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Abstract by machines to have directly grounded meanings as well as
provide insight into how grounding may be accomplished by
The problem of how abstract symbols, such as those in sys- the human brain.

tems of natural language, may be grounded in perceptual in- P ; ;
formation presents a significant challenge to several areas of Artificial neural network (ANN) architectures provide

research. This paper presents the GLIDES model, a neural Strong candidates for computational models of symbol
network architecture that shows how this symbol-grounding grounding. Several such architectures have been previously
problem can be solved through learned relationships between proposed, as will be reviewed in the following section. While
simple visual scenes and linguistic descriptions. Unlike previ-  these models have provided many insights, the problem is by

ous models of symbol grounding, the model’s learning is com- .
pletely unsupervised, utilizing the principles of self organiza- no means solved. First, most of these models are based on

tion and Hebbian learning and allowing direct visualization of ~ supervised learning, utilizing corrective feedback. Assuming
how concepts are formed and grounding occurs. Two sets of that symbol grounding is a developmental cognitive process,

experiments were conducted to evaluate the model. In the first jt js unclear what the source of the error signals might be.

set, linguistic test stimuli were presented and the scenes that ; ; s
were generated by the model were evaluated as the grounding Second, the previous models are often opaque, i.e. difficult

of the language. In the second set, the model was presented t0 interpret. A model of symbol grounding should ideally
with visual test samples and its language generation capabili- do more than simply show that grounding can be achieved,;

ties based on the grounded representations were assessed. Thét should demonstrate how the grounding occurs and what
results demonstrate that symbols can be grounded based on grounding looks like on a conceptual level.
associations of perceptual and linguistic representations, and

the grounding can be made transparent. This transparency _ | NiS paper presents the GLIDES (Grounding Language in
leads to unique insights into symbol grounding, including how = DEscriptions of Scenes) model, a neural network architec-
many-to-many mappings between symbols and referents can ture that learns to ground linguistic descriptions into visual
be maintained and how concepts can be formed from cooccur- gecenes. The model uses an unsupervised learning proce-
rence relationships. dure based on self-organizing maps and Hebbian adaptations,
learning associations between descriptions and scenes. It al-
Introduction lows directly examining the_ rep_regentatior]s anq associations
that are formed from the linguistic and visual inputs. The

Shodel theref i ique f Kk f i
be grounded in perceptual information (Harnad, 1990; Barsathg%?ohnﬂﬁgigsﬁir_w'des a unique framework for studying

lou, 1999). Regardless of how intelligent the behavior of a GLIDES was evaluated in two sets of experiments. The

S e e o ommt e et v 5o assesses the model ymbolgrouning by evalatng

understanding. For ugnderstanding to oceur, the symbols mu%e scenes it generates for linguistic test inputs of three types:

h inherent .meanin i terms of the s s'tem’s exDErieNnc _i) smgle_ v_vords/concepts, (2) complex descrlpt_lons present
ave inhe 9 y P 4R the training set, and (3) complex novel descriptions. The

of the external world. In order to develop a symbol SyStemSecond set validates the model’s grounding by evaluating its

it is therefore necessary to understand how symbols becon]g : o o .
X . nguage generation ability when describing visual samples
grounded in their perceptual correlates (Cottrell, Bartell, &fror% tV\?O t%st sets: (1) scgnes from the tra?ning set andp(Z)

Haupt, 1990; Chalmers, 1992). . novel scenes. The results demonstrate unique insights into
Technically, symbol grounding means establishing percep:

. S : ; symbol grounding, including how many-to-many mappings

:gﬁleﬁgtelgc())rrlgzra't(r;((jjg?ﬁgtcIiatltilsnﬁr;?(ralseieciggOtr 'ej vtwth abSttLaoéétween symbols and referents can be maintained and how
o ' . yto getermine Eoncepts can be formed from cooccurrence relationships.

