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Abstract 

The present study investigated the effects of both group size 
and heterogeneity in relevant math skill on collaborative 
problem solving. Overall, triads demonstrated better 
reasoning and more effective cryptarithmetic problem solving 
than dyads and singletons. Importantly, triads outperformed 
the best individuals in a nominal groups analysis.  Triads were 
also better able than dyads to take advantage of heterogeneity 
in math skill.  The results suggest that some specific 
advantages of group collaboration may be more likely to be 
realized in triads than dyads, and that triads may be an 
optimal group size when critical evaluation and reasoning are 
required for a task. 

What Are The Advantages of Collaboration?  
One popular reason why people believe groups should be 
more effective, flexible and innovative at problem solving is 
the assumption that each group member brings to the task a 
slightly different set of task-relevant knowledge and skills. 
Through discussion, the knowledge and skills of each 
member can become available for all, giving each member a 
larger pool of ideas to draw from. Especially if members 
possess different backgrounds, group problem solving will 
give people a greater opportunity for novel associations, 
strategies and operations.  Exposure to diverse viewpoints 
may increase both the quantity and quality of idea 
generation in a group context (Hoffman, Harburg & Maier, 
1962; Maier, 1962; Nemeth, 1986; Paulus & Yang, 2000, 
Stasser, Stewart, & Wittenbaum, 1995).  
 
There are a few studies in the cognitive science literature 
that have explored the idea that diversity and collaboration 
may be important for successful and innovative scientific 
discovery. For example, in an investigation of several 
molecular biology laboratories, Dunbar (1997) has reported 
that the diversity of a group can be very important. When 
scientists in a laboratory are from diverse backgrounds, they 
are better able to generate alternative hypotheses and   
analogies in the face of unexpected findings, which can in 
turn lead to scientific breakthroughs. 
 
In an attempt to examine this phenomena in an experimental 
context, Wiley and Jolly (2003) examined collaborative 
performance on a creative problem solving task where prior 
knowledge has been shown to be related to fixation and an 

inability to come to solution (Wiley, 1998). Comparisons of 
observed versus expected outcomes (based on combinations 
of individual base rates) indicated that only the mixed 
knowledge pairs with one high knowledge member and one 
low knowledge member performed significantly better than 
would be predicted using base rates. The high knowledge 
pairs also tended to do better than would be expected, but 
this did not reach significance. The low knowledge pairs did 
significantly worse than would be expected based on past 
performance of individual low knowledge participants.  This 
result shows specific advantages for experts collaborating 
when their prior knowledge may lead them into fixation on 
unpromising solution paths, and that experts may sometimes 
need the assistance of novices in order to be most effective, 
flexible or innovative in their problem solving. 
 
However, it is also the case that collaboration does not 
always lead to superior outcomes (Hill, 1982; Taylor, Berry 
& Block, 1958; Salomon & Globerson, 1989; Steiner, 1972; 
Stroebe & Diehl, 1984).  In another study on collaborative 
argumentation, we found disadvantages to students working 
in dyads (Wiley & Bailey, 2006).  Instead of acting as 
critical evaluators of information and pushing the reasoning 
to a higher level, we found pairs of students engaging in a 
lot of passive acceptance of each others’ statements.  This 
highlights the need to examine the many possible 
advantages of collaboration, and under which specific 
contexts hypothetical advantages may be most likely to 
occur.  In the case of the present study, we were interested 
in both the size of the group and the heterogeneity of math 
skills within the group as possible determinants of benefits 
from collaboration. 

