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Abstract

Reaction time, response accuracy and psychophysiological
measures such as lateralized readiness potential (LRP) have
been used extensively to study information processing in dual
tasks. To model these three dependent variables in a dual task,
we propose a new mathematical modeling approach—a queuing
network approach based on queuing network theory of human
performance (Liu, 1996, 1997) and current discoveries in
neuroimaging studies. This modeling approach is composed of a
queuing network architecture of information processing in the
brain and a set of mathematical equations in quantifying the
three dependent variables in the dual task. This modeling
approach can be used to account for information processing in
both spatial and temporal dimensions and it provides a coherent
and quantitative linkage between the neural signals (LRP) and
behavioral data in the dual task. Despite its relative simplicity,
this queuing network modeling approach is useful to quantify
and predict behavioral performance and important aspects of the
macroscopic electrical activity of the brain. Further development
and extension of the current modeling approach are discussed.

Introduction

With the development of electrophysiological techniques,
there is an emerging body of experimental studies which
measure reaction times (RT), response accuracy, and
event-related potentials (ERP) simultaneously to study
one of the basic questions in cognitive science—human
cognition in dual task situations (Sangals, Ross, &
Sommer, 2004; Sommer, Leuthold, & Schubert, 2001).
Compared to the traditional behavioral experimental
studies, these studies are able to provide more information
about the temporal properties of cognitive processes,
reflecting basic cognitive information processing in the
dual task. Among various ERP techniques, a brain
potential extracted from ERP—Iateralized readiness
potential (LRP), has become a useful and powerful
supplemental measurement to reaction time and response
accuracy, since it not only shares ERP’s excellent
temporal resolution but also reflects the information
processing in the brain beyond the measurements of overt
behavior.

LRP measures response activation or preparation at the
level of the cerebral motor cortex (Coles, 1996). More
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specifically, LRP reflects motor preparation taking place
within the premotor area or the primary motor cortex (H.
Leuthold & Jentzsch, 2001; Ulrich, Leuthold, & Sommer,
1998). The start of this motor preparation is reflected by
the LRP onset time, which is identified as the most
important aspect of the potential (Mordkoff & Gianaros,
2000). A frequently-used onset time of LRP is called
stimulus-synchronized LRP (S-LRP onset time or S-LRP
interval). S-LRP onset time is measured as the interval
between the arrival of stimulus and the emergence of LRP
(negative going potentials), reflecting premotoric
processes (Sommer et al., 2001).

Besides the experimental studies of LRP and other
dependent variables, several mathematical models have
been successfully established, focusing on modeling
ERP/EEG: building on a lumped-parameter model, Jansen
and Rit (1995) developed a computational model to
produce EEG rhythms. Based on Jansen and Rit’s model,
a neural mass model (David & Friston, 2003) assumes
that the behavior of a population of neurons can be
approximated using several state variables (e.g. firing
rates). The model reproduces brain signals within the
oscillatory regime by simply changing population
kinetics. However, few mathematical models have been
built to model all of the three dependent variables
simultaneously and quantify them in dual task situations.

In this paper, we propose a queuing network modeling
approach as a new mathematical modeling method to
quantify reaction time, response accuracy and S-LRP
onset time simultaneously in dual task situations. First, we
introduce the platform of this modeling approach—a
queuing network architecture of information processing in
the brain, representing the major brain regions and their
connections as a network. Second, based on this network
platform, a set of mathematical equations is developed to
quantify the three dependent variables. Third, the
modeling results are presented and validated with the
results in an experimental study. Finally, we discuss the
implication of the modeling approach and its further
extensions to model the experimental results of other
electrophysiological studies.
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Figure 1: The general structure of the queuing network model (function of each server and corresponding brain areas)

