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Abstract

The problem of how abstract symbols, such as those in sys-
tems of natural language, may be grounded in perceptual in-
formation presents a significant challenge to several areas of
research. This paper presents the GLIDES model, a neural
network architecture that shows how this symbol-grounding
problem can be solved through learned relationships between
simple visual scenes and linguistic descriptions. Unlike previ-
ous models of symbol grounding, the model’s learning is com-
pletely unsupervised, utilizing the principles of self organiza-
tion and Hebbian learning and allowing direct visualization of
how concepts are formed and grounding occurs. Two sets of
experiments were conducted to evaluate the model. In the first
set, linguistic test stimuli were presented and the scenes that
were generated by the model were evaluated as the grounding
of the language. In the second set, the model was presented
with visual test samples and its language generation capabili-
ties based on the grounded representations were assessed. The
results demonstrate that symbols can be grounded based on
associations of perceptual and linguistic representations, and
the grounding can be made transparent. This transparency
leads to unique insights into symbol grounding, including how
many-to-many mappings between symbols and referents can
be maintained and how concepts can be formed from cooccur-
rence relationships.

Introduction
In order to create an intelligent symbol system, symbols must
be grounded in perceptual information (Harnad, 1990; Barsa-
lou, 1999). Regardless of how intelligent the behavior of a
system seems, if its symbols depend on external interpreta-
tion to attain meaning then it cannot be said to have achieved
understanding. For understanding to occur, the symbols must
have inherent meaning in terms of the system’s experiences
of the external world. In order to develop a symbol system,
it is therefore necessary to understand how symbols become
grounded in their perceptual correlates (Cottrell, Bartell, &
Haupt, 1990; Chalmers, 1992).

Technically, symbol grounding means establishing percep-
tual categories and associating these categories with abstract
tokens. In order to do that, it is first necessary to determine the
commonalities of all the external objects to which a symbol
refers that are distinct from attributes of objects in other cate-
gories. This process involves emphasizing the differences be-
tween categories and minimizing the differences within cat-
egories, a process called “categorical perception” (Harnad,
1987). Once the boundaries of a category have been estab-
lished, it can be associated with an abstract token, at which
point symbol grounding has occurred. Successfully model-
ing this process computationally could allow symbols used

by machines to have directly grounded meanings as well as
provide insight into how grounding may be accomplished by
the human brain.

Artificial neural network (ANN) architectures provide
strong candidates for computational models of symbol
grounding. Several such architectures have been previously
proposed, as will be reviewed in the following section. While
these models have provided many insights, the problem is by
no means solved. First, most of these models are based on
supervised learning, utilizing corrective feedback. Assuming
that symbol grounding is a developmental cognitive process,
it is unclear what the source of the error signals might be.
Second, the previous models are often opaque, i.e. difficult
to interpret. A model of symbol grounding should ideally
do more than simply show that grounding can be achieved;
it should demonstrate how the grounding occurs and what
grounding looks like on a conceptual level.

This paper presents the GLIDES (Grounding Language in
DEscriptions of Scenes) model, a neural network architec-
ture that learns to ground linguistic descriptions into visual
scenes. The model uses an unsupervised learning proce-
dure based on self-organizing maps and Hebbian adaptations,
learning associations between descriptions and scenes. It al-
lows directly examining the representations and associations
that are formed from the linguistic and visual inputs. The
model therefore provides a unique framework for studying
the grounding task.

GLIDES was evaluated in two sets of experiments. The
first set assesses the model’s symbol grounding by evaluating
the scenes it generates for linguistic test inputs of three types:
(1) single words/concepts, (2) complex descriptions present
in the training set, and (3) complex novel descriptions. The
second set validates the model’s grounding by evaluating its
language generation ability when describing visual samples
from two test sets: (1) scenes from the training set and (2)
novel scenes. The results demonstrate unique insights into
symbol grounding, including how many-to-many mappings
between symbols and referents can be maintained and how
concepts can be formed from cooccurrence relationships.

