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Abstract 
One safeguard against instrument malfunction is to 
provide backup instruments for machine operators. In 
previous studies, prior training caused operators of a 
simulated machine to adapt to instrument malfunction by 
adopting a suboptimal decision rule rather than by 
reallocating attention to backup instruments. One 
hypothesis for these findings is that operators do not 
notice when their main instruments malfunction. Here we 
examine warning systems that force operators to notice 
instrument problems. Our results indicate that warnings 
did not help operators to reallocate attention to backup 
instruments. Instead, operators fail the simulation and 
make sub-optimal adaptations afterward that lead to 
further failures. 

Introduction 
The operation of complicated machines often requires a 

flexible human operator that can adjust the operations of a 
machine to meet task demands. This is especially so because 
of the inherent fallibility of complicated machines; people 
must react to normal feedback from a machine in order to 
operate them as intended, and must react to abnormal 
feedback from machines when a corrective action is required. 
In prior work, we documented how operator performance 
suffered when instruments that an operator had been trained 
to use suddenly begin to provide inaccurate information, even 
when a second, valid instrument was available that could 
correct the error (Youmans & Ohlsson, 2005).  The finding 
suggested that machine operators have difficulty switching 
from their usual instruments to a secondary or backup source 
of information. 

Why do operators fail to utilize seemingly obvious 
secondary instrumentation when the primary instruments that 
they have been using malfunction? One explanation is that 
training produces biases and automaticity that might interfere 
with rapid adaptation to changing task demands. Although 
quickly switching from one task set to another might 
subjectively seem to progress smoothly and effortlessly, 
evidence strongly suggests that switching between even 
simple task sets can be quite difficult (e.g., Allport, A., Styles, 
E.  A., & Hsieh, S., 1994).  To what extent are people limited 
by prior experience when faced with the need to adapt to 
changing task conditions? 

We investigate these questions with the help of a simulated 
human-machine interface in which the degrading of one set of 
instruments poses a need to re-allocate attention.  

A Simulated Machine Interface 
In our simulation, participants assume the role of the operator 
of a juice factory. Two Holding Tanks, tank A and tank B, 
were shown on the upper left side of a computer screen, 
connected with pipes to a Mixing Tank shown to the right; see 
Figure 1. 

 On the lower half of the screen was the gauge equivalent 
of the color information. Here, three realistic looking 
temperature gauges representing tanks A, B, and the Mixing 
Tank were displayed; see Figure 1.  

 
 
  
 
 
 
 
 
 
 
 
 
 
Figure 1: Example of factory interface. Note. Factory 
interface was in color. 
 
Each Holding Tank contains liquid at a certain temperature. 

The factory is operated by adding some amount of liquid 
from tank A and some amount from tank B into the Mixing 
Tank. The amount and temperature of the juice is determined 
by the amount and temperature of the previous content of the 
Mixing Tank, the added input from Tank A and the added 
input from Tank B. Once a participant entered these amounts, 
the simulation was animated; the colored liquid was shown 
flowing through pipes into the Mixing Tank, and the Mixing 
Tank’s color and gauge responded appropriately to the new 
input. Once the two inputs were added, the resulting state of 
the Mixing Tank was computed and displayed 1, and the 
operator could make the next decision about how much liquid 
to add from either Holding Tank.  The task of the operator 
was to maximize the production of juice without overheating 
the facility, a type of trade-off situation.  

 As shown in Figure 1, the display was divided into two 
sections by a thick gray bar. Above the bar is the section that 
                                                           
1 TEMPcurrent = [(14 * TEMPprior.) + (7 * TEMPa) + (7 * TEMPb)] / 3, 
rounded to the closest whole value. 
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we will refer to as the color instrument portion of the screen.  
Beneath the bar is the section that we will refer to as the 
gauge instrument portion of the screen. In the beginning of 
each experiment, both the color and gauge instruments 
provide the necessary information to successfully run the 
simulation. For example, in the color portion, the 
temperatures in all tanks are represented by the liquids’ 
shades of blue or red. These colors represent common 
indicators of heat (e.g., many bath fixtures represent 
temperature in shades of blue and red). To help ensure that 
participants understood these color values, a color-to-
temperature guide was on screen at all times. In the gauge 
instrument portion of the screen, a red ‘needle’ in each gauge 
indicated those same temperatures. 