Queuing Network Architecture

To model human performance and electrophysiological
signal of the brain, the queuing network modeling approach
regards the human cognition system as a queuing network
based on several similarities between them. First, ample
research evidence has shown that major brain areas with
certain information processing functions are localized and
connected with each other in the brain cortex via neural
pathways (Bear & Connor, 2001; Smith et al.,, 1998;
Roland, 1993; Faw, 2003), which is highly similar to a
queuing network of servers that can process entities
traveling through the routes serially or/and in parallel
depending on specific network arrangements. Therefore,
brain regions with similar functions can be regarded as
servers and neural pathways connecting them are treated as
routes in the queuing network (see Figure 1). Second, it has
been discovered that information processed in the brain are
coded in spike trains (Rieke, Warland, R.S., & Bialek,
1997); depending on different tasks and learning stages, the
to-be-processed information represented by these spike
trains sometimes are processed by the brain regions
(servers) immediately; sometimes they have to be

maintained in certain regions to wait for the previous spike
trains being processed (E. E. Smith & Jonides, 1998; Taylor
et al., 2000). Hence, these spike trains can be represented as
entities in the queuing network naturally and entities are
processed in the network by certain queuing process as an
analogy to represent the waiting and maintaining process of
spike trains.

In modeling human performance, computational models
based on queuing networks have successfully integrated a
large number of mathematical models in response time (Liu,
1996) and in multitask performance (Liu, 1997) as special
cases of queuing networks. Queuing network modeling
approach has been successfully used to generate human
behavior in real time, including simple and choice reaction
time, driver performance and transcription typing (Liu,
Feyen & Tsimhoni, in press; Wu & Liu, 2004a).

In modeling brain imaging pattern, previous work in
queuing network modeling was focused on modeling the
dynamic connectivities among brain regions. Wu and Liu
(2004b) successfully modeled how brain imagining patterns
change with different learning stages and different stimuli to
be processed. These connectivities of brain regions were
modeled as dynamic changes of routing probability
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(probability of entities enter one of multiple routes) in the
queuing network during the learning process.

Modeling of the Dependent Variables

In the following we describe our use of the queuing
network modeling approach to model reaction time,
response accuracy, and S-LRP in a representative dual task
experimental study. To model this task, it is necessary to
determine the route of entities in the network first since all
tasks do not necessarily activate the same network routes.
Reaction time can be modeled by the time for the entities to
traverse through the routes; response accuracy and the S-
LRP onset time are modeled by the processing of entities in
the network.

Target Experiment to be Modeled

Among the dual task studies which measured the 3
dependent variables, a representative experimental study
(Sommer et al., 2001) is selected to be modeled. In their
experiment, task 1 (T1) was an auditory-manual choice
reaction task: low and high tones were presented to the
subjects who were asked to make manual responses with
their index or middle fingers of left and right hand. Task 2
(T2) was a visual-manual reaction task including two
conditions: one condition was a two-choice reaction task—
corresponding to letter “X” or “O”, subjects made manual
responses with the middle or index fingers of the left and
right hand; the other condition was a simple reaction task in
which letters required a response with one of the fingers.
The delay between the presentation of the stimulus of T1
and T2 is called stimulus onset asynchrony (SOA).

Route of Entities

The route of entities in the queuing network is determined
based on previous queuing network modeling work in
modeling the connectivity of brain regions (Wu and Liu,
2004b): in general, depending on the task to be performed,
servers whose function is related to the target task are
included in the route of entities. In task 1, entities
representing the auditory stimulus enter the auditory
perceptual subnetwork first (server 5->6/7->8) (see Figure
1); then, they are transmitted into the cognitive subnetwork
including server B, C, and F for making the phonological
judgment. After that, they travel to the motor subnetwork
(server W, Y, Z and hand server) for retrieving motor
programs, assembling the motor programs, and initiating the
motor response. According to the functions and connections
of these brain regions, the route of task 1 and 2 are:

T1:5 ->6/7->8-> B-> C->F->C->W->Y->Z-> Hand
T2: 1 ->2/3->4-> A-> C->F->C->W->Y->Z-> Hand

In the simple reaction condition of task 2, route of entities
is selected according to the functions of the severs and the
physiological study of Kansaku et al. (2004):

1 ->2/3->4->A->C->F->C->V->Z-> Hand

Mathematical Modeling of Reaction Time

Choice Reaction Time Independent of the SOA conditions,
the response time of T1 (RT1) can be predicted by the sum

of servers’ processing time in the route of entities of T1
since no previous entities occupy any of the servers in the
route (see T1 in Figure 2 and Equation 1).

|:| Perception E A E E
c OF Bw
@ Y z Manual Key

Shart S0A

T |

T2 [ =5

SOA [TT dane

[T2 dane

S04 [T1 dane
Figure 2: Illustration of the RT1 and RT2 (choice reaction time)
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ERTD=T14p*T1 5+ T1,ct 11+ T Tyt T+ T2+ Tk (1)
where, T; 4pis the processing time of the auditory perceptual
subnetwork; TI,B: TI,C ,T])F, T]) Y T[) /A T[yz, and TI,K
represents the processing time of server B, C, F, Y, W, Z
and Hand, respectively.