Prior Grounding Research
An early solution to the symbol-grounding problem was pro-
posed by Harnad (1993), a combined connectionist/symbolic
model trained by supervised learning. Similar models have
been used in several studies since, successfully demonstrat-
ing the strength of connectionist learning in the grounding
task (Cangelosi, Greco, & Harnad, 2000; Riga, Cangelosi, &
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Greco, 2004). Symbols can be grounded with connection-
ist networks, allowing for transfer of meaning from grounded
symbols to higher level symbols. Others have proposed that
connectionist models may be capable of learning grounding
for complex concepts and even syntactic structure (Gasser,
1993).

A valuable touchstone task for the symbol-grounding prob-
lem was proposed by Feldman, Lakoff, Stolcke, & Weber
(1990). The task is to learn the meanings of symbols from
pairings of visual scenes and linguistic descriptions. With
minimal complexity of scenes and descriptions, this task ad-
dresses many important facets of the grounding problem. The
task allows for a vast simplification of the symbol grounding
accomplished by human infants. However, if completed suc-
cessfully, the results could provide valuable insight into how
more complex grounding is accomplished.

Numerous studies have adopted this methodology for ex-
amining grounding, several of which are discussed by Feld-
man, Lakoff, Bailey, Narayanan, Regier & Stolcke (1996).
One of the most compelling models in this line of research is
the DETE architecture, an ANN model that learns relation-
ships between sequences of scenes and descriptions (Nenov
& Dyer, 1993; 1994). While this model learned impres-
sive performance, it was difficult to understand how it devel-
oped conceptual representations, i.e. how its symbols became
grounded.

In sum, although previous models have shown that ground-
ing is possible, it has been difficult to show how exactly it
is achieved and what the grounded representations look like.
This paper presents a new model with the goal of providing
such an account.

The GLIDES Model
GLIDES is a neural network architecture that accomplishes
symbol grounding by learning correlations between visual
scenes and linguistic descriptions. The model consists of
two memory modules, one each for the linguistic and vi-
sual modalities, as well as associative connections between
the two that store learned relationships (Figure 1).

This design was inspired by similar architectures that have
been used for tasks analogous to symbol grounding. In
one study, such an architecture was shown to successfully
learn associations between linguistic modalities (phonolog-
ical and orthographic) and the semantic meanings of words
(Miikkulainen, 1997). Another study used a like architec-
ture in modeling the acquisition of verb semantics (Li, 1999).
These models were able to form robust prototypes and learn
meaningful associations between different modalities such
that they could later be used for generalization. The archi-
tectures also allow direct inspection of what prototypes are
formed and how these prototypes are associated with each
other. These properties are precisely what are needed to ac-
complish grounding as well, as will be discussed in this sec-
tion.

Network Architecture
The GLIDES architecture consists of two memory modules,
one each for the linguistic and visual modalities, with as-
sociative connections between them. The memory modules
are implemented as self-organizing maps. A self-organizing

Figure 1: The network consists of two SOMs, a linguistic
map and a visual map. The units of the maps are connected
with many-to-many associative connections. Each unit of the
maps contains a prototype formed from the inputs to the net-
work. The associative connections between the units repre-
sent the learned relationships between linguistic and visual
information. The network is able to form prototypes and learn
associations from inputs in an unsupervised fashion.

map (SOM) is a system for unsupervised learning that maps
high-dimensional input vectors onto a two-dimensional fea-
ture map (Kohonen, 1989; 1997). The input vectors con-
tain descriptions of observations about the environment. The
map consists of an array of interconnected nodes, where
each node i has an associated representation vectormi =
[µi1, µi2, ..., µin]T ∈ Rn. During training, an input vec-
tor x = [ξ1, ξ2, ..., ξn]T ∈ Rn is compared with the repre-
sentation vectors for all map nodes in parallel and the node
whose representation vector is most similar to the input vec-
tor is chosen to represent the input on the map. This node
is referred to as the Best Matching Unit (BMU). A standard
Euclidean distance measure is used to determine the similar-
ity between the vectors. Once the BMU has been determined,
the map is modified by updating the BMU and the nodes in its
neighborhood to reflect the new input. The reference vectors
for the nodes are adjusted so that they more closely resemble
the input vector. The adjustment is determined by topological
distance from the BMU. The nodes are modified such that:

