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Abstract

One safeguard against instrument malfunction is to
provide backup instruments for machine operators. In
previous studies, prior training caused operators of a
simulated machine to adapt to instrument malfunction by
adopting a suboptimal decision rule rather than by
reallocating attention to backup instruments. One
hypothesis for these findings is that operators do not
notice when their main instruments malfunction. Here we
examine warning systems that force operators to notice
instrument problems. Our results indicate that warnings
did not help operators to reallocate attention to backup
instruments. Instead, operators fail the simulation and
make sub-optimal adaptations afterward that lead to
further failures.

Introduction

The operation of complicated machines often requires a
flexible human operator that can adjust the operations of a
machine to meet task demands. This is especially so because
of the inherent fallibility of complicated machines; people
must react to normal feedback from a machine in order to
operate them as intended, and must react to abnormal
feedback from machines when a corrective action is required.
In prior work, we documented how operator performance
suffered when instruments that an operator had been trained
to use suddenly begin to provide inaccurate information, even
when a second, valid instrument was available that could
correct the error (Youmans & Ohlsson, 2005). The finding
suggested that machine operators have difficulty switching
from their usual instruments to a secondary or backup source
of information.

Why do operators fail to utilize seemingly obvious
secondary instrumentation when the primary instruments that
they have been using malfunction? One explanation is that
training produces biases and automaticity that might interfere
with rapid adaptation to changing task demands. Although
quickly switching from one task set to another might
subjectively seem to progress smoothly and effortlessly,
evidence strongly suggests that switching between even
simple task sets can be quite difficult (e.g., Allport, A., Styles,
E. A., & Hsieh, S., 1994). To what extent are people limited
by prior experience when faced with the need to adapt to
changing task conditions?

We investigate these questions with the help of a simulated
human-machine interface in which the degrading of one set of
instruments poses a need to re-allocate attention.

A Simulated Machine Interface
In our simulation, participants assume the role of the operator
of a juice factory. Two Holding Tanks, tank A and tank B,
were shown on the upper left side of a computer screen,
connected with pipes to a Mixing Tank shown to the right; see
Figure 1.

On the lower half of the screen was the gauge equivalent
of the color information. Here, three realistic looking
temperature gauges representing tanks A, B, and the Mixing
Tank were displayed; see Figure 1.

Figure 1: Example of factory interface. Note. Factory
interface was in color.

Each Holding Tank contains liquid at a certain temperature.
The factory is operated by adding some amount of liquid
from tank A and some amount from tank B into the Mixing
Tank. The amount and temperature of the juice is determined
by the amount and temperature of the previous content of the
Mixing Tank, the added input from Tank A and the added
input from Tank B. Once a participant entered these amounts,
the simulation was animated; the colored liquid was shown
flowing through pipes into the Mixing Tank, and the Mixing
Tank’s color and gauge responded appropriately to the new
input. Once the two inputs were added, the resulting state of
the Mixing Tank was computed and displayed ', and the
operator could make the next decision about how much liquid
to add from either Holding Tank. The task of the operator
was to maximize the production of juice without overheating
the facility, a type of trade-off situation.

As shown in Figure 1, the display was divided into two
sections by a thick gray bar. Above the bar is the section that

! TEMPcurrent = [(14 * TEMPprior.) + (7 * TEMPa) + (7 * TEMPb)] / 3,
rounded to the closest whole value.
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we will refer to as the color instrument portion of the screen.
Beneath the bar is the section that we will refer to as the
gauge instrument portion of the screen. In the beginning of
each experiment, both the color and gauge instruments
provide the necessary information to successfully run the
simulation. For example, in the color portion, the
temperatures in all tanks are represented by the liquids’
shades of blue or red. These colors represent common
indicators of heat (e.g., many bath fixtures represent
temperature in shades of blue and red). To help ensure that
participants understood these color values, a color-to-
temperature guide was on screen at all times. In the gauge
instrument portion of the screen, a red ‘needle’ in each gauge
indicated those same temperatures.