In the choice reaction condition, the response time of T2
(RT2) depends on the comparison between a) the difference
between SOA and the time point when entities of T1 exit
server F (T 4p+ T3 +T;c +T;-SOA) and b) the duration of
the processing time before entities of T2 enter server F (the
sum of processing time at the perceptual subnetwork, server
Band C, i.e. T5ppt+T,4+715 ) (see Equation 2)

E(RT2) (choice reaction)=

max(T; ap+ T+ T c +T1 7 =SOA, Toyp+T54+T,¢) 2
+ Dopt+ Toct Toyt Towt Tozt T
Simple Reaction Time RT2 in simple reaction condition is
modeled in Appendix 1 (see Equation 6 and Equation 16 in
Appendix 1).

Mathematical Modeling of Response Accuracy

The expected response accuracy (P.) is estimated
according to the difference between SOA and the sum of
Ta.c. Tav. T2z T2k, and Tra (see Appendix 2).

Mathematical Modeling of S-LRP

Simple Reaction Time Since LRP reflects motor
preparation within the premotor area (server V) or the
primary motor cortex (server Z) and server V is in the route
of simple reaction task, the arrival time of entities into
server V is regarded as the LRP onset time in this simple
reaction time situation. Based on Figure 6 in Appendix, the
time that entities enter server V (V;;) can be estimated in two
conditions depending on the value of z, (z,= 0, short SOA
conditions in Figure 6; ¢, >0, long SOA conditions in Figure
6, see Equation 3)

Max(T;up + T1 3 +T10+ T R 1,=0
SOA~+ T ypt+ T 15, )+ Tt T

Va= (3)
TFst +ta+T2,C ta>0

Since V, starts from the arrival of S1 and S-LRP onset time (S-
LRP) starts from the arrival of S2 (Sommer et al., 2001), S-LRP
equals Vi - SOA, i.e.:
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Max(T; 4p*+T1 5+ T1 ¢+ T 5 t,=0
SOA~+ Tsyp +T54+T5 )+ T 5+ T, -SOA

S-LRP = 4)
Ty +1,+T5,-SOA 1>0

Choice Reaction Time LRP reflects motor preparation in
the regions represented by server V or Z and server Z is in
the route of the choice reaction time condition of T2,
therefore, the arrival time of entities at server Z is the

expected S-LRP onset time (S-LRP) (see Equation 5).
S-LRP = max(T; 4p*+ T3+ T;,c +T1,p—SOA, Topp )
+TutTo0) + Tort Toct Toyt Tow

Modeling Results and its Validation

Using the equations derived in the previous sections, the
predicted results of the dependent variables are presented
and validated with the target experiment results. The value
of parameters of these equations is set based on a classic
cognitive modeling study (Byrne & Anderson, 2001) (see
Appendix 3).

Figure 3 showed the modeling results in comparison with
experimental results. The R square of the model is .84 and
the RMS=53.9 ms.
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Figure 3: The reaction time in the study of Sommer et al. (2001)
(solid lines) along with the queuing network modeling results

(dashed lines)

The modeling results of response accuracy in
comparison with the experiment result are shown in Figure
4. The R square between the prediction and the experiment
result is 0.99 with RMS=.037. Moreover, it is found that at
SOA=700 ms, the percentage of negative RT2 is 15% which
is consistent with the Sommer et al.’s (2001) experimental
results (16%).
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Figure 4: Response accuracy in the study of Sommer et al.