mi(t + 1) = mi(t) + α(t) · hci(t)[x(t)−mi(t)], (1)

wheret is an integer discrete-time coordinate,α is the learn-
ing rate, andhci is a neighborhood function. The functionhci

determines the amount of modification for map nodes with
respect to their distance from the BMU. The neighborhood
function used is a square area around the BMU; nodes within
a square neighborhood around the BMU are adjusted towards
the input vector with a uniform learning rate.

When the map is trained, nodes of the maps become pro-
totypes of the input vectors. Additionally, similar inputs are
mapped onto topologically proximal nodes. The result is that
nodes on the maps that are close together contain prototypes
for similar inputs. SOM models often lead to cognitively
valid behavior, as has been demonstrated in several areas of
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cognition, including vision, audition, memory, decision mak-
ing, and language processing (Oja, Kaski, & Kohonen, 2001).

In GLIDES, the two SOMs are connected to each other
with many-to-many associative connections. Each node on
one map has unidirectional connections to each node on the
other map. The strengths of these connections represent the
strength of associations between a given description and pos-
sible scenes, or conversely between a given scene and pos-
sible descriptions. When training samples are presented to
the maps, each map node produces an activity strength. This
strength is proportional to the similarity between the input
vector and the node’s representation vector, as determined
by Euclidean distance. The associative connections between
map nodes are then adjusted with respect to their activity
strengths, using Hebbian learning (Hebb, 1949). The connec-
tion between two nodes is strengthened proportional to their
activity levels:

∆wij,uv = α(t)nS,ijnD,uv, (2)

wherewij,uv is the unidirectional weight between the source
map node at location(i, j) and the destination node at loca-
tion (u, v), andnS,ij andnD,uv represent the activations of
these units, respectively. Thus, the connections between si-
multaneously active nodes are strengthened. The associative
weight vectors are then normalized, which serves to decrease
the strengths of connections to inactive units. In this way,
the model is able to learn cooccurrence relationships between
nodes on the different maps.

The model is trained by presenting complementary [scene,
description] pairs to both SOMs simultaneously. The data
stored in the SOMs is modified based on the inputs and the
associative connections between the maps are updated. Af-
ter training, it is possible to present a description to the lin-
guistic SOM, propagate through the associative connections,
and generate the visual scene which the network associates
with that description. Similarly, it is possible to present a vi-
sual scene and view the corresponding linguistic description
or descriptions.

Visual Inputs

The visual inputs for the model were20 × 20 grayscale
bitmaps, represented by 400-dimensional vectors with each
component between 0 and 1. The visual inputs consisted
of one-object and two-object scenes (Figure 2). There were
8 types of objects used in the scenes: open squares, filled
squares, open diamonds, filled diamonds, left triangles, right
triangles, X’s and Z’s. The objects varied in their sizes and
positions. The size of an object was described as either
“small”, “medium”, or “large”. There were 13 possible de-
scriptions for the position of an object: “in the top left”, “in
the top middle”, “in the top right”, “in the middle left”, “in
the middle”, “in the middle right”, “in the bottom left”, “in
the bottom middle”, “in the bottom right”, “on the left”, “on
the right”, “on the top”, and “on the bottom”. Scenes with two
objects presented various relationships between objects: “in-
side of”, “around”, “to the left of”, “to the right of”, “above”
and “below”. These dimensions for variation provided a sig-
nificantly large set of possible scenes, making the learning
task considerably difficult.

Figure 2: The visual inputs were 400-dimensional vectors
representing20 × 20 grayscale bitmaps. The vector com-
ponents were either 0 (black) or 1 (white). The scenes had
either one or two objects. These inputs provided the model
with a significantly complex visual domain for grounding.

