manipulations of the pre-
processing. We hypothesized that sensitivity to configu-
ration might just be a consequence of how many people
one has to distinguish. When you only know a few peo-
ple, featural differences may be sufficient, but as you get
to know more people, you may need to be sensitive to
configural differences as well. Secondly, we hypothesized
that as subjects mature, they may allocate more process-
ing resources to the task of representing faces. These two
variables are indeed sufficient for accounting broadly for
changes over development.

Mondloch’s Stimuli and Experiments

Mondloch et al. [Mondloch et al., 2002] began with a sin-
gle face (called Jane) and modified it to create twelve
new versions (called Jane’s Sisters). These were divided
to three sets of stimuli: a configural set, a featural set,
and a contour set. The four faces in the configural set
were created by moving the eyes and/or the mouth. The
four faces in the featural set were created by replacing
Jane’s eyes, nose and mouth with those of four different
females. The four faces in the contour set were created
by pasting the internal portion of Jane’s face within the
outer contour of four different females. The control stim-
uli were called “cousins” and consisted of three different
female faces (Figure 1).

These stimuli were presented to 6, 8 and 10-year-old
children as well as adults in a series of same-different

Cousin Set
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°  Configural Set

Contour Set

Figure 1: The four sets of Jane stimuli generated by Mond-
loch et al. Jane is the leftmost face on the top row. The
four rows are the cousin set, featural set, configural set and
contour set respectively from top to bottom. (Adapted from
[Mondloch et al., 2002])

trials. Ome face appeared for 200ms. After a 300ms
interval, the second one appeared until the participant
responded. There were also trials in which upside down
versions of these faces were presented. Figure 2 shows
the performance results.

In earlier work [Zhang and Cottrell, 2004], we concen-
trated on modeling the adult data, and hence focused on
the black bars in Figure 2. The results showed that when
stimuli were presented upright, the relative accuracy for
adults in each set of stimuli was cousin > featural >
configural > contour. This is interesting because it
suggests that, at least for this stimulus set, subjects were
more sensitive to individual feature differences than to
configural changes.

In this work, we extended our focus to also model the
developmental data in the upright situation, i.e. the left
panel in Figure 2. The human data showed that for
children, the relative accuracy is cousin > featural >
contour > configural. Le. the rank among the cousin,
featural and contour sets do not change with the age, but
the relative accuracy of the configural increases from the
worst in children to the third in adults. Mondloch et al.
concluded that configural face processing develops more
slowly than featural face processing.

A Computational Model of Face
Recognition

Our model is a three level neural network that has been
used in previous work (Figure 3). The model takes man-
ually aligned face images as input. The images are first
filtered by 2D Gabor wavelet filters. PCA (principal
component analysis) is then used to extract a set of fea-
tures from the high dimensional data. In the last stage,
a simple back propagation network is used to assign a
name to each face. We now describe each of the compo-
nents of the model in more detail.

Perceptual Layer

Research suggests that the receptive fields of the striate
neurons are restricted to small regions of space, respond-
ing to narrow ranges of stimulus orientation and spatial
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Figure 2: Mean accuracy for each face set and each age group
when stimuli were presented upright (left panel) and inverted
(right panel). (Adapted from [Mondloch et al., 2002])

Erdividuad 1

Individual 2
todividunl nl

fndividual o

Perceptual Gestalt
—F ) s

Input
Level Level Level Level

Category

Figure 3: Our standard model. From left to right are the
input level (aligned face images), perceptual level (Gabor fil-
tering), gestalt level (PCA) and the category level (two layer
neural network). (Adapted from [Dailey et al., 2002])

frequency [Jones and Palmer, 1987]. Two-D Gabor fil-
ters [Daugman, 1985] have been found to fit the 2D spa-
tial response profile of simple cells quite well. In this
processing step the image was filtered with overlapping
2-D Gabor filters in quadrature pairs at five scales and
eight orientations.