Two Heads or Three?  
The decision to assign students to dyads or triads in the 
context of the classroom activities is often based on 
considerations such as how many computers or materials 
sets are available, how many learning products (papers, 
worksheets or projects) the teacher wants to grade, how 
desks are arranged, and so forth.  However, even in the 
absence of the practical limitations of the classroom, it is 
not clear which size unit should be expected to do better 
theoretically.  Dyads have a number of possible advantages: 
each student has more of an opportunity to participate, and 
there are fewer group members to distract them from their 
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own thinking (Dugosh, Paulus, Roland & Yang, 2000).  In 
addition, there is less of a chance that students will “free-
ride” or “loaf” in a group of two, and the student is more 
likely to feel more highly invested in the product or activity 
(Stroebe & Diehl, 1994).  This suggests that smaller groups 
may be more successful in terms of maximizing the amount 
that each student contributes to the experience, and that a 
dyad may have the benefit of the most participation and 
facilitation with the least possibility for loafing, free-riding, 
interruption or distraction.   

  
The presence of others can also enhance problem solving by 
prompting evaluation, explanation or reflection; supporting 
the planning and execution of complex tasks; and 
contributing new perspectives or novel information or skills 
that other students may not possess.  All these factors could 
theoretically improve the quality of a group’s contribution. 
For example, others may detect errors and provide 
immediate feedback to any individual in the group 
(Schoenfeld, 1989). Groups may also generate a more 
reflective, explicit or abstract problem representation than a 
lone individual (Moreland & Levine, 1992, Schwartz, 
1995).  Therefore, if having additional members of a group  
increases the frequency of these beneficial behaviors and the 
likelihood of novel perspectives and skills, then triads 
should be expected to outperform dyads simply because 
there are more people in the larger group. 
 
On the other hand, the potential for being evaluated can also 
have an inhibiting effect and working with others can cause 
evaluation apprehension, causing poorer performance, and 
the generation of fewer or less creative ideas (Allport, 1920; 
Camacho & Paulus, 1995). The potential for critical 
evaluation exists as soon as a second person is added to the 
task.  If a group does not handle conflict well, then the 
larger the group, the more likely it is that negative effects 
may occur.  This again suggests an advantage for dyads.   
 
However, while the presence of at least three people in a 
group may increase the potential for conflict, if this conflict 
makes the group more likely to think about multiple 
perspectives and to critically evaluate both “majority” and 
“minority” stances in terms of evidence and justifications, 
then positive effects may occur.  For this reason it could be 
predicted that triads may engage in more productive 
monitoring, evaluation, revision and reasoning than dyads 
or singletons.  To the extent that the presence of a minority 
position promotes argumentation and evaluation among the 
members of the group, triads may be a more optimal group 
size for some learning and problem solving contexts. 

   
In sum, there are some theoretical reasons to suggest that 
dyads may be an optimal group size for problem solving and 
learning contexts, and another set of theoretical reasons to 
suggest that triads may show better performance than dyads. 
This study provides a direct test of the group size question, 

whether dyads or triads would perform better on a 
mathematic-logical reasoning task. 
 
To test this, we used a Letters-to-Numbers modified 
cryptarithmetic task as first described in Laughlin, Bonner, 
and Miner (2002).  In this task, solvers attempt to decipher a 
random coding of numbers to letters using logical and 
mathematical reasoning.   Unlike traditional cryptarithmetic 
problems where all of the information necessary for solution 
is contained within the problem, the Letters-to-Numbers 
task requires participants to solicit and assimilate additional 
information from an external source (the experimenter) 
through evidence collection and hypothesis testing.  
Previous studies have shown a benefit for groups in solving 
these types of problems versus individuals, but have yet to 
establish the ideal group size for best performance.  In this 
study, we compare triads, dyads, and individual solvers 
using several measures of problem solving quality and 
efficiency.  Further, we are interested not only in which 
group size may perform best on this task, but whether 
heterogeneity in relevant math skills contributes to 
performance, and if so, which group size might be most 
likely to take advantage of heterogeneity in background. 

Method 

Participants 
The participants were 90 students at the University of 
Illinois at Chicago enrolled in an Introductory Psychology 
course who received course credit for their participation. 
The participants were randomly assigned to work as either a 
three-person cooperative group (N=30), a two-person 
cooperative group (N=30), or as individuals (N=30).  
Descriptive group information is presented in Table 1.   
 