Linguistic Descriptions

The linguistic descriptions for the visual scenes were gener-
ated from a 31-word vocabulary. The vocabulary contains
words for describing attributes of individual objects (size,
shape, and position) as well as relationships between objects.
The generative rules for scene descriptions are shown in Table
1. A given scene may be described by a number of possible
descriptions, and similarly there may be a number of differ-
ent scenes given the same description. This complex mapping
is a key aspect of the symbol grounding problem. There are
many-to-many mappings between scenes and descriptions, as
is the case in the real world. In order to successfully complete
the task, it is necessary to learn the meanings of individual
symbols. This learning task amounts to categorical percep-
tion and, if successfully accomplished, allows the network to
generalize the meanings of the symbols to novel situations.

Table 1: Generative Rules for Scene Descriptions

Description = NP | REL
REL = NP relterm NP
NP = [size] object [position]
object = specobj| “object”
relterm = “above” | “to the left of” | “inside of” | ...
specobj= “open square”| “filled diamond” | ...
size= “small” | “medium” | “large”
position = “in the top left” | “on the right” | ...

The linguistic descriptions were represented by 31-
dimensional vectors, with each unit of the vector correspond-
ing to a distinct word in the vocabulary. The vector com-
ponents were between 0 and 1. The sequential information
of the descriptions was represented by decaying the activa-
tions of the vector components linearly with respect to their
positions in the sequences. This technique for representing
sequential information through activation decay was inspired
by the SARDNET model (James & Miikkulainen, 1995).

Experiments
The GLIDES model was first trained with a corpus of [scene,
description] pairs and its symbol grounding and language
generation abilities were then evaluated. This section de-
scribes the procedure for training the model, the experiments
conducted with the trained model, and the results.
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Training Procedure
The network was trained for 2000 epochs with 2500 training
pairs. The pairs consisted of50% one-object scenes and50%
two-object scenes. The descriptions were generated so that
size, shape, and position information was included in80% of
the samples. The idea was that the network can learn more
from a description such as “small open square on the left”
than it can from the description “object”, which lacks any
meaningful information. The training pairs were presented in
random order. The same learning rateα(t) was used for both
maps and the associative connections. The learning rate was
decreased linearly from 0.1 to 0.05 over the first 500 epochs
and then decreased linearly to 0 during the remaining epochs.
At the same time, the neighborhood size for both maps de-
creased linearly from 4 to 1 and then from 1 to 0.

Testing Procedure
During testing, a test stimulus (either linguistic or visual) was
presented to its appropriate map and the best matching unit
(BMU) was determined. The associative connections for the
BMU were then displayed. The strongest associative con-
nection for the BMU was propagated through and the corre-
sponding unit on the other map was considered the network’s
response. The network’s responses were then scored subjec-
tively based on their relevance for the given test stimulus, as
will be discussed for each experiment below.

Experiment 1: Symbol Grounding
In order to evaluate the symbol grounding in the model, lin-
guistic test samples were presented and the scenes that the
network generated in response were evaluated. Because vi-
sual scenes are highly variable, there is no mechanical pro-
cedure that could be used to automatically judge how appro-
priate a visual scene is for a given description. Thus, the re-
sponses can only be scored subjectively. If done systemati-
cally, however, such scoring can provide useful information
about the performance of the system. Therefore, each scene
was assigned a score from 0 to 1 in increments of 0.1 based on
how appropriate it was for the description. Sample responses
and their corresponding scores are presented in Figure 3 to
provide a sense for this system.

In testing, the network was presented with three groups
of stimuli: simple symbols, complex descriptions, and novel
descriptions. The first group, simple symbols, consisted of
individual words from the network’s vocabulary. This form
of testing examined the network’s grounding of individual
concepts. The second testing set, complex descriptions, was
composed of examples from the network’s training corpus.
This form of testing examined how well the network had
learned the information it was given. For the third testing set,
the network was presented with complex descriptions which
it had not seen in training. This testing set examined the net-
work’s ability to generalize to novel stimuli.

