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Abstract

The present study investigated the effects of both group size
and heterogeneity in relevant math skill on collaborative
problem solving. Overall, triads demonstrated better
reasoning and more effective cryptarithmetic problem solving
than dyads and singletons. Importantly, triads outperformed
the best individuals in a nominal groups analysis. Triads were
also better able than dyads to take advantage of heterogeneity
in math skill. The results suggest that some specific
advantages of group collaboration may be more likely to be
realized in triads than dyads, and that triads may be an
optimal group size when critical evaluation and reasoning are
required for a task.

What Are The Advantages of Collaboration?

One popular reason why people believe groups should be
more effective, flexible and innovative at problem solving is
the assumption that each group member brings to the task a
slightly different set of task-relevant knowledge and skills.
Through discussion, the knowledge and skills of each
member can become available for all, giving each member a
larger pool of ideas to draw from. Especially if members
possess different backgrounds, group problem solving will
give people a greater opportunity for novel associations,
strategies and operations. Exposure to diverse viewpoints
may increase both the quantity and quality of idea
generation in a group context (Hoffman, Harburg & Maier,
1962; Maier, 1962; Nemeth, 1986; Paulus & Yang, 2000,
Stasser, Stewart, & Wittenbaum, 1995).

There are a few studies in the cognitive science literature
that have explored the idea that diversity and collaboration
may be important for successful and innovative scientific
discovery. For example, in an investigation of several
molecular biology laboratories, Dunbar (1997) has reported
that the diversity of a group can be very important. When
scientists in a laboratory are from diverse backgrounds, they
are better able to generate alternative hypotheses and
analogies in the face of unexpected findings, which can in
turn lead to scientific breakthroughs.

In an attempt to examine this phenomena in an experimental
context, Wiley and Jolly (2003) examined collaborative
performance on a creative problem solving task where prior
knowledge has been shown to be related to fixation and an

inability to come to solution (Wiley, 1998). Comparisons of
observed versus expected outcomes (based on combinations
of individual base rates) indicated that only the mixed
knowledge pairs with one high knowledge member and one
low knowledge member performed significantly better than
would be predicted using base rates. The high knowledge
pairs also tended to do better than would be expected, but
this did not reach significance. The low knowledge pairs did
significantly worse than would be expected based on past
performance of individual low knowledge participants. This
result shows specific advantages for experts collaborating
when their prior knowledge may lead them into fixation on
unpromising solution paths, and that experts may sometimes
need the assistance of novices in order to be most effective,
flexible or innovative in their problem solving.

However, it is also the case that collaboration does not
always lead to superior outcomes (Hill, 1982; Taylor, Berry
& Block, 1958; Salomon & Globerson, 1989; Steiner, 1972;
Stroebe & Diehl, 1984). In another study on collaborative
argumentation, we found disadvantages to students working
in dyads (Wiley & Bailey, 2006). Instead of acting as
critical evaluators of information and pushing the reasoning
to a higher level, we found pairs of students engaging in a
lot of passive acceptance of each others’ statements. This
highlights the need to examine the many possible
advantages of collaboration, and under which specific
contexts hypothetical advantages may be most likely to
occur. In the case of the present study, we were interested
in both the size of the group and the heterogeneity of math
skills within the group as possible determinants of benefits
from collaboration.

Two Heads or Three?

The decision to assign students to dyads or triads in the
context of the classroom activities is often based on
considerations such as how many computers or materials
sets are available, how many learning products (papers,
worksheets or projects) the teacher wants to grade, how
desks are arranged, and so forth. However, even in the
absence of the practical limitations of the classroom, it is
not clear which size unit should be expected to do better
theoretically. Dyads have a number of possible advantages:
each student has more of an opportunity to participate, and
there are fewer group members to distract them from their
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own thinking (Dugosh, Paulus, Roland & Yang, 2000). In
addition, there is less of a chance that students will “free-
ride” or “loaf” in a group of two, and the student is more
likely to feel more highly invested in the product or activity
(Stroebe & Diehl, 1994). This suggests that smaller groups
may be more successful in terms of maximizing the amount
that each student contributes to the experience, and that a
dyad may have the benefit of the most participation and
facilitation with the least possibility for loafing, free-riding,
interruption or distraction.