It was the temperature of the Mixing Tank that was most 
important in the simulation. Although the Holding Tanks’ 
liquids could be hot or cold, the Mixing Tank could not 
accommodate extreme heat. If temperatures in the Mixing 
Tank ever rose above a certain point, the juice was ruined. 
This point was represented by the two deepest shades of red 
(colors), and the two highest needle readings (gauges), and is 
referred to as the critical temperature. If the content of the 
Mixing Tank reached this temperature, then the pasteurization 
process was spoiled. Tanks A and B could safely hold liquids 
across the entire range of possible temperatures; only the 
Mixing Tank had this temperature restriction. 

In both sections, the temperatures of the liquids in tank A, 
tank B, and the Mixing Tank are indicated. In normal 
operation mode, the factory may be operated on the basis of 
either the color or gauge instruments; these two information 
sources are redundant. Because the colors and gauges present 
identical information, the task can be solved equally well on 
the basis of either.  

The simulated instruments were implemented so that they 
could be made to malfunction at a determined point in the 
simulation. When malfunctioning, both sets of instruments 
still displayed temperature values for the three tanks, but 
either the gauges or colors in the Holding Tanks became 
inaccurate. Only one source of information became 
inaccurate, so the operator always had the option of 
discontinuing use of the malfunctioning source, and switching 
to the other.  
Simulation Settings. The juice factory simulation may be set 
to remain reliable, or to malfunction, and may be set to 
provide a variety of practice with the simulation before the 
experimental conditions. All participants begin the simulation 
with a practice session that is intended to teach participants 
how to operate the simulation successfully.  The simulation 
may be set to provide instructions for using either the color or 
gauge instruments, but not both. In the  

experiment reported here, all conditions were set to receive 
color instrument training.  

During practice, participants are told how tanks A and B 
relate to the Mixing Tank, and are told repeatedly that their 
goal is to use the factory to produce as much juice as possible, 
without overheating the Mixing Tank.  Following these 
instructions, participants operate a partial version of the 
factory simulation that displays only that portion of the screen 
that they have received instructions about. For example, if a 
participant is in a color training condition, then in the practice 
session they will not see the gauge instruments. The result is 
that participants practice with only one of the sources of 
information, never both. 

During practice, participants learn to produce the maximum 
volume of juice per trial. Each trial consists of two judgments 
about how much liquid to input, one amount from tank A 
(judgment 1) and one from tank B (judgment 2), into the 
Mixing Tank. Participants indicate how much juice, from 
zero to seven gallons, should be entered into the Mixing Tank 
from each Holding Tank by typing the appropriate digit on 
the keyboard. Juice production accumulates across these trials 
to a preset level in the simulation, usually 300 gallons. In this 
paper, a series of such trials is referred to as a round.  

If the Mixing Tank heats into the critical temperature range 
during practice, a warning appears, and the system pauses for 
6 seconds while displaying this warning.  Otherwise, practice 
ends when participants have produced the preset level of 
juice. After this, the participants are instructed with respect to 
(but do not receive practice with) the backup instrument that 
had been absent, and are told that the backups convey the 
same information as that with which they have just practiced 
with, albeit in different form. For example, if a participant 
trains with color instruments, then they would receive 
instructions about the function and duplicitous nature of the 
gauge instruments, but would not actually practice with those 
gauges. At the end of practice, participants were told that if 
they have trouble using one of the two types of instruments in 
any part of the simulation, they should switch to the other 
instrument.   

Following the practice session, participants operated the 
factory for three rounds. These rounds constitute the 
experimental conditions of the simulation, generally defined 
by either no-malfunction or malfunctioning instrumentation.  
In no-malfunction conditions, both color and gauge portions 
of the screen are presented simultaneously and participants 
are asked to produce 150 gallons of juice as quickly as 
possible without overheating the Mixing Tank. If the Mixing 
Tank is heated past the critical temperature, the round ends 
and a failure display is presented indicating that the 
participant had overheated the system. 