It was the temperature of the Mixing Tank that was most
important in the simulation. Although the Holding Tanks’
liquids could be hot or cold, the Mixing Tank could not
accommodate extreme heat. If temperatures in the Mixing
Tank ever rose above a certain point, the juice was ruined.
This point was represented by the two deepest shades of red
(colors), and the two highest needle readings (gauges), and is
referred to as the critical temperature. If the content of the
Mixing Tank reached this temperature, then the pasteurization
process was spoiled. Tanks A and B could safely hold liquids
across the entire range of possible temperatures; only the
Mixing Tank had this temperature restriction.

In both sections, the temperatures of the liquids in tank A,
tank B, and the Mixing Tank are indicated. In normal
operation mode, the factory may be operated on the basis of
either the color or gauge instruments; these two information
sources are redundant. Because the colors and gauges present
identical information, the task can be solved equally well on
the basis of either.

The simulated instruments were implemented so that they

could be made to malfunction at a determined point in the
simulation. When malfunctioning, both sets of instruments
still displayed temperature values for the three tanks, but
either the gauges or colors in the Holding Tanks became
inaccurate. Only one source of information became
inaccurate, so the operator always had the option of
discontinuing use of the malfunctioning source, and switching
to the other.
Simulation Settings. The juice factory simulation may be set
to remain reliable, or to malfunction, and may be set to
provide a variety of practice with the simulation before the
experimental conditions. All participants begin the simulation
with a practice session that is intended to teach participants
how to operate the simulation successfully. The simulation
may be set to provide instructions for using either the color or
gauge instruments, but not both. In the

experiment reported here, all conditions were set to receive
color instrument training.

During practice, participants are told how tanks A and B
relate to the Mixing Tank, and are told repeatedly that their
goal is to use the factory to produce as much juice as possible,
without overheating the Mixing Tank. Following these
instructions, participants operate a partial version of the
factory simulation that displays only that portion of the screen
that they have received instructions about. For example, if a
participant is in a color training condition, then in the practice
session they will not see the gauge instruments. The result is
that participants practice with only one of the sources of
information, never both.

During practice, participants learn to produce the maximum
volume of juice per trial. Each trial consists of two judgments
about how much liquid to input, one amount from tank A
(judgment 1) and one from tank B (judgment 2), into the
Mixing Tank. Participants indicate how much juice, from
zero to seven gallons, should be entered into the Mixing Tank
from each Holding Tank by typing the appropriate digit on
the keyboard. Juice production accumulates across these trials
to a preset level in the simulation, usually 300 gallons. In this
paper, a series of such trials is referred to as a round.

If the Mixing Tank heats into the critical temperature range
during practice, a warning appears, and the system pauses for
6 seconds while displaying this warning. Otherwise, practice
ends when participants have produced the preset level of
juice. After this, the participants are instructed with respect to
(but do not receive practice with) the backup instrument that
had been absent, and are told that the backups convey the
same information as that with which they have just practiced
with, albeit in different form. For example, if a participant
trains with color instruments, then they would receive
instructions about the function and duplicitous nature of the
gauge instruments, but would not actually practice with those
gauges. At the end of practice, participants were told that if
they have trouble using one of the two types of instruments in
any part of the simulation, they should switch to the other
instrument.

Following the practice session, participants operated the
factory for three rounds. These rounds constitute the
experimental conditions of the simulation, generally defined
by either no-malfunction or malfunctioning instrumentation.
In no-malfunction conditions, both color and gauge portions
of the screen are presented simultaneously and participants
are asked to produce 150 gallons of juice as quickly as
possible without overheating the Mixing Tank. If the Mixing
Tank is heated past the critical temperature, the round ends
and a failure display is presented indicating that the
participant had overheated the system.