The presence of others can also enhance problem solving by
prompting evaluation, explanation or reflection; supporting
the planning and execution of complex tasks; and
contributing new perspectives or novel information or skills
that other students may not possess. All these factors could
theoretically improve the quality of a group’s contribution.
For example, others may detect errors and provide
immediate feedback to any individual in the group
(Schoenfeld, 1989). Groups may also generate a more
reflective, explicit or abstract problem representation than a
lone individual (Moreland & Levine, 1992, Schwartz,
1995). Therefore, if having additional members of a group
increases the frequency of these beneficial behaviors and the
likelihood of novel perspectives and skills, then triads
should be expected to outperform dyads simply because
there are more people in the larger group.

On the other hand, the potential for being evaluated can also
have an inhibiting effect and working with others can cause
evaluation apprehension, causing poorer performance, and
the generation of fewer or less creative ideas (Allport, 1920;
Camacho & Paulus, 1995). The potential for critical
evaluation exists as soon as a second person is added to the
task. If a group does not handle conflict well, then the
larger the group, the more likely it is that negative effects
may occur. This again suggests an advantage for dyads.

However, while the presence of at least three people in a
group may increase the potential for conflict, if this conflict
makes the group more likely to think about multiple
perspectives and to critically evaluate both “majority” and
“minority” stances in terms of evidence and justifications,
then positive effects may occur. For this reason it could be
predicted that triads may engage in more productive
monitoring, evaluation, revision and reasoning than dyads
or singletons. To the extent that the presence of a minority
position promotes argumentation and evaluation among the
members of the group, triads may be a more optimal group
size for some learning and problem solving contexts.

In sum, there are some theoretical reasons to suggest that
dyads may be an optimal group size for problem solving and
learning contexts, and another set of theoretical reasons to
suggest that triads may show better performance than dyads.
This study provides a direct test of the group size question,

whether dyads or triads would perform better on a
mathematic-logical reasoning task.

To test this, we used a Letters-to-Numbers modified
cryptarithmetic task as first described in Laughlin, Bonner,
and Miner (2002). In this task, solvers attempt to decipher a
random coding of numbers to letters using logical and
mathematical reasoning. Unlike traditional cryptarithmetic
problems where all of the information necessary for solution
is contained within the problem, the Letters-to-Numbers
task requires participants to solicit and assimilate additional
information from an external source (the experimenter)
through evidence collection and hypothesis testing.
Previous studies have shown a benefit for groups in solving
these types of problems versus individuals, but have yet to
establish the ideal group size for best performance. In this
study, we compare triads, dyads, and individual solvers
using several measures of problem solving quality and
efficiency. Further, we are interested not only in which
group size may perform best on this task, but whether
heterogeneity in relevant math skills contributes to
performance, and if so, which group size might be most
likely to take advantage of heterogeneity in background.

Method

Participants

The participants were 90 students at the University of
Illinois at Chicago enrolled in an Introductory Psychology
course who received course credit for their participation.
The participants were randomly assigned to work as either a
three-person cooperative group (N=30), a two-person
cooperative group (N=30), or as individuals (N=30).
Descriptive group information is presented in Table 1.

Gender was matched across the three different group sizes;
individuals (m=15, f=15), dyads (m/m=5, f/{=5, m/f=5), and
triads (same sex=5 (3 mmm, 2 fff), mixed sex=5 (3 ffm, 2
fmm). No differences were seen in solution rates for males
and females in the singletons, or among three types of
dyads. Sample sizes in the triads were too small for analysis
but showed neither a pattern of increase with either
increasing numbers of males or females nor an advantage
for same over mixed-sex groups.

All groups in the present analyses were comprised of
participants who did not have pre-existing close
relationships with one another. Several groups of friends
did participate, but their data has been removed.

Procedure

Participants first completed a practice task where they
generated as many words as possible using the letters in the
words “Lake Michigan” during a five minute period. The
main purpose of this task was to act as a warm-up exercise
in which all members would start interacting. Such an
exercise is important for maximizing performance in ad hoc
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groups. All groups engaged in this task, with groups
averaging around 30 words. There is a significant difference
here with triads generating more words than the individuals
(triads, M=35.1; dyads, M=28.3; individuals, M = 22.43).
More importantly, the task was successful at getting each
member of the groups to participate.

After this task, the participants completed a Letters-to-
Numbers problem (based on Laughlin, Bonner, & Miner,
2002). The instructions used in this study were taken
directly from Laughlin et al (2002). In the Letter-to-
Numbers problem, participants are asked to figure out a
random mapping of the digits 0-9 to the letters A-J. The
objective is to use a series of participant-generated letter
equations and hypotheses in conjunction with experimenter
feedback to decipher the entire coding of letters to numbers
in as few trials as possible. Students need to engage in a
reasoning process and use math facts to figure out which
letter corresponds to which number.