For each of the three testing sets, 30 samples were
presented. The means and standard deviations for the scores
were calculated and were:

Simple Symbols:µ = 0.48,σ = 0.31
Complex Descriptions:µ = 0.62,σ = 0.23
Novel Descriptions:µ = 0.25,σ = 0.14.

“in the “filled diamond” “x”
bottom middle”

0 0.5 1.0

“small z “medium right “small object
in the top right” triangle inside of large

above open square” open square”
0 0.5 1.0

“small open square “large filled square “small open square
in the top right” in the top right” to the right of

large object”
0 0.5 0.7

Figure 3: The scenes generated by the network were assigned
scores between 0 and 1 in increments of 0.1 based on their
relevance to the description. Sample scenes, descriptions, and
scores are shown for each of the three test sets: simple, com-
plex, and novel descriptions. The top three images are from
the simple test set, the middle three are from the complex test
set, and the bottom three are from the novel test set. These
samples provide a sense of the scoring system that was used,
as well as the level of performance achieved.

These results indicate that the network performed best on
examples which were in its training set, as is to be expected.
The network also learned the meanings of simple symbols
well. Its performance on novel descriptions indicate that the
network was somewhat capable of generalizing the mean-
ings it had learned, as indicated by the examples in Figure
3. The evaluation of the network’s performance was by ne-
cessity subjective, but indicates that the network is capable of
accomplishing symbol grounding.

Experiment 2: Language Generation
The second set of experiments analyzed the ability of the
GLIDES model to generate linguistic descriptions when pre-
sented with scenes as input. The idea was to test whether
the grounding was functionally adequate. If grounding was
sufficiently established the model should be able to apply its
knowledge about word meanings to describe novel scenes.
The model was presented with samples from two test sets:
(1) scenes from the training set and (2) novel scenes.

Again there is no straightforward mechanistic technique
for evaluating how appropriate the linguistic responses are.
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“open square”: 0.16 “medium”: 0.13
“open diamond”: 0.43 “on the left”: 0.14
“large”: 0.60 “in the middle”: 0.22
“small”: 0.66 “to the right of”: 0.25
“around”: 0.83 “small”: 0.63
“right triangle”: 1.00 “right triangle”: 0.93
score: 0.8 score: 0.6

“Z”: 0.21 “small”: 0.19
“small”: 0.28 “on the right”: 0.19
“open square”: 0.51 “around”: 0.22
“right triangle”: 0.54 “square”: 0.63
“medium”: 0.73 “large”: 0.79
“above”: 0.83 “object”: 0.93
score: 0.2 score: 0.5

Figure 4: The descriptions generated by the model were as-
signed scores between 0 and 1 in increments of 0.1 based on
their relevance to the visual input. The top two scenes are im-
ages from the training set and the bottom two are novel test
samples. The activation strengths are listed for all those that
were over 0.10. These samples provide a feel for the scoring
system and performance of the network.

For each scene, the network should ideally retain numerous
descriptions because many such descriptions can be deemed
appropriate. It is therefore unclear what “correct” descrip-
tion a given response should be compared against. Even if
it were possible to discern what the desired answer should
be, the encoding of sequential information in the descriptions
additionally complicates the scoring process. It does not suf-
fice to directly compare activation strengths of corresponding
units in the response description and the “correct” description
because decreasing activation strength is used to encode se-
quential information. Therefore, the linguistic response were
scored similarly to the visual responses, using a systematic
subjective valuation based on appropriateness for a given test
scene. The scoring system assigned values between 0 and 1
in increments of 0.1, taking into consideration the activation
strengths for appropriate words in describing a given scene
and weighing them against strong activations for inappropri-
ate words. Additionally, if the sequence indicated by the acti-
vation values was meaningful, the score was improved20%.