In malfunction conditions, either the color or gauge 
instrument representing the Holding Tanks becomes 
unreliable roughly halfway through each round. As an 
example of this type of malfunction, color instruments might 
indicate that there are two tanks of cool liquid waiting in the 
Holding Tanks, while the gauges indicate the true temperature 
of the tanks correctly as hot. The moment at which the 
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mismatch between the instruments occurs will be referred to 
as the malfunction point in this paper.  

The malfunction point is the moment during a round at 
which a successful participant that is basing his or her 
decisions on the malfunctioning source of information should 
recognize that the instrument has malfunctioned, and follow 
instructions by switching to the other instrument.  In 
malfunction conditions, the malfunction point always occurs 
when a participant has produced between 70 and 90 gallons 
of juice and the Mixing Tank is a neutral or less temperature. 
If these conditions do not occur, then the malfunction point 
automatically occurs at 90 gallons of production. These 
criteria help to ensure that, after the malfunction point, there 
is still leeway for the Mixing Tank’s temperature to increase. 
Feedback. The simulation provides three types of feedback 
to the operator. (a) Success/failure. When the operator 
succeeded in producing the target amount of juice or 
overheated the factory, he or she is informed of this fact. We 
refer to this as between-rounds feedback. (b) Instrument 
mismatch. When one set of instruments malfunctions, that 
display will conflict with the reliable instrument. Although 
this mismatch is not feedback per se, it is feedback in the 
sense that this information could inform an operator that they 
had advanced to a point in a round where malfunctions were 
taking place. (c) Mixing Tank outcomes. If a set of Holding-
Tank instruments malfunctions and an operator uses those 
instruments, then the effect of that liquid on the temperature 
of the Mixing Tank will not make sense. For example, 
transferring hot liquid that was falsely displayed as cool 
would increase the temperature of the Mixing Tank, although 
the operator would expect the opposite. We refer to this 
information within-trial feedback (see Figure 2). 
 

 
Figure 2: The two rectangles highlight the first form of 
within-round feedback, the mismatch between the color 
and gauge instruments. The oval highlights the second 
form of within-round feedback, the mismatch between 
what a participant would expect to happen to the Mixing 
Tank when the color instrument is used, and the actual 
outcome whereby the Mixing Tank’s temperature 
increases rather than decreases. Note. Factory interface 
was in color. 
 

Previous Findings 
The findings reported here build on four prior experiments 
that utilized the basic juice-factory simulation. In two 
previous experiments, we demonstrated that practice causes 
operators of this simulation to adapt to instrument 
malfunction with a suboptimal decision rule rather than by 
reallocating attention to a reliable backup instrument 
(Youmans & Ohlsson, 2005). In Experiment 1, operators 
became fixed on the instrument they practiced with, 
regardless of whether it was the color or gauge instruments. 
Fixation occurred despite task instructions that the secondary 
instruments would be helpful, the within round feedback that 
indicated primary instrument malfunction, and repeated 
failures across three rounds of the simulation.  
  

Table 1: Simulation Success by Condition in Experiment 1. 
 

 Round Condition Color Practice Gauge Practice       

 s  1 Colors Malfunction 2   (6%)*** 21 (70%) 
  Gauges Malfunction 18 (60%) 7   (23%)*** 
  No Malfunction 19 (66%) 19 (66%) 
  
  2 Colors Malfunction 5   (16%)*** 20 (67%) 
  Gauges Malfunction 22 (73%) 12 (40%)* 
  No Malfunction 22 (76%) 18 (62%) 
 
  3 Colors Malfunction 11 (36%)** 21 (70%) 
  Gauges Malfunction 21 (70%) 15 (50%) ns 
  No Malfunction 24 (83%) 20 (69%) 
 

Note. Significant differences reflect comparisons between 
groups who practiced with and without a malfunctioning 
instrument. * p < .05;  ** p < .01;  ***p < .001 

 

 In Experiment 2, we showed evidence that operators failed 
to notice the within-round feedback that was being provided.  
Specifically we showed that reaction times taken prior to and 
after the primary instrument malfunction remained constant, 
suggesting that operators took no pause to even consider the 
within-round feedback indicating that their actions were 
driving the simulation to unacceptable temperatures.  
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Figure 3: Participant’s average reaction times in 
Experiment 2 for the three trials before and after 
instrument malfunctions by condition in Round 1. Due to 
space constraints, highly similar null results, found in 
Rounds 2 and 3, are not here shown. 

