Phonological and Surface Dyslexia in a Single PDP Model of Reading

Stephen R. Welbourne (stephen.welbourne@manchester.ac.uk)
School of Psychological Sciences, University of Manchester, M13 9PL

Matthew A. Lambon Ralph (matt.lambon-ralph@manchester.ac.uk)
School of Psychological Sciences, University of Manchester, M13 9PL

Abstract

Two simulations were conducted using a replication of
PMSP96 (Plaut, McClelland, Seidenberg, & Patterson, 1996,
Simulation 4). The first simulation demonstrated that this
implementation of PMSP96, was able to reproduce the
standard effects of reading, and that when damaged by removal
of the semantic input to phonology it produced the kind of
frequency/consistency interactions and regularisation errors
typical of surface dyslexia. The second simulation explored the
effect of phonological damage followed by a period of
recovery. This produced large lexicality effects characteristic of
phonological dyslexia. This is the first time that symptoms of
both of these reading disorders have been demonstrated by the
same implementation of the triangle reading model.

Introduction

Phonological dyslexia is a disorder of reading characterised
by impairment in nonword reading ability. The characteristics
of phonological dyslexia are closely related to those of deep
dyslexia with the important distinction that phonological
dyslexics do not make any of the semantic errors that are
diagnostic of deep dyslexia. The first case of phonological
dyslexia was reported by Beauvois and Derouesné (1979)
who coined the term. Since then there have been numerous
reports of individual cases as well as two case series (Berndt,
Haendiges, Mitchum, & Wayland, 1996; Crisp & Lambon
Ralph, in press). Analysis of these shows that there is a wide
contintum of reading performance both for words and
nonwords. At one end there are patients whose word reading
is near ceiling and have only slightly impaired nonword
reading; then there are patients with relatively ‘pure’ deficits
whose word reading is still reasonably preserved, but whose
nonword reading is almost at floor. Finally, there are the very
severe cases whose nonword reading is abolished, but who
also have poor reading of words.

At first it was thought that the only factor that was
important for reading performance in phonological dyslexia
was lexicality. More recently, it has been shown that
imageability/concreteness also affects word reading.
Traditionally this variable has been associated with reading
performance in deep dyslexics and most of the early reports
do not associate imageability effects with phonological
dyslexia. The first suggestion of this possible association
comes from patient LB (Derouesné & Beauvois, 1985);
however, it was not until the most recent case series study
(Crisp & Lambon Ralph, in press) that it became clear that
the occurrence of imageability effects in phonological
dyslexia was widespread. In that study all except one of the
12 patients (the mildest) were significantly more accurate

when reading high imageability words. This gradual
appearance of ‘deep dyslexic’ symptoms in cases of
phonological dyslexia is part of a trend in which deep and
phonological dyslexia are viewed as points on a continuum
rather than as separate disorders (Friedman, 1996).

Much of the previous work on models of reading has
focussed on modelling surface rather than phonological
dyslexia (Patterson, Seidenberg, & McClelland, 1989; Plaut
et al., 1996); as yet there has been no satisfactory account of
acquired phonological dyslexia within a connectionist
framework. Harm and Seidenberg (1999) have explored the
phenomenon of developmental phonological dyslexia with
some success. They trained a single route network in two
stages. First they trained the phonological portion of the
network so that it learned the phonological representations of
the words in the training corpus. They then trained the
network to read, interleaving this new training with continued
exposure to phonological only trials from the first phase of
training. To model developmental phonological dyslexia they
damaged the phonological portion of the network after the
first stage of training. Although they successfully modelled
varying severities of developmental dyslexia, none of their
simulations come near to producing the very large lexicality
effects found in cases of pure acquired phonological dyslexia.
In fact there are no reported PDP models of acquired
phonological dyslexia that produce lexicality effects of the
required magnitude. (Harm & Seidenberg, 2001 models
acquired phonological dyslexia, but the focus of the paper is
on orthographic influences on RT's and lexicality effects are
not reported.). In view of the inevitable absence of null results
in the literature it is difficult to come to any definite
conclusion as to why this should be, but we suspect that a key
factor is the difficulty in obtaining large lexicality effects.
Attempting to model large performance dissociations as a
result of damage to a PDP network can be a very frustrating
task. Damage to these networks tends to affect all processing
tasks with a similar severity. This was certainly the case with
early attempts to model surface dyslexia (Patterson et al.,
1989): PMSP96 was successful in modelling surface dyslexia,
but it achieved this by circumventing the problem. It
modelled semantic contributions by applying an external
input to ‘push’ the output of the phonological units towards
their targets. Semantic damage could then be modelled by the
removal of this input.