All participants solved for the same random mapping of
digits to letters. At the beginning of each trial, participants
were asked to spend some time thinking about the problem
and then asked to generate an equation (e.g. A + B = ?).
The dyads and triads then discussed the equations until they
reached consensus as to which equation to propose. Once
the group agreed on an equation, the experimenter told the
group the correct answer to the equation in letter form (i.e.
A+B=F). Next, each individual crafted a hypothesis (e.g.,
A=1). The groups discussed individual hypotheses until they
reached consensus as to which hypothesis to propose. Once
a hypothesis was selected, the experimenter indicated
whether the hypothesis was true or false. Finally, the
participants had the option of proposing a full coding of the
letters to numbers where they received feedback as to
whether the entire coding is correct or not, or moving on to
the next trial. Participants recorded all equations,
hypotheses, and feedback on response sheets to minimize
demands on memory.

After completing the Numbers-to-Letters problem (or
failing to solve it in 10 trials), several measures of
mathematical skill were collected. First, math skill was
assessed by having students attempt to solve an algebra
word problem within three minutes. The exact problem was
“Two trains leave the same station at the same time. Each
has enough fuel for a 2000 mile trip. The trains travel in
opposite directions. One train travels 60 miles per hour, and
the other 100 miles per hour. In how many hours will the
trains be 800 miles apart?” The problem used was based on
earlier studies in our population (Ash & Wiley, 2002)
finding that around a third to a half of our students generally
can solve this problem successfully in that time. For the
purposes of this project, one measure of math skill was
defined as having solved the problem correctly. Second,
they attempted an LSAT/Old GRE analytical section logic
problem (involving 7 students and various constraints on
whose lockers can be adjacent). Finally, the participants

completed a survey that asked for demographic information
as well as their ACT or SAT math scores, and contained a
self-report rating of their math skill on a 1-7 scale, where 7
meant “Not very skilled”. After all participants completed
the survey, the experimenter explained the purpose of the
study, asked if there were any questions, gave them a
written debriefing form with references, and thanked them
for participating. All sessions were video-recorded. The
whole procedure was generally completed in under an hour.

Results

Math Skill

No differences were seen in the average level of math or
logical problem solving skill across the three group sizes, all
Fs<1. Descriptive statistics on the math skill and other
measures for the groups are presented in Table 1.

Only a portion of the students reported an ACT score
(N=71), and several reported uncertainty about whether the
number they recalled was their math score or the composite.
As a result, we felt the data collected on the ability to solve
the algebra word problem provided the most complete and
reliable data on math skill. Math problem performance did
relate to ACT (r=.40, N=71, p<.001) but not self-reported
skill (r=-.15, N=89, p<.18). Although effects were not
significant, it is important to note that if anything, the ability
to solve the math problem was highest in the singleton
condition and lower among dyads and triads.

Table 1: Descriptive and Dependent Measures (with SEs)
for Each Group Size.

Singles Dyads Triads
N 30 30 30
Groups/Units 30 15 10
Mean Age 19 19.27 18.93
(1.23) (1.39) (1.23)
Mean Math ACT 24.1(.79) 24.8(.98)  23.4(.84)
Self-report skill 3.5(28) 4.0(21) 3.6 (.24)
Proportion solving 0.57(.09) 0.43 (.09) 0.47(.09)
math problem
Proportion solving  0.66(.46) 0.53 (.39)  0.63(.45)
Logic Problem
Trials to Solution 9.67(.23) 8.87(.41) 6.7 (.56)
Frequency of 34 11 4
Repeat Equations
Letters proposed 2.10(.02) 2.17(.15)  2.38(.35)
Per Equation
Solutions available  1.01(.04) 1.14(.07) 1.64(.18)

Per Trial

Trials to Solution

The main effect of group size was significant, F(2,52)=
15.54, MSE=2.13, p<.001. The means and standard errors
are displayed in Table 1. Post-hoc tests using LSD
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indicated that triads reached solution in fewer trials than
both individuals (p<.001) and dyads (p<.002).