 Two follow-up experiments replicated these prior findings, 
even when our operators received specialized training 
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regimens that we had predicted would help reduce functional 
fix by increasing awareness of within-round feedback 
(Youmans & Ohlsson, In Review). In Experiment 3, our 
operators experienced a greatly enhanced training regimen 
that highlighted the relationships between the Holding Tanks 
and the Mixing Tank. Specifically, during training our 
operators were required to note the cause-and-effect 
relationships between the Holding Tanks and the Mixing 
Tank on a worksheet, received hands-on training with an 
experimenter, and were given more time with the simulation 
before advancing to the experimental conditions.  The result 
of the expanded training was a main effect on performance 
with little effect on fix; participants were slightly better at the 
overall task in all conditions, but rarely switched away from 
their primary instrument set even when not doing so led to 
failure.  Reaction time analysis confirmed that our operators 
gave little thought to the within-round feedback that preceded 
task failure. 
 In Experiment 4, we provided our operators with a different 
form of enhanced training also designed to increase 
awareness of within-round feedback.  Operators were taught 
to use the simulation, and then asked to troubleshoot a 
malfunctioning simulation to determine which of the two 
instrument clusters was malfunctioning. Thus, our operators 
had already experienced unreliable instruments before 
advancing to the experimental rounds. Unfortunately, this 
type of training also produced a main effect of training on all 
conditions, but little effect on operators switching between 
instrument sets.  As in Experiment 3, RT analysis of our 
operators’ decisions showed no pause when within-round 
feedback indicated problems with the primary instruments.  
 Finally, in Experiments 1-4, we reported evidence for a 
type of sub-optimal adaptation to the task involving our 
operator’s decisions about the amount of juice to use from 
trial to trial in the experiment.  In particular, Experiments 1-4 
reported that the average amount of juice that was sent from 
an Holding Tank either remained constant or increased across 
experimental rounds when participants were successful, but 
decreased when participants failed.  This effect was revealed 
to occur even before the malfunction points in a round, 
suggesting that participants made these strategy choices as a 
result of outcome failure between rounds, rather than as a 
reaction to the malfunction points. This strategy adaptation 
resulted in an increase in the average number of trials per 
round, but did not lead to successful adaptation to the within-
trial feedback.  Given that failing participants’ reaction times 
did not increase across malfunction points in any round of 
any experiment, these results raised the possibility that the 
decision to utilize less juice was made between rounds in 
response to task failures, rather than within a round in 
response to within-round indicators that a current strategy 
was leading towards failure. 
  
 Why did participants choose to reduce the average input 
into the Mixing Tank? One possible reason would be that 
participants wanted to increase the number of trials they had 
in which to hypothesis test about why they had failed in 

previous rounds.  This would be consistent with the idea that 
participants suspected that they had failed to notice some key 
aspect of the task, and by increasing the number of trials they 
were exposed to, also increase their chances of detecting the 
source of error in subsequent rounds. However, this theory 
presents something of a paradox: if participants had intended 
to increase their chances of success by increasing the number 
of trials they were exposed to, then why did they not take 
more time per trial, especially once the malfunction point had 
occurred? 
 The current experiment was designed to test two possible 
theories that might account for the inconclusive results of 
Experiments 1-4. The first, the diligent hypothesis tester 
theory, proposes that operators adopted a reduced input 
strategy in order to increase their potential for hypothesis 
testing during a round, but still failed to notice the 
malfunction points in the experiment despite the increased 
number of trials. This theory would be consistent with the 
notion that operators attempt to discover why they fail, but 
are unable to discern when within-round feedback indicates a 
problem with their strategy, and so they never find reason to 
pause within a round or abandon primary instruments.   
 In contrast to this theory is the sub-optimal adaptor theory, 
which proposes that an operator’s decision to reduce Holding 
Tank input is, in and of itself, their adaptation to 
malfunctions.  According to this theory, operators simply are 
unable to abandon mental set, and instead come up with 
somewhat plausible, but ultimately failing iterations of their 
original strategy. Operators that are sub-optimal adaptors do 
not attempt to problem solve by engaging in the details of 
their error, but rather, are carrying out something of an 
attenuated version of their original strategy. 