In malfunction conditions, either the color or gauge
instrument representing the Holding Tanks becomes
unreliable roughly halfway through each round. As an
example of this type of malfunction, color instruments might
indicate that there are two tanks of cool liquid waiting in the
Holding Tanks, while the gauges indicate the true temperature
of the tanks correctly as hot. The moment at which the
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mismatch between the instruments occurs will be referred to
as the malfunction point in this paper.

The malfunction point is the moment during a round at
which a successful participant that is basing his or her
decisions on the malfunctioning source of information should
recognize that the instrument has malfunctioned, and follow
instructions by switching to the other instrument. In
malfunction conditions, the malfunction point always occurs
when a participant has produced between 70 and 90 gallons
of juice and the Mixing Tank is a neutral or less temperature.
If these conditions do not occur, then the malfunction point
automatically occurs at 90 gallons of production. These
criteria help to ensure that, after the malfunction point, there
is still leeway for the Mixing Tank’s temperature to increase.
Feedback. The simulation provides three types of feedback
to the operator. (a) Success/failure. When the operator
succeeded in producing the target amount of juice or
overheated the factory, he or she is informed of this fact. We
refer to this as between-rounds feedback. (b) Instrument
mismatch. When one set of instruments malfunctions, that
display will conflict with the reliable instrument. Although
this mismatch is not feedback per se, it is feedback in the
sense that this information could inform an operator that they
had advanced to a point in a round where malfunctions were
taking place. (¢) Mixing Tank outcomes. 1f a set of Holding-
Tank instruments malfunctions and an operator uses those
instruments, then the effect of that liquid on the temperature
of the Mixing Tank will not make sense. For example,
transferring hot liquid that was falsely displayed as cool
would increase the temperature of the Mixing Tank, although
the operator would expect the opposite. We refer to this
information within-trial feedback (see Figure 2).

Previous Findings

The findings reported here build on four prior experiments
that utilized the basic juice-factory simulation. In two
previous experiments, we demonstrated that practice causes
operators of this simulation to adapt to instrument
malfunction with a suboptimal decision rule rather than by
reallocating attention to a reliable backup instrument
(Youmans & Ohlsson, 2005). In Experiment 1, operators
became fixed on the instrument they practiced with,
regardless of whether it was the color or gauge instruments.
Fixation occurred despite task instructions that the secondary
instruments would be helpful, the within round feedback that
indicated primary instrument malfunction, and repeated
failures across three rounds of the simulation.

Table 1: Simulation Success by Condition in Experiment 1.

Round Condition Color Practice Gauge Practice

1 Colors Malfunction 2 (6%)*** 21 (70%)
Gauges Malfunction 18 (60%) 7 (23%)***
No Malfunction 19 (66%) 19 (66%)

2 Colors Malfunction 5 (16%)*** 20 (67%)
Gauges Malfunction 22 (73%) 12 (40%)*
No Malfunction 22 (76%) 18 (62%)

3 Colors Malfunction 11 (36%)** 21 (70%)
Gauges Malfunction 21 (70%) 15 (50%) 'S
No Malfunction 24 (83%) 20 (69%)

Mixing Tank

Figure 2: The two rectangles highlight the first form of
within-round feedback, the mismatch between the color
and gauge instruments. The oval highlights the second
form of within-round feedback, the mismatch between
what a participant would expect to happen to the Mixing
Tank when the color instrument is used, and the actual
outcome whereby the Mixing Tank’s temperature
increases rather than decreases. Note. Factory interface
was in color.

Note. Significant differences reflect comparisons between
groups who practiced with and without a malfunctioning
instrument. * p <.05; ** p<.01; ***p < .001

In Experiment 2, we showed evidence that operators failed
to notice the within-round feedback that was being provided.
Specifically we showed that reaction times taken prior to and
after the primary instrument malfunction remained constant,
suggesting that operators took no pause to even consider the
within-round feedback indicating that their actions were
driving the simulation to unacceptable temperatures.
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Figure 3: Participant’s average reaction times in

Experiment 2 for the three trials before and after

instrument malfunctions by condition in Round 1. Due to

space constraints, highly similar null results, found in

Rounds 2 and 3, are not here shown.

