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Abstract

To model the percentage change of blood oxygenation level-
dependent (BOLD) signal and reaction time in a dual task, we
propose a new mathematical modeling approach—a queuing
network approach based on queuing network theory of human
performance (Liu, 1996, 1997) and current discoveries in
neuroimage studies. This approach includes a queuing network
architecture representing the information processing in the brain and
mathematical equations to quantify the reaction time, BOLD signal
and its percentage signal change (PSC). Both reaction time and the
percentage change of BOLD signal in an fMRI study of the dual task
are successfully modeled with analytical solutions of the
mathematical equations, which demonstrates its usefulness and
parsimony in modeling the brain activation pattern and human
performance simultaneously. Furthermore, the current modeling
approach uniquely quantifies the queuing mechanism discovered by
the fMRI study and also provides a coherent and quantitative linkage
between the neural signals and behavioral data. Further extension
and development of the current modeling approach are discussed.

Introduction

Performing dual tasks at the same time is common in daily
life. Among these dual tasks, psychological refractory period
(PRP) is one of the most basic dual tasks and it has been
studied at the behavioral level by psychologists for more than
50 years (Creamer, 1963). The basic PRP experiment
paradigm requires subjects to perform two choice reaction
time tasks called task 1 (T1) and task 2 (T2) concurrently;
typically, the reaction time of T1 (RT1) is not affected but the
reaction time of T2 (RT2) is delayed when the interval time
between stimuli of the two tasks is relatively short. The
interval between presentation of stimulus of T1 and T2 is
called stimulus onset asynchrony (SOA).

To find neural correlates of the basic PRP, Jiang et al.
(2004) conducted the first brain imaging experiment strictly
following the procedure in the basic PRP experiment
paradigm with a large number of subjects. In their
experiment, both task 1 and task 2 were choice reaction task.
Task 1 was a visual-manual task: square or circles were
presented on a display, and subjects pressed ‘“1°” for a square
and ‘2" for a circle with their left hands. Task 2 was also a
visual-manual task: subjects were asked to press different

keys on a keypad depending on different letters or different
colors of crosses on the display. They collected both
behavioral performance data and BOLD signal of several
major brain regions.

Besides the fMRI experimental studies, two major groups
of models have been established in modeling BOLD signal—
statistical models and mathematical models. In the group of
statistical models, Cohen (1997) proposed a statistical model
of BOLD signal by fitting the data from the averaged
responses to a three-parameter gamma variate function.
Another important statistical modeling technique is the
structural equation modeling (SEM/SEQ) (Frackowiak,
Friston, Frith, Dolan, & Mazziotta, 1997) and it models the
connectivity among the brain areas by determining the
functional strengths of each anatomical link between regions
with SEM which is widely used in social science. In
mathematical models, several large-scale neuron models have
been built (Husain et al., 2002; Tagamets & Horwitz, 1998).
Each of these models is composed of large-scale networks of
neuronal-like elements; and the brain imaging signal of
certain brain region is computed by integrating synaptic input
into that region. In addition, based on Cohen’s statistical
model, Anderson and his colleagues proposed a mathematical
model which successfully simulated the change of BOLD
signal during the 0-20 sec time course (Anderson, Qin, Sohn,
Stenger, & Carter, 2003; Anderson, Qin, Stenger, & Carter,
2004).

In addition to the previous research, we propose a new
mathematical modeling method which can quantify the
BOLD signal and reaction time simultaneously in dual task
situations. In the following, first, we introduce the platform of
this modeling approach—a queuing network architecture of
information processing in the brain, representing the major
brain regions and their connections as a network. Second,
based on this network platform, a set of mathematical
equations are developed to quantify the two dependent
variables. Third, the modeling results are presented and
validated with the experimental results of Jiang et al. (2004).
Finally, we discuss the implication of this modeling approach
and its further extensions to model the experimental results of
electrophysiological studies.
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Figure 1: The general structure of the queuing network model (function of each server and corresponding brain areas)

Queuing Network Architecture

To model human performance and brain imagining data, the
queuing network modeling approach regards the human
cognition system as a queuing network based on several
similarities between them. First, ample research evidence has
shown that major brain areas with certain information
processing functions are localized and connected with each
other in the brain cortex via neural pathways (Bear & Connor,
2001; Smith et al., 1998; Roland, 1993), which is highly
similar to a queuing network of servers that can process
entities traveling through the routes serially or/and in parallel
depending on specific network arrangements. Therefore,
brain regions with similar functions can be regarded as
servers and neural pathways connecting them are treated as
routes in the queuing network (see Figure 1). Second, it has
discovered that information processed in the brain are coded
in spikes trains (Rieke, Warland, R.S., & Bialek, 1997);
depending on different tasks and learning stages, the to-be-
processed information represented by these spikes trains

sometimes are processed by the brain regions (servers)
immediately; sometimes they have to be maintained in certain
regions to wait for the previous spike trains being processed
(E. E. Smith & Jonides, 1998; Taylor et al., 2000). Hence,
these spikes trains can be represented as entities in the
queuing network naturally and entities are processed in the
network by certain queuing process as an analogy to represent
the waiting and maintaining process of spikes trains.