In the earlier work, we used gabor filters follow-
ing [Dailey et al., 2002] (Figure 4, upper row). In this
work, we used more biologically realistic filters following
[Dailey and Cottrell, 1999] and [Hofmann et al., 1998]
(Figure 4, lower row), where the parameters are based on
those reported in [Jones and Palmer, 1987], to be repre-
sentative of real cortical cell receptive fields. The basic
kernel function is:

K*%- &

G(k,T) = expik - Texp (_W
o

) (1)
where

k = [k cos ¢, ksin ¢] (2)

and k = |E| controls the spatial frequency of the fil-
ter function G. ¥ is a point in the plane relative ot the
wavelet’s origin. ¢ is the angular orientation of the fil-
ter, and o is a constant. Here, ¢ = m, ¢ ranges over
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where N is the image width and ¢ an integer. We used
5 scales here with ¢ € {1,2,3,4,5}.

Figure 4: Examples of Gabor filters used in the earlier work

[Zhang and Cottrell, 2004] (upper row) and current work
(lower row) which is biologically realistic.

Gestalt layer

In this stage we perform a PCA of the Gabor filter re-
sponses. This is a biologically plausible means of dimen-
sionality reduction[Dailey et al., 2002], since it can be
learned in a Hebbian manner. PCA extracts a small set
of informative features from the high dimensional out-
put of the last perceptual stage. The eigenvectors of the
covariance matrix of the patterns are computed, and the
patterns are then projected onto the eigenvectors asso-
ciated with the largest eigenvalues. At this stage, we
produce a 50-element PCA representation from the Ga-
bor vectors. Before being fed to the final classifier, the
principal component projections are shifted and scaled
so that they have 0 mean and unit standard deviation,
known as z-scoring (or whitening).

Categorization layer

The classification portion of the model is a two-layer
back-propagation neural network. We will show in this
work that we do not need this layer to account for the
human data. The representation at the Gestalt layer
already matches the adult data qualitatively and that of
the developmental data.

Modeling Mondloch et al.

The Training Set

The FERET database is a large database of facial im-
ages, which is now standard for face recognition from still
images[Phillips et al., 1998]. We used 653 face images
(539 upright images of 117 individuals and 114 inverted
images of 20 individuals (that were also included in the
upright images)) as the training set. The inverted faces
were used in order to give a reasonable representation of
upside down faces in the PCA layer of the network. The
PC components are learned over Gabor filter outputs of
the training set. These components are then frozen for
use on the Jane images. In [Dailey et al., 2002], where
the task was to learn facial expressions, images were
aligned so that eyes and mouth went to designated co-
ordinates. This alignment removed the configural in-
formation which is crucial for our work because we are
trying to understand how configural processing and fea-
tural processing interact with each other in the face
recognition task. To avoid this negative effect, we re-
quired that the relative spacing between the parts of the
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face remain the same. Thus, we triangularly aligned the
face images. The face images were rotated, scaled and
translated so that the sum of square distance between
the target coordinates and those of the transferred fea-
tures (eyes and mouth locations) was minimized. ILe.
if the coordinates of the eyes and mouth are re;le;m
and the target coordinates are (tre;tle; tm, we minimize
[re — tre||? + ||le — tle||* + ||m — tm]||?. Thus, a triangle
represented by the eyes and mouth is scaled and moved
to fit closely to a reference triangle, but the triangle is
not warped. This way of alignment keeps configural in-
formation without affecting holistic processing.

Modeling Discrimination

In our earlier work, we regarded the hidden layer rep-
resentation as internal representation and examined the
discriminability at this level. In this work, we simply
look at the PCA level, which simplifies the structure
and does not vary from the random initialization of the
classifier.

To model discriminability between two images, we
present an image to the network, and record the PCA
vector. We do the same with a second image. We model
similarity as the correlation between the two representa-
tions, and discriminability as one minus similarity.

discrimination = 1—-correlation(imagel, image2) (4)

The PCA responses are whitened over images, i.e. ev-
ery PC component is of zero mean and unit variance
over images so that their contributions to the discrim-
inability are normalized. Note that this measure may
be computed at any layer of the network. We computed
the average discriminability between images in each of
the stimuli sets (featural, configural, etc., both upright
and inverted). The average within each set was taken as
the measure of the model’s ability to discriminate each
set.