commonalities of all the external objects to which a symbol
refers that are distinct from attributes of objects in other cate- . .
gories. This process involves emphasizing the differences be- Prior Grounding Research
tween categories and minimizing the differences within cat-An early solution to the symbol-grounding problem was pro-
egories, a process called “categorical perception” (Harnadyosed by Harnad (1993), a combined connectionist/symbolic
1987). Once the boundaries of a category have been estaimodel trained by supervised learning. Similar models have
lished, it can be associated with an abstract token, at whicheen used in several studies since, successfully demonstrat-
point symbol grounding has occurred. Successfully modeling the strength of connectionist learning in the grounding
ing this process computationally could allow symbols usedask (Cangelosi, Greco, & Harnad, 2000; Riga, Cangelosi, &
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Greco, 2004). Symbols can be grounded with connection

Visual Map

ist networks, allowing for transfer of meaning from grounded |@QQCQOO@O O
symbols to higher level symbols. Others have proposed the 8 8 8 8 8 88 < “emall right triangle”
connectionist models may be capable of learning grounding |00 CCCOOO
for complex concepts and even syntactic structure (Gasse 8 8 8 8 8 80 © 8 8 {inguistic Map
1993). , ooooo&:é:@ OHO0O000O00
A valuable touchstone task for the symbol-grounding prob- |cooocco@ sleslolelelelolote]
lem was proposed by Feldman, Lakoff, Stolcke, & Weber |©OQQOQOOQOO O@”% QOOOOOOGO
(1990). The task is to learn the meanings of symbols frorr OOOOOOO.?'? 8888888888
pairings of visual scenes and linguistic descriptions. With OOOCOCOO0D
minimal complexity of scenes and descriptions, this task ad - COOCoOCOO0
dresses many important facets of the grounding problem. Th 0 oeogesgeee
task allows for a vast simplification of the symbol grounding ::i: o totetoretoteTotere,

accomplished by human infants. However, if completed suc
cessfully, the results could provide valuable insight into how

more complex grounding is accomplished. . ) . L
Numerous studies have adopted this methodology for extigure 1: The network consists of wo SOMs, a linguistic

amining grounding, several of which are discussed by Feld™Map and a visual map. The units of the maps are connected
man, Lakoff, Bailey, Narayanan, Regier & Stolcke (1996)_Wlth many-to-many associative connections. Each unit of the
One of the most compelling models in this line of research ignaps contains a prototype formed from the inputs to the net-
the DETE architecture, an ANN model that learns relation-work. The associative connections between the units repre-
ships between sequences of scenes and descriptions (Nersent the learned relationships between linguistic and visual
& Dyer, 1993; 1994). While this model learned impres- information. The network is able to form prototypes and learn
sive performance, it was difficult to understand how it devel-associations from inputs in an unsupervised fashion.

oped conceptual representations, i.e. how its symbols became

grounded.

In sum, although previous models have shown that groundmap (SOM) is a system for unsupervised learning that maps
ing is possible, it has been difficult to show how exactly it high-dimensional input vectors onto a two-dimensional fea-
is achieved and what the grounded representations look likeure map (Kohonen, 1989; 1997). The input vectors con-
This paper presents a new model with the goal of providingain descriptions of observations about the environment. The
such an account. map consists of an array of interconnected nodes, where

each node i has an associated representation vectos
The GLIDES Model (i, 112, ..., un]” € R™. During training, an input vec-

_ T H H _
GLIDES is a neural network architecture that accomplisheéorf t_ [51752{ ""?"] ”6 R*Is ((:jompared V;Ilml] thg :ﬁpre d
symbol grounding by learning correlations between visuaP€Ntation Vectors 1or all map nodes in paralfiél and the node
scenes and linguistic descriptions. The model consists of/10S€ representation vector is most similar to the input vec-
tor is chosen to represent the input on the map. This node

two memory modules, one each for the linguistic and vi-, . :
sual modalities, as well as associative connections betwedf "€ferred to as the Best Matching Unit (BMU). A standard
uclidean distance measure is used to determine the similar-

the two that store learned relationships (Figure 1). .