This paper adopts an alternative approach to modelling the
effects of brain damage (Welbourne & Lambon Ralph, 2005).
Under this approach human performance after damage is
assumed to be the result of a combination of damage and
plasticity-related recovery. The period of recovery
(corresponding to the period of spontaneous recovery in
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patients) is critical because it allows the brain to re-optimise
its remaining connections thus allowing the model to make
the best use of what resources it has left. The theoretical
position behind that paper is held in common with this study
and revolves around the proposition that recovery after brain
damage may be, at least in part, attributable to synaptic
weight changes. If the human brain’s ability to perform
accurately depends on the pattern of synaptic weights then it
seems reasonable to assume that the removal of a proportion
of those weights will not leave the remaining synapses
optimally configured to perform the task. Further, provided
that there exists some optimisation process by which the
synaptic weights can change (learning) then it seems
inevitable that some of the recovery that we observe in
patients after brain damage must be attributable to synaptic
change. This kind of mature synaptic plasticity has been
studied mostly in the context of cortical sensory maps (for a
review see Buonomano & Merzenich, 1998) and it is clear
that these maps are capable of undergoing extensive
modification presumably as a result of some learning process
operating at the synaptic level.

It seems possible that application of this new methodology
to a suitable model might result in a closer match to the
symptoms of phonological dyslexia than has hitherto been
achieved. We selected Simulation 4 from Plaut, McClelland,
Seidenberg and Patterson (1996) as the most appropriate for
our purposes. This model consists of a feedforward network
trained on a set of monosyllabic words with the training
weighted by the square root of word frequency. Input to the
phonological units came partly from this network and partly
from an external ‘semantic’ contribution. In their paper, Plaut
et al. demonstrated that removal of this semantic contribution
resulted in typical surface dyslexic reading patterns. We
speculated that damage to the phonological side of the
network followed by a suitable period of retraining might
result in typical phonological patterns of impairment.

Simulation 1

The architecture, training and representations used in this
simulation were modelled on those used by Plaut et al.
(Simulation 4, 1996). Each of these key features is
summarized below. Figure 1 shows the architecture of the
network that was used throughout this set of simulations.
There were three sets of units: 105 grapheme units; 100
hidden units and 61 phoneme units. The input layer was
connected to the hidden layer with a probability of 40% and
the hidden layer was connected to the output layer with a
probability of 80%. This sparse connection is a modification
from the original simulation where every layer was fully
connected to the next layer up. The purpose of this
modification was to reduce the competence of the
phonological part of the model so that word reading would
require a division of labour between semantic and
phonological systems. Plaut et al. achieved the same result by
using a very high value of weight decay in the phonological
part of the model. This method was chosen in preference
because it is a more realistic description of synaptic
connectivity in the human brain where connection density is
relatively low and dependent on distance (Plaut, 2002;
Young, Scannell, & Burns, 1995).

The activity level of each unit was set to vary between 0
and 1 as a nonlinear (logistic) function of the unit’s total
input. The initial weights on the connections were set to
random values between —0.1 and +0.1. The network was then
trained using the standard backpropagation learning algorithm
with momentum enabled only if the gradient of the error
slope was less than 1. Cross entropy was used as the error
function as in PMSP96. The learning rate for the network
was set to 0.05 and the momentum was 0.9.

[ 61 phoneme units ]
[ 100 hidden units ]
[ 105 grapheme units ]

Figure 1: Network Architecture.

Orthographic and Phonological Representations

The network used the same representations as PMSP96.
These representations divide each word into three parts
(onset, vowel and coda) and then use specific units to code
for particular graphemes or phonemes occurring within each
part.

Imageability Ratings Imageability ratings for words in the
corpus were obtained from the MRC Psycholinguistic
database and from Cortese and Fugett (2004). Between them
these sources provided ratings for 2719 of the 2998 words in
the corpus (1529 words had ratings from both sources). For
the purposes of this study both these ratings were converted
to z scores and averaged if necessary. Words without an
imageability rating were given an average imageability value
(z score =0).