Modeling the Adults’ Data

We first revisited what had been the focus of the earlier
work, i.e. modeling the adult data. In the earlier work
we found that our model was overly holistic, i.e. it found
the configural set more discriminable than the featural
set. We compensated for this by introducing a repre-
sentation of the face features (eyes and mouth). Now,
with the biologically realistic Gabor filters, our model
fits the adult data well. Figure 5 shows the rank of dis-
criminability of the Jane’s 4 sets at the PCA level. In
the upright situation, the rank is cousin > featural >
contour > configural. In the inverse situation, the rank
is cousin > featural > contour > con figural where the
contour is only slightly more discriminable than the con-
figural set. Every set suffers a decrease in the discrim-
inability when inverted, but the configural set suffers
most and becomes the least discriminable of all. This
fits the adult data (the black bars in Figure 2) qualita-
tively. Also note that the rank does not change when
the number of PC changes, except for when the number
of PC is very small. I.e. the discriminability rank of the
Jane’s sets is robust to the number of PC components
used in our model.
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Figure 5: The discriminability of the Jane’s sets at the PCA
level when presented upright (left panel) and inverted (right
panel).

Modeling the Developmental Data

In this section we will further explore the developmen-
tal data which was not considered in our earlier work.
In this section, we examine the effects of the number
of training images and the number of PC components
on the discriminability respectively. The increase of the
number of images along with the increase of the number
of individuals models the fact that people get to know
more and more people and get to see more and more
faces. The increase of the number of PC components
models the idea that more neural resources are allocated
for face processing over development. We also discuss
the effects of the frequencies of the Gabor filters and
their possible contribution to development.

Manipulating the Number of Training Images A
typical human will start to see faces soon after he is born,
and throughout his life, he will know more and more
people and see more and more faces. We think this ever
growing experience with faces is one of the important
factors playing a role in development. To understand
how this might affect face processing, we examine how
the increase of the number of individuals that the model
“sees” changes its behavior. Figure 6 shows the dis-
criminability of the Jane’s sets in the upright situation
when using from 100 images (19 individuals) to 500 im-
ages (107 individuals) at step of 100 images, all upright.
As the figure shows, when only 100 training images are
used, the rank of the discriminability of the Jane’s sets
is cousin > featural > contour > configural. As the
number of images increase, the relative discriminability
of the configural set increases. When more than 300
images are used, the rank starts to match that of the
adults. This qualitatively matches the human data that
configural processing develops more slowly than featural
face processing.

Manipulating the Number of PC Components
Besides seeing more and more faces, we believe that
another important factor in child’s maturation is brain
development and consequently, more neural resources
could be used for face processing. To understand this
effect, we look at how the increase of number of PC com-
ponents changes the model’s behavior. As can been seen
from both Figure 5 and Figure 6, the discriminabilities
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Figure 6: The discriminability of Jane’s sets at PCA with the number of images taking values from 100 (upper row left most)
to 500 (lower row right most) with a step of 100 images, all upright.

of all sets increases as the number of PC components
increases. This qualitatively matches the human data
(Figure 2, upright portion) that performance increases
with age. Perhaps surprisingly, changing the number of
PC’s does not appear to affect the rank.

Discriminability Using Bandpass PCA Here we
examine how the frequency of the Gabor filters affects
the discriminability at the PCA level. We did “band-
pass” PCA [Dailey and Cottrell, 1999] on the Gabor fil-
ter responses, i.e. we performed PCA on the Gabor filter
responses of each frequency individually and looked at
the discriminability of the Jane’s sets for each to ob-
serve the model’s performance at different frequencies.
Figure 7 shows the discriminability of the Jane’s sets
when the model is exposed to the 5 individual frequen-
cies respectively. An interesting observation is that at
the lowest frequency, the rank of the discriminability
is cousin > featural > contour > configural, which
matches that of the children, i.e. the configural set is
the least discriminable. At the second lowest and the
medium frequency, the rank of the discriminability is
cousin > featural > configural > contour, i.e. the
configural set catches up a little bit and its discriminabil-
ity exceeds that of the contour set. At this moment, the
rank is the same as the global PCA and that of the
adults’. As the frequency goes higher to the two high-
est frequencies, the discriminability of the configural set
exceeds those of the contour set and the featural set,
contrary to the human data.