Two follow-up experiments replicated these prior findings,
even when our operators received specialized training
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regimens that we had predicted would help reduce functional
fix by increasing awareness of within-round feedback
(Youmans & Ohlsson, In Review). In Experiment 3, our
operators experienced a greatly enhanced training regimen
that highlighted the relationships between the Holding Tanks
and the Mixing Tank. Specifically, during training our
operators were required to note the cause-and-effect
relationships between the Holding Tanks and the Mixing
Tank on a worksheet, received hands-on training with an
experimenter, and were given more time with the simulation
before advancing to the experimental conditions. The result
of the expanded training was a main effect on performance
with little effect on fix; participants were slightly better at the
overall task in all conditions, but rarely switched away from
their primary instrument set even when not doing so led to
failure. Reaction time analysis confirmed that our operators
gave little thought to the within-round feedback that preceded
task failure.

In Experiment 4, we provided our operators with a different
form of enhanced training also designed to increase
awareness of within-round feedback. Operators were taught
to use the simulation, and then asked to troubleshoot a
malfunctioning simulation to determine which of the two
instrument clusters was malfunctioning. Thus, our operators
had already experienced unreliable instruments before
advancing to the experimental rounds. Unfortunately, this
type of training also produced a main effect of training on all
conditions, but little effect on operators switching between
instrument sets. As in Experiment 3, RT analysis of our
operators’ decisions showed no pause when within-round
feedback indicated problems with the primary instruments.

Finally, in Experiments 1-4, we reported evidence for a
type of sub-optimal adaptation to the task involving our
operator’s decisions about the amount of juice to use from
trial to trial in the experiment. In particular, Experiments 1-4
reported that the average amount of juice that was sent from
an Holding Tank either remained constant or increased across
experimental rounds when participants were successful, but
decreased when participants failed. This effect was revealed
to occur even before the malfunction points in a round,
suggesting that participants made these strategy choices as a
result of outcome failure between rounds, rather than as a
reaction to the malfunction points. This strategy adaptation
resulted in an increase in the average number of trials per
round, but did not lead to successful adaptation to the within-
trial feedback. Given that failing participants’ reaction times
did not increase across malfunction points in any round of
any experiment, these results raised the possibility that the
decision to utilize less juice was made between rounds in
response to task failures, rather than within a round in
response to within-round indicators that a current strategy
was leading towards failure.

Why did participants choose to reduce the average input
into the Mixing Tank? One possible reason would be that
participants wanted to increase the number of trials they had
in which to hypothesis test about why they had failed in

previous rounds. This would be consistent with the idea that
participants suspected that they had failed to notice some key
aspect of the task, and by increasing the number of trials they
were exposed to, also increase their chances of detecting the
source of error in subsequent rounds. However, this theory
presents something of a paradox: if participants had intended
to increase their chances of success by increasing the number
of trials they were exposed to, then why did they not take
more time per trial, especially once the malfunction point had
occurred?

The current experiment was designed to test two possible
theories that might account for the inconclusive results of
Experiments 1-4. The first, the diligent hypothesis tester
theory, proposes that operators adopted a reduced input
strategy in order to increase their potential for hypothesis
testing during a round, but still failed to notice the
malfunction points in the experiment despite the increased
number of trials. This theory would be consistent with the
notion that operators attempt to discover why they fail, but
are unable to discern when within-round feedback indicates a
problem with their strategy, and so they never find reason to
pause within a round or abandon primary instruments.

In contrast to this theory is the sub-optimal adaptor theory,
which proposes that an operator’s decision to reduce Holding
Tank input is, in and of itself, their adaptation to
malfunctions. According to this theory, operators simply are
unable to abandon mental set, and instead come up with
somewhat plausible, but ultimately failing iterations of their
original strategy. Operators that are sub-optimal adaptors do
not attempt to problem solve by engaging in the details of
their error, but rather, are carrying out something of an
attenuated version of their original strategy.