(2001) (solid lines) along with the queuing network modeling
results (dashed lines)
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In addition, the expected pattern of S-LRP exhibits the
similar pattern with the experimental results (see Figure 5
for the comparison of the S-LRP onset time between the
prediction of the model and the experimental results, R
square=.96; RMS=127.5 ms).
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Figure 5: The S-LRP onset time in the study of Sommer
et al. (2001) (solid lines) along with the queuing network
modeling results (dashed lines)

Discussion

We described a queuing network modeling approach to
model reaction time, response accuracy and S-LRP onset
time simultaneously in the dual task situation. Based on the
queuing network architecture as a platform, a set of
mathematical formulas is built which successfully modeled
the three dependent variables coherently with analytical
solution and very few free parameters.

The queuing network modeling approach is able to model
information processing in the brain in both spatial and
temporal dimensions. This modeling approach incorporates
the queuing network architecture which covers a wide range
of brain regions. This feature provides the model a platform
to predict fMRI BOLD signal (blood oxygenation level-
dependent) of several major brain regions in fMRI studies
(Wu & Liu, 2004b), reflecting the spatial location of
information processing in the brain. Combining with the
current work, this modeling approach has the potential to
model experimental results of both fMRI studies with
spatial accuracy and ERP studies with temporal accuracy.

The current work extends the advantages of this modeling
approach in modeling reaction time (Liu, 1997) by unifying
the neural signals and behavioral data. The model’s
prediction is not only consistent with the external behavior
of the subjects, but also in line with the electrophysiological
measurements. The current modeling approach provides at
least an alternative way to quantify the external behavioral
data and to some extent explain how they are generated by
the internal information processing in the brain.

Moreover, this modeling approach provides a
parsimonious and accurate quantification of the S-LRP
onset time and behavioral data, since all of the dependent
variables are modeled by the analytical solutions and only
two free parameters are used in the modeling process.

We are extending the current model approach to model a
wider range of behavioral and physiological measurements
in experimental studies including P3 components in ERP.
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Overall, the queuing network modeling approach is a useful
modeling method to predict the behavioral performance and
electrophysiological phenomena of the cognitive system.
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Figure 6. Modeling mechanisms of the expected RT2 under the simple
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1. Modeling of Expected RT2 (Simple Reaction Time)

There are two conditions in modeling the expected RT2 at the
simple reaction time condition. At short SOA conditions (entities
of T2 arrive at server F before server F starts its anticipation
process, t,=0, see Figure 6), entities of T2 have to wait until
entities of T1 leave server F; after entities of T1 leave server F,
entities of T2 will enter server F immediately. Since server F is
occupied by the entities of T2 (subjects are busy in performing
judgment of T2), the anticipation process is not occurred in this
condition. At long SOA conditions, server F starts its anticipation
process before entities of T2 arrive at server F. The mathematical
models of RT2 (simple reaction condition) are constructed based
on these two conditions in the following sections.

Short SOA Condition (¢2,=0) Under the short SOA condition of
T2 (simple reaction condition), the expected RT2 is also modeled
with the same form of equation in the choice reaction condition of
RT2 except the motor subnetwork’s servers are replaced by the
servers involved in the simple reaction time (see Equation 6 and
Figure 6).

E(RT2|ta = O) = max(T]'AP"‘T]’B'FT]YC +T]YF—SOA, TZ,VP+
T1a+T50) + Topt Toct Topt Tozt Tox ©)

Long SOA Condition (z,>0)
1) Quantification of the Anticipation Process

The anticipation process (R2 is made without seeing S2) at
server F is quantified by the following mechanisms in time
perception. According to the function of server F timing the
perceptual anticipation of a sensory event in simple reaction time
task (Schubotz, et al. 2001): the longer server F anticipating S2
(defined as perceived waiting time, f,..), the higher probability
(defined as p) to trig motor response without seeing S2
(anticipation process): D = tpere | Tpere » where, T, is the duration

between when the anticipation process starts and when the
probability that subjects make the motor response equal to 1.

Based on several psychophysical researches in studying the
relationship between perceived waiting time (Z,..) and actual
waiting time (#,) in very short time periods, there has been
considerable support for a psychophysical law for perceptual
duration described by a power function following the Steven’s
power law (Eisler, 1976). Thus,

Zperc = ktaﬂ (7)

where, ¢, is the duration between when server F starts the
anticipation process and when S2 arrives at the perceptual
subnetwork. k and f§ are the parameters in Steven’s power law
(Wearden, et al., 1998). Since D = toere/ Tpere » WE have:

D =kt | There 3)
Moreover, since p is defined as the probability that the response of
T2 is made with the anticipation process (R2 is made without
seeing S2), there are two conditions in which expected RT2 is
modeled: RT2 with or without the anticipation process.