Overall, the relative discriminability of the configural
set increases when the frequency of the Gabor filter goes
higher. This is a very interesting but counter-intuitive
result. Intuitively, featural processing is about local fea-
tures and should use relatively higher frequencies while
configural processing is sensitive to the distance between
the local features and should use relatively lower frequen-
cies. I.e. by our intuitions, we should have observed the
discriminability of the featural set increase relative to
that of the configural set, but we observed the opposite
in our model. From our computational model’s view, the
low frequency is more shift invariant, i.e. small move-
ments of the features on the face do not disturb the rep-
resentation, while the high frequencies will detect this
change because their receptive fields are so small that
only the Gabor filters located right at the features will
be activated. On the other hand, neither of the low nor

high frequencies have an obvious advantage or disadvan-
tage over the changes of the features themselves. Note
that our data is suggesting that the discriminability of
the configural set relative to that of the feature set will
increase when the higher frequencies are available over
time, NOT that the the configural processing is mainly
using the high frequency.

The result is also interesting because this might also
be contributing to development. First of all, people are
born with only low acuity and gain high acuity over time.
At the same time, configural processing kicks in more
slowly than featural processing. Is there a connection?
We do not know yet. Since the acuity of vision develops
to adult-like levels around two years of age, while the
human data we are considering is of children from 6 to
10 years of age, we hesitate to make a connection with-
out more data. Second, the increase of the relative dis-
criminability of the configural set as the frequency goes
up coincides with the increase of the relative discrim-
inability of the configural set as the number of training
images goes up. Is there a connection? There might be
one. L.e. it might be possible that when the number of
training images is small, the low frequency dominates in
the PCA representation and that when the number of
training images increases, more of the higher frequencies
kick in. We are currently working on qualitatively esti-
mating the portion of each frequency at the PCA level
to further investigate this hypothesis.

Also, this result explains the difference between the
results we obtained in the earlier project and those we
obtained now. The Gabor filters we used in the earlier
project were much higher frequencies compared to the
current ones (Figure 4.) So, not surprisingly, we found
our model too sensitive to the configural set, which is
exactly what we observe now in the PCA representation
of Gabor filters with high frequencies.

Discussion

In our earlier work, we found that our standard model
was overly holistic. We modified our model by adding a
parts-based representation, implemented as a local fea-
ture PCA. In this work, we used biologically realistic
Gabor filters and found that our standard model does
not need the parts-based representation any more. It
fits the adult data using only the PCA level.
Furthermore, we investigated how the developmental
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Figure 7: The discriminability of the Jane’s sets at different
Gabor filter frequencies. The leftmost image on the upper
row is the global PCA for comparison. The rest five images
are bandpass PCA of the 5 Gabor filter frequencies.

data could be modeled. We used a very simple and intu-
itive manipulation, i.e. increasing the number of train-
ing images and increasing the number of the principal
components, both of which have a straightforward cor-
respondence in human development: children get to see
more and more faces over time and they allocate more
resources to face processing respectively. We found that
in our model, when the number of the training images
is small, the discriminability of the configural set is the
lowest, which is also observed in children’ performance.
As the number of images increase, the discriminability
of the configural set slowly catches up and exceeds that
of the contour set, which is observed in adults’ perfor-
mance. In parallel, we found that the increase of the
number of components is able to account for the contin-
uous improvement in the performance of all the Jane’s
sets. Taken together, a “child” model with a small num-
ber of images to train on and with a representation of
small number of PC components will not perform well on
discrimination and the ranking of difficulty on the Jane’s
sets will mimic that of the children. A “adult” model
trained with a large number of images and with more
PC components will have a better ability to discrimi-
nate the stimuli and the rank on the four sets matches
that of the adults.

We also investigated the effects of the Gabor filter fre-
quencies on the relative discriminability of the Jane sets
and its possible connection to development. However,
we think this direction needs more careful treatment be-
fore we can draw any firm conclusions. We leave this for
future work.
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