Method

Participants

Participants in this study were 102 undergraduate psychology
students from the University of Illinois at Chicago. The
participants were randomly assigned to each of three groups
of 34.

Procedure

Informed consent and debriefing were done off-line, but in
the experiment participants interacted with a computer.
Experimental conditions. This study utilized three
conditions to test between the diligent hypothesis tester theory
and sub-optimal adaptor theory. In one condition, the control
condition, no instrument malfunctions occurred. In the color-
malfunction condition, the color instrument stopped matching
those temperatures displayed by the gauges, and instead
indicated that the liquid in Tanks A and B were shades of
cool blue. In the warning condition color instruments also
became unreliable, but when this occurred a highly salient
warning was given onscreen that highlighted the mismatch
between the color and instrument clusters that reappeared on
every subsequent malfunction screen. The warning paused the
action in the program, drew arrows between the color and
gauge instruments, and presented the text “Warning! Potential
Color/Gauge Mismatch’ in two places onscreen. Thus, the
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participants were reminded each time within-round feedback
became relevant to the task.

Results
Our analysis focused on the success or failure of participants
in the simulation, those participants’ reaction times, and on
the average input that those participants utilized prior to the
malfunction points in each round.
Success / Failure
As shown in Figure 3, participants in the control condition did
well at successfully operating the juice factory simulation,
while participants in the color-malfunction and warning
conditions did not. In all rounds, participants in the no
malfunction condition reliably succeeded more frequently
than either the malfunction or warning conditions. In Round
1, participants experiencing no malfunction succeeded in the
simulation 88.2% of the time, compared with 38.2% when a
malfunction occurred, and 32.4% when a malfunction
occurred with a warning, %2 (2, N = 102) = 25.72, p < .001.
In Round 2, participants experiencing no malfunction
succeeded in the simulation 100% of the time, compared with
29.4% when a malfunction occurred, and 38.2% when a
malfunction occurred with a warning, 32 (2, N = 102) =
40.80, p < .001. In Round 3, participants experiencing no
malfunction succeeded in the simulation 88.2% of the time,
compared with 52.9% when a malfunction occurred, and
32.4% when a malfunction occurred with a warning, ¥ (2, N
=102)=22.27,p <.001.

Successful Operators
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Figure 4: Percentage of successful participants across
rounds in the simulation by experimental condition.

Reaction Times

As shown in Figures 5-7, reaction times in the three trials
before the malfunction point, and the four trials after, were
averaged within each condition in each of the three rounds.
We conducted a 3 (condition: no malfunction, malfunction
without warning, malfunction with warning) by 7 (trial: pre-
malfunction 3, pre-malfunction 2, pre-malfunction 1,
malfunction 1, malfunction 2, malfunction 3,malfunction 4)
repeated-measures ANOVA on participants’ reaction times
for the three trials prior to malfunction and the four trials
following malfunction for each of the three experimental
rounds. Our analysis of Round 1 revealed no main effect of
condition, F(2, 111) = 1.01, ns, a main effect of trial, F(2,
111) = 5.30, p < .0001, and no interaction, F(2, 111) = 1.39,

ns. Our analysis of Round 2 revealed no main effect of
condition, F(2, 111) = .65, ns, a marginal main effect of trial,
F(2,111)=1.82, p=.09, and a significant interaction, F(2,
111) = 2.13, p = .014. Our analysis of Round 3 revealed no
main effect of condition, F(2, 111) = 1.75, ns, no main effect
of trial, F(2, 111) = .37, ns, and no interaction, F(2, 111) =
.58, ns. In sum, the warning condition appeared to notice the
warnings in Round 1, and slow their decision times per round
because of them. However, by Round 2 these effects became
marginal, and by Round 3, no condition appeared to notice
malfunctions.
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Figures 5-7: Participants’ average reaction times across
the malfunction point for rounds 1-3, split by condition.