Gender was matched across the three different group sizes; 
individuals (m=15, f=15), dyads (m/m=5, f/f=5, m/f=5), and 
triads (same sex=5 (3 mmm, 2 fff), mixed sex=5 (3 ffm, 2 
fmm).   No differences were seen in solution rates for males 
and females in the singletons, or among three types of 
dyads.  Sample sizes in the triads were too small for analysis 
but showed neither a pattern of increase with either 
increasing numbers of males or females nor an advantage 
for same over mixed-sex groups. 
 
All groups in the present analyses were comprised of 
participants who did not have pre-existing close 
relationships with one another.  Several groups of friends 
did participate, but their data has been removed. 

Procedure 
Participants first completed a practice task where they 
generated as many words as possible using the letters in the 
words “Lake Michigan” during a five minute period.  The 
main purpose of this task was to act as a warm-up exercise 
in which all members would start interacting. Such an 
exercise is important for maximizing performance in ad hoc 
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groups.  All groups engaged in this task, with groups 
averaging around 30 words. There is a significant difference 
here with triads generating more words than the individuals 
(triads, M=35.1; dyads, M=28.3; individuals, M = 22.43).  
More importantly, the task was successful at getting each 
member of the groups to participate.   
 
After this task, the participants completed a Letters-to-
Numbers problem (based on Laughlin, Bonner, & Miner, 
2002).  The instructions used in this study were taken 
directly from Laughlin et al (2002).  In the Letter-to-
Numbers problem, participants are asked to figure out a 
random mapping of the digits 0-9 to the letters A-J.  The 
objective is to use a series of participant-generated letter 
equations and hypotheses in conjunction with experimenter 
feedback to decipher the entire coding of letters to numbers 
in as few trials as possible.   Students need to engage in a 
reasoning process and use math facts to figure out which 
letter corresponds to which number.    
 
All participants solved for the same random mapping of 
digits to letters. At the beginning of each trial, participants 
were asked to spend some time thinking about the problem 
and then asked to generate an equation (e.g. A + B = ?).    
The dyads and triads then discussed the equations until they 
reached consensus as to which equation to propose.   Once 
the group agreed on an equation, the experimenter told the 
group the correct answer to the equation in letter form (i.e. 
A+B=F).  Next, each individual crafted a hypothesis (e.g., 
A=1). The groups discussed individual hypotheses until they 
reached consensus as to which hypothesis to propose.  Once 
a hypothesis was selected, the experimenter indicated 
whether the hypothesis was true or false.  Finally, the 
participants had the option of proposing a full coding of the 
letters to numbers where they received feedback as to 
whether the entire coding is correct or not, or moving on to 
the next trial.  Participants recorded all equations, 
hypotheses, and feedback on response sheets to minimize 
demands on memory.   
  
After completing the Numbers-to-Letters problem (or 
failing to solve it in 10 trials), several measures of 
mathematical skill were collected.  First, math skill was 
assessed by having students attempt to solve an algebra 
word problem within three minutes.  The exact problem was 
“Two trains leave the same station at the same time.  Each 
has enough fuel for a 2000 mile trip.  The trains travel in 
opposite directions.  One train travels 60 miles per hour, and 
the other 100 miles per hour. In how many hours will the 
trains be 800 miles apart?”  The problem used was based on 
earlier studies in our population (Ash & Wiley, 2002) 
finding that around a third to a half of our students generally 
can solve this problem successfully in that time. For the 
purposes of this project, one measure of math skill was 
defined as having solved the problem correctly.  Second, 
they attempted an LSAT/Old GRE analytical section logic 
problem (involving 7 students and various constraints on 
whose lockers can be adjacent).  Finally, the participants 

completed a survey that asked for demographic information 
as well as their ACT or SAT math scores, and contained a 
self-report rating of their math skill on a 1-7 scale, where 7 
meant “Not very skilled”.  After all participants completed 
the survey, the experimenter explained the purpose of the 
study, asked if there were any questions, gave them a 
written debriefing form with references, and thanked them 
for participating.  All sessions were video-recorded.  The 
whole procedure was generally completed in under an hour.   