Following the nominal group analyses of Laughlin et al
(2002), the best, second-best, and third-best individuals
were determined by the number of trials to solution for each
“group” of three singletons who completed the experiment
consecutively. The logic behind this analysis is that a group
can perform at the level of the best individual without
having to assume any additional advantages of
collaboration. =~ This approach revealed that the best
individuals in nominal triads had fewer trials to solution (M
= 8.5) than the second-best individuals (M = 9.9) and the
third-best individuals (M = 10.6). (Participants who did not
solve the numbers-to-letters problem in the allotted 10 trials
were considered to have required 11 trials.) Similarly, for
nominal dyads, the best individuals required fewer trials to
solution (M = 8.87) than the second-best individuals (M =
10.47).

Planned contrasts between actual and nominal triad
performance indicated that actual triads had significantly
fewer trials to solution than the best individuals, #(18) =
2.749, p<.013; second best individuals, #(18) = 4.991,
p<.001; and third best individuals, #(18) = 6.49, p<.001 from
nominal triads. The comparison to nominal groups is
important to show that triad success is not simply due to the
higher chance that one member of a group was more
intellectually able or skilled, or more likely to “know the
answer.”  Therefore, these results show that there were
additional benefits due to collaboration among the
individuals in a triad, and that triads were performing better
than the highest level of individual performance would
predict.

Planned contrasts between actual and nominal dyads
indicated that dyads did not have significantly fewer trials to
solution than the best individuals, but did have fewer trials
to solution than the second best individuals from nominal
dyads, #(28) = 3.601, p<.001.

Repetitive Equations

Repetitive equations are equations that have already been
offered by the group or individual in either identical or a
different form (e.g. A + B = F is the same as F — B = A).
The inclusion of repetitive equations can be seen as a failure
to monitor or evaluate solution attempts, or as the result of
poor reasoning. As can be seen in the frequency data
presented in Table 1, singletons produced more repetitive
equations than dyads, and dyads produced more than triads.
Analyzed as the proportion of singletons (60%), dyads
(53%) and triads (20%) to generate repetitive equations,
differences in group size approached significance,
X*(2)=4.85, N=55, p<.08. This demonstrates that only the
triads seem to be engaging in critical evaluation and
monitoring of their suggested solutions. Although peers
could monitor and evaluate others’ suggestions in the dyads,

their use of repetitive equations suggests that dyads are not
effectively monitoring their performance.

Average Letters Proposed Per Equation

Another measure of the efficiency of problem solving is the
number of two-letter equations that are proposed.
Proposing only two-letter solutions is an inefficient strategy
as it generally will provide less information than an
equation with more letters. The longer groups persist in this
strategy, the longer it will take them to map all the letters.
Although there was a trend of increasing complexity with
larger group size as shown in Table 1, a main effect was not
seen on this measure, F(2, 52)=.939, MSE= .30, p=397.

Letter Solutions Available Per Trial

In each trial, solvers may discover the solution to a number-
letter pair either through experimenter feedback on a
hypothesis or through numerical and logical inferences.
Using these same processes, group performance can be
coded and scored to determine the total number-letter
pairings that could be identified on any given trial. In this
way, the quality of the proposed equations can be evaluated.
Those groups that have a higher average number of letter
solutions available per trial are choosing more informative
equations. A significant main effect of group size was
found for this variable F(2,52)=15.33, MSE=.10, p < .001.
Post hoc tests indicated that triads had more letter solutions
available per trial than dyads and singletons. Triads also
outperformed the best (M = 1.18), second-best (M = .97),
and third-best individuals (M = .89) on this measure. This
can be taken as evidence of superior reasoning in proposing
solutions among the triads, and demonstrates a specific
strategic advantage due to collaboration among triads.

Effect of Heterogeneity of Groups

To explore group performance as a function of
heterogeneity in background skills, the number of members
of the group with high math skill was examined. For the
purposes of this analysis, high math skill was defined as
having solved the algebra word problem correctly. The
pattern of results is presented in Figure 1. First, no
significant differences were seen between high (N=17) and
low (N=13) math skill individuals in the singleton
condition, t(29)=1.58, p<.12. Although there does seem to
be a trend toward skill improving performance, the
improvement is no where near the level observed some
dyads and triads.  This is important as it indicates that
possession of math skill by a single individual alone does
not lead to the most effective level of performance on this
task.