 
Method 

Participants  
Participants in this study were 102 undergraduate psychology 
students from the University of Illinois at Chicago. The 
participants were randomly assigned to each of three groups 
of 34. 
Procedure 
Informed consent and debriefing were done off-line, but in 
the experiment participants interacted with a computer.   
Experimental conditions. This study utilized three 
conditions to test between the diligent hypothesis tester theory 
and sub-optimal adaptor theory. In one condition, the control 
condition, no instrument malfunctions occurred. In the color-
malfunction condition, the color instrument stopped matching 
those temperatures displayed by the gauges, and instead 
indicated that the liquid in Tanks A and B were shades of 
cool blue. In the warning condition color instruments also 
became unreliable, but when this occurred a highly salient 
warning was given onscreen that highlighted the mismatch 
between the color and instrument clusters that reappeared on 
every subsequent malfunction screen. The warning paused the 
action in the program, drew arrows between the color and 
gauge instruments, and presented the text ‘Warning! Potential 
Color/Gauge Mismatch’ in two places onscreen. Thus, the 
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participants were reminded each time within-round feedback 
became relevant to the task.  
 

Results 
Our analysis focused on the success or failure of participants 
in the simulation, those participants’ reaction times, and on 
the average input that those participants utilized prior to the 
malfunction points in each round.     
Success / Failure 
As shown in Figure 3, participants in the control condition did 
well at successfully operating the juice factory simulation, 
while participants in the color-malfunction and warning 
conditions did not.  In all rounds, participants in the no 
malfunction condition reliably succeeded more frequently 
than either the malfunction or warning conditions. In Round 
1, participants experiencing no malfunction succeeded in the 
simulation 88.2% of the time, compared with 38.2% when a 
malfunction occurred, and 32.4% when a malfunction 
occurred with a warning, χ2 (2, N = 102) = 25.72, p < .001.  
In Round 2, participants experiencing no malfunction 
succeeded in the simulation 100% of the time, compared with 
29.4% when a malfunction occurred, and 38.2% when a 
malfunction occurred with a warning, χ2 (2, N = 102) = 
40.80, p < .001.  In Round 3, participants experiencing no 
malfunction succeeded in the simulation 88.2% of the time, 
compared with 52.9% when a malfunction occurred, and 
32.4% when a malfunction occurred with a warning, χ2 (2, N 
= 102) = 22.27, p < .001. 
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Figure 4: Percentage of successful participants across 
rounds in the simulation by experimental condition. 

 

Reaction Times 
As shown in Figures 5-7, reaction times in the three trials 
before the malfunction point, and the four trials after, were 
averaged within each condition in each of the three rounds.  
We conducted a 3 (condition: no malfunction, malfunction 
without warning, malfunction with warning) by 7 (trial: pre-
malfunction 3, pre-malfunction 2, pre-malfunction 1, 
malfunction 1, malfunction 2, malfunction 3,malfunction 4) 
repeated-measures ANOVA on participants’ reaction times 
for the three trials prior to malfunction and the four trials 
following malfunction for each of the three experimental 
rounds. Our analysis of Round 1 revealed no main effect of 
condition, F(2, 111) = 1.01, ns, a main effect of trial, F(2, 
111) = 5.30, p < .0001, and no interaction, F(2, 111) = 1.39, 

ns.  Our analysis of Round 2 revealed no main effect of 
condition, F(2, 111) = .65, ns, a marginal main effect of trial, 
F(2, 111) = 1.82,  p = .09 , and a significant interaction, F(2, 
111) = 2.13, p = .014.  Our analysis of Round 3 revealed no 
main effect of condition, F(2, 111) = 1.75, ns, no main effect 
of trial, F(2, 111) = .37, ns, and no interaction, F(2, 111) = 
.58, ns.  In sum, the warning condition appeared to notice the 
warnings in Round 1, and slow their decision times per round 
because of them. However, by Round 2 these effects became 
marginal, and by Round 3, no condition appeared to notice 
malfunctions. 
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Figures 5-7: Participants’ average reaction times across 
the malfunction point for rounds 1-3, split by condition. 