Results 

Math Skill 
No differences were seen in the average level of math or 
logical problem solving skill across the three group sizes, all 
Fs<1. Descriptive statistics on the math skill and other 
measures for the groups are presented in Table 1.   
 
Only a portion of the students reported an ACT score 
(N=71), and several reported uncertainty about whether the 
number they recalled was their math score or the composite. 
As a result, we felt the data collected on the ability to solve 
the algebra word problem provided the most complete and 
reliable data on math skill.  Math problem performance did 
relate to ACT (r=.40, N=71, p<.001) but not self-reported 
skill (r=-.15, N=89, p<.18).  Although effects were not 
significant, it is important to note that if anything, the ability 
to solve the math problem was highest in the singleton 
condition and lower among dyads and triads. 
 

Table 1:  Descriptive and Dependent Measures (with SEs) 
for Each Group Size. 

 
 Singles Dyads Triads 
N 30 30 30 
Groups/Units 30 15 10 
Mean Age 19    

(1.23) 
19.27 
(1.39) 

18.93 
(1.23) 

Mean Math ACT 24.1(.79) 24.8(.98) 23.4(.84) 
Self-report skill 3.5 (.28) 4.0 (.21) 3.6 (.24) 
Proportion solving 
math problem 

0.57(.09) 0.43 (.09) 0.47(.09) 

Proportion solving 
Logic Problem 

0.66(.46) 0.53 (.39) 0.63(.45) 

Trials to Solution 9.67(.23) 8.87(.41) 6.7 (.56) 
Frequency of 
Repeat Equations 

34 11 4 

Letters proposed 
Per Equation 

2.10(.02) 2.17(.15) 2.38(.35) 

Solutions available 
Per Trial 

1.01(.04) 1.14(.07) 1.64(.18) 

Trials to Solution 
The main effect of group size was significant, F(2,52)= 
15.54, MSE=2.13, p<.001.  The means and standard errors 
are displayed in Table 1.  Post-hoc tests using LSD 
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indicated that triads reached solution in fewer trials than 
both individuals (p<.001) and dyads (p<.002).   
 
Following the nominal group analyses of Laughlin et al 
(2002), the best, second-best, and third-best individuals 
were determined by the number of trials to solution for each 
“group” of three singletons who completed the experiment 
consecutively. The logic behind this analysis is that a group 
can perform at the level of the best individual without 
having to assume any additional advantages of 
collaboration.  This approach revealed that the best 
individuals in nominal triads had fewer trials to solution (M 
= 8.5) than the second-best individuals (M = 9.9) and the 
third-best individuals (M = 10.6). (Participants who did not 
solve the numbers-to-letters problem in the allotted 10 trials 
were considered to have required 11 trials.)  Similarly, for 
nominal dyads, the best individuals required fewer trials to 
solution (M = 8.87) than the second-best individuals (M = 
10.47). 
 
Planned contrasts between actual and nominal triad 
performance indicated that actual triads had significantly 
fewer trials to solution than the best individuals, t(18) = 
2.749, p<.013; second best individuals, t(18) = 4.991, 
p<.001; and third best individuals, t(18) = 6.49, p<.001 from 
nominal triads.  The comparison to nominal groups is 
important to show that triad success is not simply due to the 
higher chance that one member of a group was more 
intellectually able or skilled, or more likely to “know the 
answer.”   Therefore, these results show that there were 
additional benefits due to collaboration among the 
individuals in a triad, and that triads were performing better 
than the highest level of individual performance would 
predict. 
 
Planned contrasts between actual and nominal dyads 
indicated that dyads did not have significantly fewer trials to 
solution than the best individuals, but did have fewer trials 
to solution than the second best individuals from nominal 
dyads, t(28) = 3.601, p<.001.  