Due to the large number of possible scenes and computa-
tional constraints with training the system, the training set
only covered a small portion of possible images. In order
to account for the poverty of training stimuli, the novel test
samples were generated so that they overlapped with at least
ten samples in the training set in at least two of the size, shape

and position dimensions. The model was presented with 30
test samples from each testing group: training samples and
novel samples. To provide a sense of the scoring system,
sample test scenes, descriptions, and their corresponding
scores are presented in Figure 4. The means and standard
deviations for the scores were:

Training Samples:µ = 0.64,σ = 0.24
Novel Samples:µ = 0.32,σ = 0.13.

The performance, together with samples in Figure 4, shows
that the model learned the training data well and was some-
what capable of generalizing to scenes resembling those in
the training corpus. These results provide evidence that the
model can ground meanings and, given sufficient training
data, generalize them to novel situations.

Insights on Grounded Representations
Direct examination of representations and associations
learned by the GLIDES model leads to interesting insights
into how grounding is attained. One such insight is the way in
which the many-to-many mappings between symbols and ref-
erents is retained by the model. The associative connections
for a certain concept, such as “large square”, have strong links
to scenes containing large squares in different positions (Fig-
ure 5). Another insight concerns how concepts can be learned
from their cooccurrence. The visual responses for various lin-
guistic inputs show clearly the information that was extracted
from the training data and grounded in the concepts. As the
description of a concept becomes more specific, the associa-
tions similarly narrow in scope and the grounded image be-
comes more precise. In this way, the model retains concepts
of both a coarse and fine granularity. Insights such as these
have been difficult to obtain with previous models of ground-
ing, which did not have the transparent representation of cat-
egories and associations that GLIDES has. Such observations
may prove valuable in future work in building grounded sys-
tems.

(a) (b)

(c) (d)

Figure 5: Image (a) displays the associative connections for
the linguistic input “large square” with the three strongest
areas of activation identified. Images (b), (c), and (d) dis-
play the strongest scenes stored for each of these activation
areas. This figure demonstrates how the model is able to re-
tain many-to-many mappings between symbols and referents.
Such visualizations have been difficult to do with previous
models but the two-map architecture of GLIDES makes them
explicit.
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Discussion and Future Work
The GLIDES model is a neural network architecture that
demonstrates how symbol grounding can be accomplished
by learning relationships between visual scenes and linguis-
tic descriptions. The model learns in an unsupervised fash-
ion and allows inspecting concepts and mappings that it has
learned. This ability provides a unique perspective on the
grounding problem that has been difficult to achieve with pre-
vious models. The architecture provides a potential platform
for further investigations of symbol grounding and early lan-
guage acquisition.

A possible direction for future work is to compare the
learning in the model to child language acquisition. For ex-
ample, the network can be analyzed at different times dur-
ing its training to determine how well it has learned different
concepts. These results can then be analyzed to see if the net-
work exhibits observed phenomena from child language stud-
ies, such as the over- and undergeneralization of the meanings
of words. Such a study could serve to verify or falsify the net-
work as a cognitive model.

Another possible extension is to implement a more robust
representation for sequential information. Such an extension
would allow more complex scenes and descriptions to be rep-
resented and more complex phenomena to be studied, such
as complex grammatical constructs and moving objects. The
model could attempt to learn verbs and changes in object
states over time. One possibility for efficiently representing
sequential information in both the visual and linguistic input
domains would be to create SARDNET encodings of the in-
put sequences and then present those encodings to the SOMs
(James & Miikkulainen, 1995). Such encodings of complex
scenes and descriptions could be used to identify the limits of
what can be effectively grounded in perceptual input and what
can be more effectively represented as higher-level symbolic
constructs.

Conclusion
The GLIDES model provides a way for accomplishing the
grounding task in a straightforward and explicit manner. The
model learns to associate linguistic descriptions and visual
scenes in an unsupervised process, which results in trans-
parent representations for grounded symbols. Such trans-
parency provides unique insights into the grounding process,
and can serve as a foundation for future psychological studies
of grounding as well as implementations of grounded artifi-
cial systems.
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