In modeling human performance, computational models
based on queuing networks have successfully integrated a
large number of mathematical models in response time (Liu,
1996) and in multitask performance (Liu, 1997) as special
cases of queuing networks. Queuing network modeling
approach has been successfully used to generate human
behavior in real time, including simple and choice reaction
time, driver performance and transcription typing (Liu, Feyen
& Tsimhoni, in press; Wu & Liu, 2004a).

In modeling brain imaging pattern, previous work in
queuing network modeling was focused on modeling the
dynamic connectivities among brain regions. Wu and Liu
(2004b) successfully modeled how brain imagining patterns
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change with different learning stages and different stimuli to
be processed. These connectivities of brain regions were
modeled as dynamic changes of routing probability
(probability of entities enter one of multiple routes) in the
queuing network during the learning process.

Modeling BOLD Signals and Reaction Time

To model the experiment of Jiang et al. (2004), first, it is
necessary to determine the route of entities in the network;
second, the reaction time can be estimated by the time for the
entities spent in the routes; third, fMRI BOLD signal and its
percentage signal change (PSC) are modeled by the
processing process of entities in the network.

Route of Entities

The route of entities in the network is determined based on
previous queuing network modeling work in modeling the
connectivity of brain regions (Wu and Liu, 2004b): in
general, depending on the task to be performed, servers
whose function is related to the target task are included in the
route of entities. Since both task 1 and 2 are visual-manual
task in Jiang et al.’s experiment (2004), entities representing
the visual stimuli enter the visual perceptual subnetwork first
(1->2/3->4) to process its location and content information
(see Figure 1); and then they are transferred to the cognitive
subnetwork and go through server A, C and F, making the
judgments of choice reaction task at server F. After that, they
travel to the motor subnetwork (server W, Y, Z and hand
server) to retrieve motor programs, assembly the motor
programs, and initiate the motor response. As a result,
according to the connection of these brain regions, the routes
of the two tasks are:

T1: 1->2/3->4->A->C->F->C->W->Y->Z->Hand

T2: 1->2/3->4->A->C->F->C->W->Y->Z->Hand

Mathematic Modeling of Reaction Time

Independent of SOA conditions, the response time of T1
(RT1) can be predicted by the sum of servers’ the processing
time in the route of entities of T1 since no previous entities
occupy any of the servers in the route (see T1 in Figure 2 and
Equation 1).
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Figure 2: Illustration of reaction time in the basic PRP
paradigm

ERT1)= Tyyp+Tia+ Tt Ty pt Tyt Toyt Tt Ti 24 Tik (1)

where, T;yp is the processing time of the visual perceptual
subnetwork; T; 4, T1.c,T1r T1y, Tiw, T17 and T represents
the processing time of server A, C, F, Y, W, Z and Hand,
respectively.

The response time of T2 (RT2) depends on the comparison
between a) the difference between SOA and the time point
when of entities of T1 exit server F (7} yp+ T4 +T1c+T1F-
SOA) and b) the duration of the processing time before
entities of T2 enter server F (the sum of processing time at the
perceptual subnetwork, server A and C, T yp+T1, 447> ) (see
Equation 2).

ERT2)= max(T, yp+T; 4+T;c+Tr—SOA,
DoyptToutTs0) + Topt Toot Toyt Topt Dozt Tok 2
Equation 2 above can be rewritten into: E(RT2)=
Ty ypt T a+ T o+ T p—SOA + Tyt Tyt Toy + ot Tozt Tok
SOA< Ty yp+ T1g ¥ 11,0+ T p~(Tovpt Toy 120 o
DoyptToq +Toct Topt Toct Toyt Towt Tozt Tok
SOA> Tiypt Tia+T1c+T1r—~(Toypt Tou +T20)

Mathematic Modeling of BOLD Signal

BOLD Signal BOLD signal in the queuing network model is
modeled based on the prior fMRI signal modeling work of
Cohen (1997) and Anderson et al. (2003). Using Cohen ’s
model, Anderson et al. (2003, 2004) proposed that the
integrated BOLD signal (CB(?)) in a certain brain region is
mainly determined by several factors: the length of time the
current buffer/server occupied throughout time 7 (i(x): at time
x, if the current buffer/server is occupied, i(x)=1; otherwise,
i(x)=0), latency scale s and magnitude scale M (see Equation
4) (Anderson et al., 2003; Anderson et al., 2004).