Average Input

We conducted a 3 (round: 1, 2, 3) by 3 (condition: no
malfunction, malfunction, warning) repeated-measures
ANOVA on the average input of participants prior to the
malfunction point. This analysis revealed a main effect of
round, F(2, 196) = 4.58, p < .05, a main effect of condition,
F(1, 98) = 2206.14, p < .05, and no interaction, F(1, 196) =
1.29, ns.

Follow-up planned contrasts of pre-malfunction input data
collapsed across conditions revealed that Round 1 pre-
malfunction input was significantly greater than Rounds 2
and 3, F(2, 196) = 4.12, p < .05, and Round 2 was
significantly greater than Round 3, F(2, 196) = 4.46, p < .05.

Follow-up planned contrasts of pre-malfunction input data
collapsed across rounds revealed that the malfunction and
warning conditions were significantly different than the
control condition, F(2, 196) = 42.60, p < .05, and no
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significant difference between the malfunction condition and
warning condition, F(2, 196)=.37, ns.

This pattern of results indicates that malfunctions, both
with and without warnings, produced reliable drops in
average pre-malfunction input, and that average pre-
malfunction input dropped across the experimental rounds.

Average Pre-Malfunction Input by Condition
7 ORound 1 |
ORound 2
ERound 3

Average Input
E N

Malfunction Without
Warning

Malfunction With
Warning

No Malfunction

General Discussion

When two instruments are available and one of them
malfunctions it seems as if a fully rational operator would
switch to the other one. In prior studies, we observed a
reduction in success rates when the information source a
participant had practiced with malfunctioned, and a slow
recovery with additional experience. Even in the face of
repeatedly failed rounds, participants’ within round reaction
time data did not support the notion that they became more
sensitive to noticing malfunction points. Instead, participants
in past studies responded to malfunction by decreasing the
amount of juice they sent through the factory simulation,
possibility to increase the number of experimental trials
before failing.

In this study, noticing malfunction points was controlled
for by directly pointing out mismatches between color and
gauge instruments. Our findings support the notion that our
operators made sub-optimal strategy decisions between
rounds, and this is a counterintuitive finding. It seems
reasonable to assume that when someone is performing a task
and fails, that they would then attempt to determine the cause
of their errors through hypothesis testing in subsequent
procedures. However, here operators generated hypotheses
about the problems in their behavior only when they were not
engaged in the task, between rounds.

Theoretically, this finding impacts theories of how people
deal with errors during the performance of a complex task. In
past work, one of us (see Ohlsson, 1996) proposed a detailed
hypothesis about how people might interpret and unlearn an
error in a cognitive skill. The finding reported here suggests
that people might react to an error in a different way than by
engaging the details of that error. Our participants apparently
conducted no analysis while controlling the simulation about
what was going wrong. Instead, they seemed to follow a very

general disposition that we perhaps can formulate as if our
action causes trouble, try an attenuated version of that action.
This heuristic for how to deal with an undesirable outcome is
reminiscent of the fast and frugal heuristics that Gigerenzer,
Todd and the ABC research group (1999) have observed with
respect to decision making and judgment in other domains.
From a practical point of view, the lesson is interface
designers should not assume that operators engage in
extensive cognitive processing of the information available in
a given machine interface.

If this form of adaptation turns out to generalize outside our
juice factory simulation, there are several practical
implications for designing safeguards against instrument
malfunction. Operators may or may not engage in deep causal
reasoning about the device they interact with, and these and
other factors may influence their willingness to abandon their
current strategy. The need to keep cognitive load within
reasonable limits may inhibit causal accounts of an anomaly
and encourage simple heuristics instead. It is important to
know which fast and frugal heuristics device operators are
likely to utilize, something that might not be possible without
empirical studies. Knowledge of the heuristics that operators
fall back on when an anomaly occurs might save system
builders from implementing costly safeguards which are
entirely reasonable, but likely to be overlooked or bypassed
by frugal operators.
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