2) Expected RT2 with the Anticipation Process (RT; 4n1y)
Based on Figure 6, we have

RTZ,ANT[ =Tri+ta+T2,c+T2v+T2,2+T2x—SOA Q)
From Equation 7, £, can be rewritten into:
ta= (tperc/k)l//j (10)

Moreover, since subjects end their waiting process of S2 when
they perceive the time reaches the perceived SOA, the perceived
the waiting time (fperc ) equals the perceived SOA (SOA,,.,.) minus
the perceived Ty (Try perc), 1.€.:
tperc =max(SOAperc -TFStJerL'! 0) (1 1)
where, SOAe; and Tk pere can be derived from Equation 7, thus:

tperc =max (kSOA” - k Tl 0) (12)
Combining Equation 9, 10, and 12, results in:

ta = max[(SOA” -Tr")"” 0] (13)

RT, vy = Trs+ max[(SOA” - Tr" )7, 0] (14)

+T2c+T2v+T2.2+ T2k —SOA

3) Expected RT2 without the Anticipation Process (RT> noan)

Under the condition that there is no anticipation, the expected
RT2 (RT3 no04v) is modeled with the same form of equation in the
choice reaction condition except the motor subnetwork’s servers
are replaced by the servers involved in the simple reaction time
(see Equation 15 and Figure 6).

RTynoan = max(Typ+ T p+Tic +T1p =SOA, Toppt (15)
T14+To0) + Topt Toct Toyt Togt Tox

Hence, the expected RT2 in long SOA conditions (¢,>0) can be
quantified by Equation 16:

E(RT2ta>0) = pRT, 1y + (1= P)RT, youn (16)

2. Mathematical Modeling of Response Accuracy of RT2

In simple reaction condition of RT2, the response accuracy is 1
minus the probability of negative RT2 (P,) (RT2<0 means that the
R2 occurs prior to the arrival of S2 (time=SOA)). Based on Figure
6, the interval between the arrival of S1 (time=0) and R2 is
Trattat Ty ct ToytTo 7t Tok. Supposing u=T,ct T y+T5 7+ ok,
result in, P,=P{RT2< 0} = P{ta< SOA—u—Trs}- Since t, ranges
from 0 to SOA- Tgs (t, ends when S2 arrives according to its
definition), the probability of the RT2<0 (P,) is:

SOA—u~Trst 17
P " 14504~ Tru)dts (7
Solving this equation, probability of correct response (P.=1-P,) is:
Trc+Tav+T2z+T2k SO42T2c+ T2y
SOA — Try +72,2+ T2,k +Trs
Pc= (18)
1 SOA<T2c+T2v+T2z+T2k+Trx

3. Parameter Setting in the Modeling Process

The parameter setting method in this article follows the
parameter setting method in a classic cognitive modeling study
(Byrne & Anderson, 2001): two free parameters (processing time
of server F and Ty,,.) are adjusted at long SOA conditions to fit the
modeling results with experimental results; then without changing
their value, these parameters are used in the model to produce the
modeling results at short SOA conditions. Therefore, there is no
free parameter to fit the experimental result at short SOA
conditions. All of the three dependent variables are modeled based
on the same set of parameters’ values in Table 1. Except the value
of the free parameters, key closure time (Byrne & Anderson,
2001), k and S (Wearden et al., 1998), the value of all the other
parameters come from the same modeling approach which models
a wide range of human performance in various tasks (Liu, et al, in
press).

Table 1: Parameters used in the modeling process

Parameter Value Parameter Value
T 4p 126 ms Ty 24 ms
TZ,VP 126 ms TI,W, TZ.W 24 ms
TZ'A. TZ’B 18 ms TI,X TZ'Y 24 ms
TI,C' TZ,C 18 ms TI,Z TZ,Z 24 ms
T[yF 338 ms T[va TZ,X 24 ms
T, r (choice RT) 324 ms T 10 ms
T, r(simple RT) 293 ms k 2.1
_Tere 570 ms 13 .93
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