CB(1) = Mji(x)B(t_Tx)dx 4)

where, B(T)=kT“e7'* (Cohen, 1997). In the queuing network
model, assuming the length of time server i is being used is n,
Equation 4 can be further developed into:

tot—x N
CB(1)= M.([B(T)dx 0<x<n=i(x)=1 (5)

0 x<0orx>n=i(x)=0

y="=* and combine Equation 5 with the Cohen’s
S

Suppo

equation B(T) = kT“¢ "', then Equation 5 can be rewritten into
Equation 6:
sk [z, vee ray Tl cy <
CB(1)= ' (6)
0 t=n

S
Solving the integer above, if =Z<y<’, CB(t)=

N

Msb I (1) S)a(%s)isa WhittakerM(.Sa,.5a+.5, %S)_ )

_. uﬂ) —_ sa —
a+l e( O =n WhittakerM .5a,.5a+.5,t Ui
bs bs

where, the result of the Whittaker function—WhittakerM (m,
n, z) can be obtained by solving the following differential
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equation: "+ [-0.25+ m /z + (0.25-n>)/z’]y=0. and 1 in
queuing network can be quantified by Equation 8:

n=pl=2701 (®)

where, p; is server i’s utilization (fraction of time a server is
busy in total time of each trial,); 4; is the arrival rate (number
of arrivals into sever i through L) and 7; and Cap; is the
processing time and capacity of server i, respectively.

Percentage Signal Change of CB(t) (PSC) For the same
brain region, the percentage signal change (fMRI PSC) is the
CB(t) of the experimental condition compared to the CB(z,) of
the baseline condition (e.g., fixation condition in Jiang et al.
2004) (see Equation 9) (Ben-Shachar, Hendler, Kahn, Ben-
Bashat, & Grodzinsky, 2003).
_ CB(t)-CB(0)
~ CB(t0) ©)
Therefore, according to Equations 6 to 9, PSC at short and
long SOA conditions ( PSCliong, PSCshort) can be calculated
if T; Cap,, A; k, M, s, b, a, and t at these conditions are given.
For the same brain regions measured by the same fMRI
techniques, s, £, M, a, T, Cap;, and b are expected to be
remained the same in short and long SOA conditions.
Furthermore, since the length of each trial is fixed either at
short or long SOA conditions, the value of ¢ also remains the
same in short and long SOA conditions. During each trial, the
same amount of information through ¢ arrived at the cognitive
system; therefore, 4; remains the same in short and long SOA
conditions. Therefore, according to Equations 6-9 above, for
the same brain region, the expected percentage signal change
of CB(t) keeps constant across different SOA conditions, i.e.:
2" CB(t)iong = CB(t)shor

PSC

-+ PSCiong - PSCoton
_ CB(t)ins— CB(tv)
CB(t0)

CB(t)shori— CB(10)
CB(to)

_ CB(t)iong — CB(t)shon

L CB(to)

]
. PSCiong - PSCshort = 0

In other words, in this queuing process, since the amount of
information processed by each brain region remains the same
in the short and long SOA conditions, the integrated BOLD
signal remains the same in the short and long SOA
conditions.

Modeling Results and Validation

Using the equations derived in the previous sections, the
predicted results of both reaction time and percentage change
of fMRI signal are presented and validated with the target
experiment results. The value of parameters of these
equations is set based on a classic cognitive modeling study
(Byrne & Anderson, 2001) (see Appendix).

Reaction Time

Figure 3 shows the modeling results in comparison with
experimental results in reaction time: the R square of the
model is .8 and the RMS=35.0 ms.
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Figure 3: The reaction time in the study of Jiang et al. (2001)
(solid lines) along with the queuing network modeling results
(dashed lines)

Percentage Change of fMRI BOLD Signal

Figure 4 shows the modeling results in comparison with
experimental results of the percentage change of fMRI signal:
the R square of the model is .70 and the RMS=0.03.
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Discussion

In the present work, we described a mathematical modeling
approach to model reaction time and PSC of BOLD signal in
a dual task. This modeling approach includes a queuing
network architecture of information processing in the brain
and several mathematical equations quantifying the reaction
time, BOLD signal and its PSC. Both reaction time and the
percentage change of BOLD signal are successfully modeled
with this queuing network approach, which demonstrates its
usefulness in modeling brain activation and human
performance simultaneously. With the previous work in
modeling the different brain activation patterns in learning
process of a visuo-motor task (Wu and Liu, 2004b), the
current queuing network approach is able to model the brain
activation and the dynamic connectivity among the brain
regions simultaneously.