 
Average Input 
We conducted a 3 (round: 1, 2, 3) by 3 (condition: no 
malfunction, malfunction, warning) repeated-measures 
ANOVA on the average input of participants prior to the 
malfunction point. This analysis revealed a main effect of 
round, F(2, 196) = 4.58, p < .05, a main effect of condition, 
F(1, 98) = 2206.14, p < .05, and no interaction, F(1, 196) = 
1.29, ns. 
   Follow-up planned contrasts of pre-malfunction input data 
collapsed across conditions revealed that Round 1 pre-
malfunction input was significantly greater than Rounds 2 
and 3, F(2, 196) = 4.12, p < .05, and Round 2 was 
significantly greater than Round 3, F(2, 196) = 4.46, p < .05. 
  Follow-up planned contrasts of pre-malfunction input data 
collapsed across rounds revealed that the malfunction and 
warning conditions were significantly different than the 
control condition, F(2, 196) = 42.60, p < .05, and no 
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significant difference between the malfunction condition and 
warning condition,  F(2, 196) = .37, ns. 
 This pattern of results indicates that malfunctions, both 
with and without warnings, produced reliable drops in 
average pre-malfunction input, and that average pre-
malfunction input dropped across the experimental rounds.  
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General Discussion 

When two instruments are available and one of them 
malfunctions it seems as if a fully rational operator would 
switch to the other one. In prior studies, we observed a 
reduction in success rates when the information source a 
participant had practiced with malfunctioned, and a slow 
recovery with additional experience.  Even in the face of 
repeatedly failed rounds, participants’ within round reaction 
time data did not support the notion that they became more 
sensitive to noticing malfunction points.  Instead, participants 
in past studies responded to malfunction by decreasing the 
amount of juice they sent through the factory simulation, 
possibility to increase the number of experimental trials 
before failing. 
 In this study, noticing malfunction points was controlled 
for by directly pointing out mismatches between color and 
gauge instruments. Our findings support the notion that our 
operators made sub-optimal strategy decisions between 
rounds, and this is a counterintuitive finding.  It seems 
reasonable to assume that when someone is performing a task 
and fails, that they would then attempt to determine the cause 
of their errors through hypothesis testing in subsequent 
procedures. However, here operators generated hypotheses 
about the problems in their behavior only when they were not 
engaged in the task, between rounds.  
 Theoretically, this finding impacts theories of how people 
deal with errors during the performance of a complex task. In 
past work, one of us (see Ohlsson, 1996) proposed a detailed 
hypothesis about how people might interpret and unlearn an 
error in a cognitive skill. The finding reported here suggests 
that people might react to an error in a different way than by 
engaging the details of that error. Our participants apparently 
conducted no analysis while controlling the simulation about 
what was going wrong.  Instead, they seemed to follow a very 

general disposition that we perhaps can formulate as if our 
action causes trouble, try an attenuated version of that action. 
This heuristic for how to deal with an undesirable outcome is 
reminiscent of the fast and frugal heuristics that Gigerenzer, 
Todd and the ABC research group (1999) have observed with 
respect to decision making and judgment in other domains. 
From a practical point of view, the lesson is interface 
designers should not assume that operators engage in 
extensive cognitive processing of the information available in 
a given machine interface. 

If this form of adaptation turns out to generalize outside our 
juice factory simulation, there are several practical 
implications for designing safeguards against instrument 
malfunction. Operators may or may not engage in deep causal 
reasoning about the device they interact with, and these and 
other factors may influence their willingness to abandon their 
current strategy. The need to keep cognitive load within 
reasonable limits may inhibit causal accounts of an anomaly 
and encourage simple heuristics instead. It is important to 
know which fast and frugal heuristics device operators are 
likely to utilize, something that might not be possible without 
empirical studies. Knowledge of the heuristics that operators 
fall back on when an anomaly occurs might save system 
builders from implementing costly safeguards which are 
entirely reasonable, but likely to be overlooked or bypassed 
by frugal operators. 
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