Repetitive Equations 
Repetitive equations are equations that have already been 
offered by the group or individual in either identical or a 
different form (e.g. A + B = F is the same as F – B = A).  
The inclusion of repetitive equations can be seen as a failure 
to monitor or evaluate solution attempts, or as the result of 
poor reasoning.  As can be seen in the frequency data 
presented in Table 1, singletons produced more repetitive 
equations than dyads, and dyads produced more than triads.  
Analyzed as the proportion of singletons (60%), dyads 
(53%) and triads (20%) to generate repetitive equations, 
differences in group size approached significance, 
X2(2)=4.85, N=55, p<.08.  This demonstrates that only the 
triads seem to be engaging in critical evaluation and 
monitoring of their suggested solutions.  Although peers 
could monitor and evaluate others’ suggestions in the dyads,  

their use of repetitive equations suggests that dyads are not 
effectively monitoring their performance.  

Average Letters Proposed Per Equation 
Another measure of the efficiency of problem solving is the 
number of two-letter equations that are proposed.  
Proposing only two-letter solutions is an inefficient strategy 
as it generally will provide less information than an 
equation with more letters.  The longer groups persist in this 
strategy, the longer it will take them to map all the letters.   
Although there was a trend of increasing complexity with 
larger group size as shown in Table 1, a main effect was not 
seen on this measure, F(2, 52)=.939,  MSE= .30,  p=.397.  

Letter Solutions Available Per Trial 
In each trial, solvers may discover the solution to a number-
letter pair either through experimenter feedback on a 
hypothesis or through numerical and logical inferences.  
Using these same processes, group performance can be 
coded and scored to determine the total number-letter 
pairings that could be identified on any given trial.  In this 
way, the quality of the proposed equations can be evaluated.  
Those groups that have a higher average number of letter 
solutions available per trial are choosing more informative 
equations.  A significant main effect of group size was 
found for this variable F(2,52)=15.33, MSE=.10, p < .001.  
Post hoc tests indicated that triads had more letter solutions 
available per trial than dyads and singletons.  Triads also 
outperformed the best (M = 1.18), second-best (M = .97), 
and third-best individuals (M = .89) on this measure.  This 
can be taken as evidence of superior reasoning in proposing 
solutions among the triads, and demonstrates a specific 
strategic advantage due to collaboration among triads. 

Effect of Heterogeneity of Groups 
To explore group performance as a function of 
heterogeneity in background skills, the number of members 
of the group with high math skill was examined.  For the 
purposes of this analysis, high math skill was defined as 
having solved the algebra word problem correctly.  The 
pattern of results is presented in Figure 1. First, no 
significant differences were seen between high (N=17) and 
low (N=13) math skill individuals in the singleton 
condition, t(29)=1.58, p<.12. Although there does seem to 
be a trend toward skill improving performance, the 
improvement is no where near the level observed some 
dyads and triads.   This is important as it indicates that 
possession of math skill by a single individual alone does 
not lead to the most effective level of performance on this 
task. 
 
A 2x3 ANOVA (dyad vs. triad; zero, one and two high math 
members) was performed on number of trials to solution. 
While both main effects for group size, F(2,19)=3.01, 
MSE=2.17, p<.07 and number of math members, 
F(1,19)=2.26, p<.15 approached significance, a significant 
interaction was obtained, F (2,19)=3.62, p<.05.  When two 
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members of a dyad (2 groups) or triad (5 groups) had high 
math skill, either group was more successful in problem 
solving than when no members had math skill.  However, 
only triads (4 groups) were able to take advantage of having 
a single high math member.  Dyads with a single high math 
member (9 groups) did not perform differently than dyads 
with no high math members (4 groups) or singletons.  
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Figure 1:  Heterogeneity of Math Background, Group Size 

and Trials to Solution  
 

The one triad with all low math members also performed 
similarly to singletons.  Although there is an uneven 
distribution of groups to condition, the striking effect here is 
that triads may be better able to take advantage of group 
heterogeneity when only one member has skills that are 
needed to solve a problem. Perhaps the most important 
comparison to note is between individuals with math skill, 
the dyads with a single math member, and the triads with a 
single math member.  Here the number of skilled members 
is held constant at one, but only in the triad context is there 
an improvement in problem solving performance. 