Compared with the traditional reaction time models of dual
tasks focusing on behavioral performance alone, the current
modeling approach provides a coherent and quantitative
linkage between the neural signals (BOLD signal) and
behavioral data (reaction time). The queuing network model
has successfully unified several traditional major reaction
time models (Liu, 1996). The current work extends the
advantages of this modeling approach to unify the neural
signals and behavioral data: the model’s prediction is not only
consistent with the external behavior of the subjects, but also
in line with the experimental results of brain imaging studies.

With solid neurological evidence in developing the queuing
network architecture, the current modeling approach provides
a new way to quantify the external behavioral data and to
some extent explain how they are generated by the internal
information processing in the brain.

Furthermore, with the unique feature of queuing in the
current modeling approach, the queuing network modeling
approach quantifies the queuing mechanism in the basic dual
task found by the current fMRI study—"these data suggest
that passive queuing, rather than active monitoring, occurs
during the PRP” (Jiang et al., 2004, p390). In other words,
our modeling approach modeled the experimental data very
naturally without purposely adjusting the model’s core
assumption to be consistent with this queuing mechanism
discovered by the experimental researchers. This unique
feature makes the current approach very useful in modeling
the behavioral data and BOLD signal in dual tasks since very
few of existing statistical models or mathematical models
regard queuing as their core assumption and quantifies the
queuing mechanism in the basic dual task.

Another important feature of the current modeling
approach is that the mathematical equations of BOLD signal
in the approach incorporate the Cohen’s statistical model and
Anderson’s mathematical model (see the development of
these equations in this article). In other words, this queuing
network modeling approach is consistent with the existing
modeling approaches of BOLD signal; from the development
of its mathematical equations, it can also model the
experimental data quantified by the models of Cohen and
Anderson. For example, by changing the value of a, s and M
in Equation 5, the current modeling approach is able to model
the change of BOLD response during 0-20 sec in which the
peak BOLD response is observed.

Finally, the current modeling approach provides a
parsimonious and accurate quantification of the BOLD signal
and behavioral data, since all of the dependent variables are
modeled by analytical solutions of the relatively simple
mathematical equations.

The current model approach can be extended to model a
wider range of behavioral and physiological measurements
and their neurological mechanisms. For example, we are
developing the mathematical models of event-related
potential (ERP), so that the current modeling is able to not
only model the spatial location where information processing
occurred in the brain, but also quantify the temporal stage of
information processing. Overall, the queuing network
modeling approach is a useful modeling method to quantify
and predict the behavioral and brain imaging data in the
cognitive system; and it also gives us a better understanding
of the basic mechanism underling the dual task performance.
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APPENDIX Parameter Setting in the Modeling Process

The parameter setting method in this article follows the parameter
setting method in a classic cognitive modeling study (Byrne & Anderson,
2001)—a free parameter (server F’s processing time) is estimated to fit
the experiment data at the long SOA condition. The same value of this
parameter is used in short SOA conditions to predict the RT1 and RT2
under short SOA conditions. Therefore, at short SOA conditions, there
are no free parameters to fit the experiment result in the current modeling
approach. Moreover, the value of the free parameter is also constrained
by the nature of the task: processing time of server F for both T1 and T2
are similar since both of the two tasks are choice reaction tasks; the
processing time of server F is significantly longer than the processing
time of other servers because the judgment and decision process involves
complex processing at server F.

Except the value of the free parameter, all of the other parameters are
set based on the experimental conditions of the target experiment to be
modeled (Jiang et al., 2004) as well as existing researches; and the
majority of them come from the same modeling approach which models
a wide range of human performance in various tasks (Liu, et al, in press)
(see Table 1).

Table 1: Parameters in modeling Jiang et al (2004)’s experiment

Parameter Value Source
Tivp, Tovp 126 ms Liu, et al. (in press)
T Top 18 ms Liu, et al. (in press)
TicThc 18 ms Liu, et al. (in press)
Tir 408 ms Value estimated
Tsr 376 ms Value estimated
Tiw Tow 24 ms Liu, et al. (in press)
Ty Toy 24 ms Liu, et al. (in press)
Ti7T>2 24 ms Liu, et al. (in press)
Tix 10 ms Byrne & Anderson (2001)
Cap; depending on servers Wu and Liu (2004a)
L 3 sec Jiang (2004)
Aizshort, Ai-long 22 entities Eagleman &  Churchland
(2005); Jiang (2004)
Kiong, Ksiort 0.452 Cohen (1997)
Miong, Myjore ~ 2.75 Anderson et al. (2003)
Slongs Sshort 0.991 Anderson et al. (2003)
biong, bshon, 0.547 Cohen (1997)
Along, Ashort 8.60 Cohen (1997)
Liong, Lstort 3 sec Jiang (2004)
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