A 2x3 ANOVA (dyad vs. triad; zero, one and two high math
members) was performed on number of trials to solution.
While both main effects for group size, F(2,19)=3.01,
MSE=2.17, p<.07 and number of math members,
F(1,19)=2.26, p<.15 approached significance, a significant
interaction was obtained, F (2,19)=3.62, p<.05. When two
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members of a dyad (2 groups) or triad (5 groups) had high
math skill, either group was more successful in problem
solving than when no members had math skill. However,
only triads (4 groups) were able to take advantage of having
a single high math member. Dyads with a single high math
member (9 groups) did not perform differently than dyads
with no high math members (4 groups) or singletons.

B No Math Member
11 O One Math Member
@ Two Math Members

-
o
L

Trials to Solution

- N W A O N ® ©
S T S S R

Singles Dyads Triads

Figure 1: Heterogeneity of Math Background, Group Size
and Trials to Solution

The one triad with all low math members also performed
similarly to singletons. Although there is an uneven
distribution of groups to condition, the striking effect here is
that triads may be better able to take advantage of group
heterogeneity when only one member has skills that are
needed to solve a problem. Perhaps the most important
comparison to note is between individuals with math skill,
the dyads with a single math member, and the triads with a
single math member. Here the number of skilled members
is held constant at one, but only in the triad context is there
an improvement in problem solving performance.

Discussion

The results of the present study show that on a modified
cryptarithmetic problem solving task, triads outperform
dyads, individuals and even the best individuals in a
nominal group analysis. Triads solved problems in fewer
trials, were more effective in their equation selection, were
better at monitoring the redundancy of their solution
attempts, and were better able to take advantage of group
heterogeneity on this task.

The nominal groups analysis showed that triads did not do
better just due to the chance of having a member who “knew
the answer”. The group performed better than the best
individuals, showing that there was something specific to
the collaboration in these groups that was responsible for
the high level of problem solving. Another way of seeing
this is to note that not all group types experienced superior
problem solving. Dyads and triads with no math members
were not better than singles, nor were dyads with a single
math member. So, increasing the number of members did
not in and of itself improve performance. Similarly, having

a member with math skill also did not guarantee better
performance. Instead, we observed an interaction between
the size of the group, and the distribution of math skill. In
dyads, both members had to have math skill to be effective,
while in triads, as long as one member had math skill, the
group was more effective.

A very interesting question that we are still pursuing with
this data is a more detailed analysis of how successful
collaboration and coordination was achieved in our mixed-
knowledge triads. What is clear from the data so far is that
triads are more likely to effectively monitor each others
suggestions, as shown in the lower rate of redundant
equations. They also seem to engage in more effective
reasoning, as they propose more informative equations.
These results suggest that the presence of the third person in
a triad may have offered some affordances over and above
the presence of another peer in a dyad that supported better
evaluation, reasoning, and the contribution of otherwise
unshared information among the participants.

Our next step is to analyze the group discussions to better
understand the dynamics in effective groups. Through
protocol  analysis, Barron (2003) reported that
responsiveness among group members was critical for
collaborative learning benefits among students who learned
to solve arithmetic problems in triads. We will be very
interested in how successful and less successful groups in
our sample interact, which strategies they use, what
knowledge is shared, and what kinds of challenges and
explanations are offered as our students attempt to solve
these problems.

There are some other important future directions for this
research. First, the present results were found with ad hoc
groups. It is an open question whether similar or different
results will be seen with students who work together in
teams for an extended amount of time or who are otherwise
more familiar with each other (such as being classmates).
This step is necessary to help determine which group size
might be most effective in a classroom context.

Further, the present set of results shows advantages of
collaboration only in group-level performance. A key
question is whether these advantages will be seen when
individuals need to use what they learned in this context on
later transfer tasks where they solve problems alone. Both
of these issues represent the next steps in our research
program, seeing if the advantages observed here will also
occur in intact teams with classes, and on individual transfer
measures.

When are three heads better than two? The present study
suggests that triads are a better group size than dyads for
performing this reasoning task, particularly when triads are
heterogeneous in relevant skills for the task. Several
potential benefits of small group problem solving occurred
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most clearly in this context. Importantly, when math skill
was held constant with one high math member across
individuals, dyads and triads, only triads showed an
advantage in their problem solving. Overall, triads engaged
in better monitoring, evaluation and higher quality
reasoning processes in proposing solution attempts. The
exact mechanisms and interaction patterns responsible for
these effects are still under investigation, but the results of
this study suggest that gains from cooperative collaboration
were most likely to be realized in triads.
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