. : - o ; ty between the vectors. Once the BMU has been determined,
This design was inspired by similar architectures that hawi| 2 i ) o
been used for tasks analogous to symbol grounding. | he map is modified by updating the BMU and the nodes in its

one study, such an architecture was shown to successful ighborhood to refl_ect the new input. The reference vectors
learn associations between linguistic modalities (phonolog; r the nodes are adjusted so that they more closely resemble

; : ; : input vector. The adjustment is determined by topological
ical and orthographic) and the semantic meanings of word 1€ Inpu iy X
(Miikkulainen, 1997). Another study used a like architec- istance from the BMU. The nodes are modified such that:

ture in modeling the acquisition of verb semantics (Li, 1999). _ o o o
These models were able to form robust prototypes and learn mi(t +1) = mi(t) + alt) - hei(®)[z(t) = ma()], (1)
meaningful associations between different modalities suckyheret is an integer discrete-time coordinateis the learn-

that they could later be used for generalization. The archimg rate, anch,; is a neighborhood function. The functiop;
tectures also allow direct inspection of what prototypes argjetermines the amount of modification for map nodes with
formed and how these prototypes are associated with eagRspect to their distance from the BMU. The neighborhood
other. These properties are precisely what are needed to agmction used is a square area around the BMU; nodes within
complish grounding as well, as will be discussed in this secy square neighborhood around the BMU are adjusted towards
tion. the input vector with a uniform learning rate.

. When the map is trained, nodes of the maps become pro-
Network Architecture totypes of the input vectors. Additionally, similar inputs are
The GLIDES architecture consists of two memory modulesmapped onto topologically proximal nodes. The result is that
one each for the linguistic and visual modalities, with as-nodes on the maps that are close together contain prototypes
sociative connections between them. The memory modulefor similar inputs. SOM models often lead to cognitively
are implemented as self-organizing maps. A self-organizingalid behavior, as has been demonstrated in several areas of
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cognition, including vision, audition, memory, decision mak-
ing, and language processing (Oja, Kaski, & Kohonen, 2001
In GLIDES, the two SOMs are connected to each othe
with many-to-many associative connections. Each node o
one map has unidirectional connections to each node on t
other map. The strengths of these connections represent the
strength of associations between a given description and po&igure 2: The visual inputs were 400-dimensional vectors
sible scenes, or conversely between a given scene and pagpresenting0 x 20 grayscale bitmaps. The vector com-
sible descriptions. When training samples are presented {gonents were either 0 (black) or 1 (white). The scenes had
the maps, each map node produces an activity strength. Thigiher one or two objects. These inputs provided the model

strength is propomor,\al to the S|m|_lar|ty between the INpUt itk a significantly complex visual domain for grounding.
vector and the node’s representation vector, as determined

by Euclidean distance. The associative connections between
map nodes are then adjusted with respect to their activity ; i P
strengths, using Hebbian learning (Hebb, 1949). The conne():(‘-mgwstIC Descriptions
tion between two nodes is strengthened proportional to theiFhe linguistic descriptions for the visual scenes were gener-
activity levels: ated from a 31-word vocabulary. The vocabulary contains
words for describing attributes of individual objects (size,
AWy = (t)NS.ii 7D iy (2)  shape, and position) as well as relationships between objects.
’ ! The generative rules for scene descriptions are shown in Table
wherew;; .., is the unidirectional weight between the sourcel- A given scene may be described by a number of possible
map node at locatiofi, j) and the destination node at loca- descriptions, and similarly there may be a number of differ-
tion (u, v), andng,;; andnp, ., represent the activations of €NtScenes given the same description. This complex mapping
these units, respectively. Thus, the connections between d& @ key aspect of the symbol grounding problem. There are
multaneously active nodes are strengthened. The associatiffgny-to-many mappings between scenes and descriptions, as
weight vectors are then normalized, which serves to decreadg the case in the real world. In order to successfully complete
the strengths of connections to inactive units. In this waythe task, it is necessary to learn the meanings of individual
the model is able to learn cooccurrence relationships betweefymPols. This learning task amounts to categorical percep-
nodes on the different maps. tion and, if successfully accomplished, allows the network to