Discussion 
The results of the present study show that on a modified 
cryptarithmetic problem solving task, triads outperform 
dyads, individuals and even the best individuals in a 
nominal group analysis.  Triads solved problems in fewer 
trials, were more effective in their equation selection, were 
better at monitoring the redundancy of their solution 
attempts, and were better able to take advantage of  group 
heterogeneity on this task. 
 
The nominal groups analysis showed that triads did not do 
better just due to the chance of having a member who “knew 
the answer”.  The group performed better than the best 
individuals, showing that there was something specific to 
the collaboration in these groups that was responsible for 
the high level of problem solving.  Another way of seeing 
this is to note that not all group types experienced superior 
problem solving.  Dyads and triads with no math members 
were not better than singles, nor were dyads with a single 
math member.  So, increasing the number of members did 
not in and of itself improve performance.  Similarly, having 

a member with math skill also did not guarantee better 
performance.  Instead, we observed an interaction between 
the size of the group, and the distribution of math skill.  In 
dyads, both members had to have math skill to be effective, 
while in triads, as long as one member had math skill, the 
group was more effective.   
 
A very interesting question that we are still pursuing with 
this data is a more detailed analysis of how successful 
collaboration and coordination was achieved in our mixed-
knowledge triads.  What is clear from the data so far is that 
triads are more likely to effectively monitor each others 
suggestions, as shown in the lower rate of redundant 
equations.  They also seem to engage in more effective 
reasoning, as they propose more informative equations. 
These results suggest that the presence of the third person in 
a triad may have offered some affordances over and above 
the presence of another peer in a dyad that supported better 
evaluation, reasoning, and the contribution of otherwise 
unshared information among the participants.  
 
 Our next step is to analyze the group discussions to better 
understand the dynamics in effective groups.  Through 
protocol analysis, Barron (2003) reported that 
responsiveness among group members was critical for 
collaborative learning benefits among students who learned 
to solve arithmetic problems in triads.  We will be very 
interested in how successful and less successful groups in 
our sample interact, which strategies they use, what 
knowledge is shared, and what kinds of challenges and 
explanations are offered as our students attempt to solve 
these problems. 
 
There are some other important future directions for this 
research.  First, the present results were found with ad hoc 
groups.  It is an open question whether similar or different 
results will be seen with students who work together in 
teams for an extended amount of time or who are otherwise 
more familiar with each other (such as being classmates).  
This step is necessary to help determine which group size 
might be most effective in a classroom context. 
 
Further, the present set of results shows advantages of 
collaboration only in group-level performance. A key 
question is whether these advantages will be seen when 
individuals need to use what they learned in this context on 
later transfer tasks where they solve problems alone.  Both 
of these issues represent the next steps in our research 
program, seeing if the advantages observed here will also 
occur in intact teams with classes, and on individual transfer 
measures. 
 
When are three heads better than two? The present study 
suggests that triads are a better group size than dyads for 
performing this reasoning task, particularly when triads are 
heterogeneous in relevant skills for the task.  Several 
potential benefits of small group problem solving occurred 
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most clearly in this context.  Importantly, when math skill 
was held constant with one high math member across 
individuals, dyads and triads, only triads showed an 
advantage in their problem solving.  Overall, triads engaged 
in better monitoring, evaluation and higher quality 
reasoning processes in proposing solution attempts. The 
exact mechanisms and interaction patterns responsible for 
these effects are still under investigation, but the results of 
this study suggest that gains from cooperative collaboration 
were most likely to be realized in triads.  
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