The model is trained by presenting complementary [Scenégenerahze the meanings of the symbols to novel situations.
description] pairs to both SOMs simultaneously. The data
stored in the SOMs is modified based on the inputs and the
associative connections between the maps are updated. Af-
ter training, it is possible to present a description to the lin-
guistic SOM, propagate through the associative connections,
and generate the visual scene which the network associates

Table 1: Generative Rules for Scene Descriptions

Description = NP | REL
REL = NP relterm NP

with that description. Similarly, it is possible to presenta vi- | NP = [sizd object ‘[po_sitic,)’n]
sual scene and view the corresponding linguistic description | Object= specobj| “object o
or descriptions. relterm = “above”| “to the left of” | “inside of” | ...

specobj= “open square’ “filled diamond”| ...
Visual Inputs size=“small” | “medium” | “large”
position = “in the top left”| “on the right”| ...

The visual inputs for the model wer2) x 20 grayscale
bitmaps, represented by 400-dimensional vectors with each
component between 0 and 1. The visual inputs consisted
of one-object and two-object scenes (Figure 2). There were,
8 types of objects used in the scenes: open squares, fillgﬁ

The linguistic descriptions were represented by 31-
mensional vectors, with each unit of the vector correspond-
g to a distinct word in the vocabulary. The vector com-
onents were between 0 and 1. The sequential information
of the descriptions was represented by decaying the activa-
Sons of the vector components linearly with respect to their
positions in the sequences. This technique for representing
sequential information through activation decay was inspired
by the SARDNET model (James & Miikkulainen, 1995).

squares, open diamonds, filled diamonds, left triangles, rig
triangles, X's and Z’'s. The objects varied in their sizes an
positions. The size of an object was described as eith
“small”, “medium”, or “large”. There were 13 possible de-
scriptions for the position of an object: “in the top left”, “in
the top middle”, “in the top right”, “in the middle left”, “in
the middle”, “in the middle right”, “in the bottom left”, “in
the bottom middle”, “in the bottom right”, “on the left”, “on .
the right”, “on the top”, and “on the bo%tom”. Scenes with two Experiments

objects presented various relationships between objects: “inFhe GLIDES model was first trained with a corpus of [scene,
side of”, “around”, “to the left of”, “to the right of”, “above” description] pairs and its symbol grounding and language
and “below”. These dimensions for variation provided a sig-generation abilities were then evaluated. This section de-
nificantly large set of possible scenes, making the learningcribes the procedure for training the model, the experiments
task considerably difficult. conducted with the trained model, and the results.
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Training Procedure

The network was trained for 2000 epochs with 2500 training
pairs. The pairs consisted 8% one-object scenes ahd%
two-object scenes. The descriptions were generated so that
size, shape, and position information was include&Gi#h of

the samples. The idea was that the network can learn more
from a description such as “small open square on the left”
than it can from the description “object”, which lacks any
meaningful information. The training pairs were presented in
random order. The same learning raig) was used for both
maps and the associative connections. The learning rate was
decreased linearly from 0.1 to 0.05 over the first 500 epochs
and then decreased linearly to 0 during the remaining epochs.

“in the “filled diamond”
bottom middle”

0 0.5

At the same time, the neighborhood size for both maps de- ~ “smallz “medium right “small object

creased linearly from 4 to 1 and then from 1 to O. in the top right” triangle inside of large
above open square” open square”

Testing Procedure 0 0.5 1.0

During testing, a test stimulus (either linguistic or visual) was
presented to its appropriate map and the best matching unit
(BMU) was determined. The associative connections for the
BMU were then displayed. The strongest associative con-
nection for the BMU was propagated through and the corre- :
sponding unit on the other map was considered the network’s ‘small open square  “large filled square  “small open square

response. The network’s responses were then scored subjec-in the top right” in the top right” to the right of
tively based on their relevance for the given test stimulus, as large object”
will be discussed for each experiment below. 0 0.5 0.7

Experiment 1. Symbol Grounding Figure 3: The scenes generated by the network were assigned

In order to evaluate the symbol grounding in the model, lin-gcores between 0 and 1 in increments of 0.1 based on their

guistic test samples were presented and the scenes that iga\ance to the description. Sample scenes, descriptions, and

network generated in response were evaluated. Because Yores are shown for each of the three test sets: simple, com-

sual scenes are highly variable, there is no mechanical Pro%ex and novel descriotions. The too three images are from
cedure that could be used to automatically judge how approQ ’ P ’ P 9

priate a visual scene is for a given description. Thus, the rethe simple test set, the middle three are from the complex test

sponses can only be scored subjectively. If done systematfet. and the bottom three are from the novel test set. These

cally, however, such scoring can provide useful informationsamples provide a sense of the scoring system that was used,

about the performance of the system. Therefore, each sce@e well as the level of performance achieved.

was assigned a score from 0 to 1 in increments of 0.1 based on

how appropriate it was for the description. Sample responses

and their corresponding scores are presented in Figure 3 to These results indicate that the network performed best on

provide a sense for this system. examples which were in its training set, as is to be expected.
In testing, the network was presented with three groupd he network also learned the meanings of simple symbols

of stimuli: simple symbols, complex descriptions, and novelwell. Its performance on novel descriptions indicate that the

descriptions. The first group, simple symbols, consisted of€twork was somewhat capable of generalizing the mean-

individual words from the network’s vocabulary. This form ings it had learned, as indicated by the examples in Figure

of testing examined the network’s grounding of individual 3- The evaluation of the network’s performance was by ne-

concepts. The second testing set, complex descriptions, w&€ssity subjective, but indicates that the network is capable of

composed of examples from the network’s training corpusa@ccomplishing symbol grounding.

This form of testing examined how well the network had . . .

learned the information it was given. For the third testing setEXPeriment 2: Language Generation

the network was presented with complex descriptions whiciThe second set of experiments analyzed the ability of the

it had not seen in training. This testing set examined the netSLIDES model to generate linguistic descriptions when pre-

work’s ability to generalize to novel stimuli. sented with scenes as input. The idea was to test whether
For each of the three testing sets, 30 samples werthe grounding was functionally adequate. If grounding was

presented. The means and standard deviations for the scorgsfficiently established the model should be able to apply its

were calculated and were: knowledge about word meanings to describe novel scenes.
The model was presented with samples from two test sets:
Simple Symbolsy =0.48,0 = 0.31 (1) scenes from the training set and (2) novel scenes.
Complex Descriptionsy, = 0.62,0 = 0.23 Again there is no straightforward mechanistic technique
Novel Descriptionsy, = 0.25,0 = 0.14. for evaluating how appropriate the linguistic responses are.
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and position dimensions. The model was presented with 30
test samples from each testing group: training samples and
novel samples. To provide a sense of the scoring system,
sample test scenes, descriptions, and their corresponding
scores are presented in Figure 4. The means and standard

‘open square™ 0.16 ~ “medium™ 0.13 deviations for the scores were:

“open diamond”: 0.43  “on the left”: 0.14

“large”™: 0.60 “in the middle™: 0.22 Training Samplesy = 0.64,0 = 0.24

“small”: 0.66 “to the right of”: 0.25 Novel Samplesy, =0.32,0 = 0.13.

“around”: 0.83 ‘small’: 0.63 The performance, together with samples in Figure 4, shows
‘right triangle™ 1.00  “right triangle™: 0.93 that the model learned the training data well and was some-
score: 0.8 score: 0.6 what capable of generalizing to scenes resembling those in

the training corpus. These results provide evidence that the
model can ground meanings and, given sufficient training
data, generalize them to novel situations.

Insights on Grounded Representations

"z 021 “small”: 0.19 Direct examination of representations and associations
‘small”: 0.28 “on the right™ 0.19 learned by the GLIDES model leads to interesting insights

“open square™ 0.51  “around”: 0.22 into how grounding is attained. One such insight is the way in

‘right triangle™ 0.54  “square™ 0.63 which the many-to-many mappings between symbols and ref-
“medium™: 0.73 “large™: 0.79 erents is retained by the model. The associative connections
“above”: 0.83 “object”: 0.93 for a certain concept, such as “large square”, have strong links
score: 0.2 score: 0.5 to scenes containing large squares in different positions (Fig-

ure 5). Another insight concerns how concepts can be learned
. ) o from their cooccurrence. The visual responses for various lin-
F_|gure 4: The descriptions gengra_ted by the model were a juistic inputs show clearly the information that was extracted
signed scores between 0 and 1 in increments of 0.1 based @iy, the training data and grounded in the concepts. As the
the|r relevance to the V|Sua| Input. The tOp two scenes are ”ndescription of a Concept becomes more Specificy the associa-
ages from the training set and the bottom two are novel tesjons similarly narrow in scope and the grounded image be-
samples. The activation strengths are listed for all those thatomes more precise. In this way, the model retains concepts
were over 0.10. These samples provide a feel for the scoringf both a coarse and fine granularity. Insights such as these
system and performance of the network. have been difficult to obtain with previous models of ground-
ing, which did not have the transparent representation of cat-
egories and associations that GLIDES has. Such observations
For each scene, the network should ideally retain numerougay prove valuable in future work in building grounded sys-
descriptions because many such descriptions can be deemiins.
appropriate. It is therefore unclear what “correct” descrip-
tion a given response should be compared against. Even if
it were possible to discern what the desired answer should
be, the encoding of sequential information in the descriptions
additionally complicates the scoring process. It does not suf-
fice to directly compare activation strengths of corresponding
units in the response description and the “correct” description
because decreasing activation strength is used to encode se-
guential information. Therefore, the linguistic response were
scored similarly to the visual responses, using a systematic
subjective valuation based on appropriateness for a given test ©
scene. The scoring system assigned values between 0 and 1
in increments of 0.1, taking into consideration the activationFigure 5: Image (a) displays the associative connections for
strengths for appropriate words in describing a given scenthe linguistic input “large square” with the three strongest
and weighing them against strong activations for inappropriareas of activation identified. Images (b), (c), and (d) dis-
ate words. Additionally, if the sequence indicated by the actip)ay the strongest scenes stored for each of these activation
vation values was meaningful, the score was impra(®d.  5reas. This figure demonstrates how the model is able to re-
Due to the large number of possible scenes and computgs;, many-to-many mappings between symbols and referents.

tional constraints with training the system, the training S(EtSuch visualizations have been difficult to do with previous
only covered a small portion of possible images. In order

to account for the poverty of training stimuli, the novel test M0Jels but the two-map architecture of GLIDES makes them

samples were generated so that they overlapped with at lea@¥Plicit.
ten samples in the training set in at least two of the size, shape

(b

d BtEES
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Discussion and Future Work Cottrell, G.W., Bartell, B., & Haupt, C. (1990). Grounding
The GLIDES model is a neural network architecture that Meaning in PerceptiorProceedings of the German Work-

demonstrates how symbol grounding can be accomplished shop on Artificial Intelligence (GWA(pp. 307-321).

by learning relationships between visual scenes and linguig=eldman, J.A., Lakoff, G., Bailey, D.R., Narayanan, S.,
tic descriptions. The model learns in an unsupervised fash- Regier, T. & Stolcke, A. (1996).L,—-The first five years
ion and allows inspecting concepts and mappings that it has of an automated language acquisition projéetificial In-
learned. This ability provides a unique perspective on the telligence Revien((1-2), 103-129.

grounding problem that has been difficult to achieve with pree|dman, J.A., Lakoff, G., Stolcke, A., & Weber, S.H. (1990).
vious models. The architecture provides a potential platform pjinjature Language Acquisition: A Touchstone for Cog-
for further investigations of symbol grounding and early lan-  pjtive Science. Proceedings of the Twelfth Annual Con-

guage acquisition. _ ference of the Cognitive Science Socigip. 686-693).
A possible direction for future work is to compare the Hillsdale, NJ: Lawrence Erlbaum Associates.

learning in the model to child language acquisition. For ex- .
; ; Gasser, M. (1993). The Structure Grounding Probl&ra-
ample, the network can be analyzed at different times dur ceedings of the Fifteenth Annual Conference of the Cog-

ing its training to determine how well it has learned different  ~. . ) . s
concepts. These results can then be analyzed to see if the net'E:stli/\\//(raer?ccéegrclgaﬁr?nc,fstg%%iat 61849_152)' Hillsdale, NJ:
work exhibits observed phenomena from child language stud- :
ies, such as the over- and undergeneralization of the meaningarnad, S. (ed.) (1987). Categorical Perception: The
of words. Such a study could serve to verify or falsify the net- Groundwork of CognitionNew York: Cambridge Univer-
work as a cognitive model. sity Press.

Another possible extension is to implement a more robusHarnad, S. (1990). The Symbol Grounding Probl&hysica
representation for sequential information. Such an extension p, 42, 335-346.

would allow more complex scenes and descriptions to be rep-, . .

resented and more complex phenomena to be studied, su mad’ S. (1993). Gr_oundlng Symbols in the Analog World
as complex grammatical constructs and moving objects. The with Neural Nets.Think 2, 12-78.
model could attempt to learn verbs and changes in objedtiebb, D.O. (1949).The Organization of Behavior: A Neu-
states over time. One possibility for efficiently representing ropsychological TheoryNew York: Wiley.

sequential information in both the visual and linguistic input james, D.L. & Miikkulainen, R. (1995). SARDNET: A self-
domains would be to create SARDNET encodings of the in-  4rganizing feature map for sequencasvances in Neural
put sequences and then present those encodings to the SOMsptormation Processing Systeps 577-584.

(James & Miikkulainen, 1995). Such encodings of complex o _
scenes and descriptions could be used to identify the limits gkohonen, T. (1989)Self-Organization and Associative Mem-
what can be effectively grounded in perceptual input and what ©fY- New York: Springer. Third Edition.

can be more effectively represented as higher-level symbolikohonen, T. (1997)Self-Organizing MapsBerlin: Springer-
constructs. Verlag.

. Li, P. (1999). Generalization, Representation, and Recovery
Conclusion in a Self-Organizing Feature-Map Model of Language Ac-

The GLIDES model provides a way for accomplishing the quisition. Proceedings of the Twenty First Annual Con-
grounding task in a straightforward and explicit manner. The ference of the Cognitive Science Socigip. 308-313).
model learns to associate linguistic descriptions and visual Hillsdale, NJ: Lawrence Erlbaum Associates.

scenes in an unsupervised process, which results in trangtiikkulainen, R. (1997). Dyslexic and Category-Specific
parent representations for grounded symbols. Such trans- Aphasic Impairments in a Self-Organizing Feature Map
parency provides unique insights into the grounding process, Model of the LexiconBrain and Languages9, 334—366.

and can serve as a foundation for future psychological StUdieﬁenov V.I. & Dyer, M.G. (1993). Perceptually Grounded
of grounding as well as implementations of grounded artifi- Lanéué@ie Learni'ng:.Pért 1- A. Neural Network Architec-

cial systems. ture for Robust Sequential Associatio@onnection Sci-
ence 5(2), 115-138.
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