Semantic Input Semantic input to the phonological units was
provided such that it tended to push the phonological units
towards the correct activations. Throughout training the
strength of this contribution was gradually increased to mimic
the effect of learning. The strength of this input at any given
developmental stage was modulated by word frequency and
imageability according to the following formula:-

0.5 0.5

—(1.14Log(Freq+2)-1)

Ist( )xMod

1+e 1+e—(lmagez+|.5)

Equation 1. Formula for calculating the semantic input to
phonological units.

2360



Frequency was taken from Kugera and Francis (1967) and
imageability z score was calculated as above. (The constants
in this formula were selected to provide a sensible distribution
across the frequency and imageability values in the corpus
with more of the variation originating in imageability.) Over
the course of development the total semantic input was
modulated by an epoch dependent modulation factor that
varied from 0.6 to 4.8 in steps of 0.6 where a step occurred
after every 200 epochs.

In the case of the nonwords Plaut et al. did not provide any
semantic contribution. This may not have been the correct
choice for the following reason: in the brain the connections
between O and S (either direct O—S or indirect O—P—S)
cannot be selectively turned off for nonwords. Hence
nonwords will generate some kind of activation across the
semantic units which will, in turn, contribute to the activation
of phonological units. This nonword semantic activation will
not correspond to any known semantic targets (except in the
case of lexicalization errors); rather it will represent some
kind of average semantic activation for all the visually similar
words. This will result in a contribution from semantics to
phonology that is effectively random noise. Accordingly, for
nonword reading, semantic input was randomly added to the
phonological units where the input for each unit varied
between -0.5 and +0.5 modulated by the same modulation
function as for the real words.

Training Procedure

The network was trained using full batches with the same
corpus of 2998 monosyllabic words used in PMSP96. The
root frequency (Kugera & Francis, 1967) of each word was
used to scale the cross entropy error derivatives for the
purposes of backpropagation. This has the same effect as
using frequency to determine the probability of a word being
presented for training; however, it has the considerable
advantage that every word can still be presented once every
epoch thus considerably compressing the required training
time (See Plaut et al, 1996 for a fuller discussion of this
issue). To eliminate the possibility that the results might be a
consequence of one particular set of initial weights, the
network was trained ten times; each time using a different
random set of weights as the starting point. These ten trained
networks then formed the starting point for further
investigations.

Testing Procedure

Seven sets of test stimuli were used to evaluate the network’s
performance: high frequency regular; high frequency
irregular; low frequency regular; low frequency irregular;
regular nonwords; high imageability words and low
imageability words.

The regular and irregular words were taken from Taraban
and McClelland (1987) and were matched across groups for
frequency. The regular nonwords were taken from Glushko
(1979) and were created by changing the onset of an existing
regular word. These stimuli are the same as those used in
PMSPI6 so that it is possible to make a direct comparison of
results.

The high and low imageability word sets were constructed
for the purposes of this simulation. Low imageability words
(imageability rating 200-400) were selected from the training
corpus and matched, pairwise, on frequency with high
imageability words (500-700) also selected from the corpus.

In addition to the performance on the seven sets of test
stimuli, the percentage of regularisation errors made by the
network on the two irregular stimuli sets was also recorded.

Initial Training

By epoch 2000 the network had reached asymptote
performance for all of the stimuli sets except nonwords,
which reached asymptote sooner (epoch 300). At this point
the network correctly pronounced all of the words in its
corpus including all of the homographs. This is slightly better
than the performance achieved by PMSP96, which was
99.7% accurate in word reading. For nonword reading the
model was correctly reading 93.0% of the regular nonwords.
This is not as good as the 96.5% achieved by PMSP96, but it
is nearer to human performance which averages 93.8%
(Glushko, 1979).

It is important to verify that this model could replicate the
standard frequency/consistency interaction found in the
naming latencies of normal human populations (e.g.
Seidenberg, 1985; Seidenberg, Waters, Barnes, & Tanenhaus,
1984). Error scores from the network at epoch 2000 were
submitted to a 2 x 2 ANOVA where frequency and
consistency were treated as between group variables. This
confirmed that there was indeed a significant
frequency/consistency interaction ( F(1,1916) = 238.1, p <
0.001). In addition, there were significant main effects of both
frequency (F(1,1916)=306.4, p<.001 and consistency
(F(1,1916)=521.9, p<.001). The nature of the interaction was
for frequency to be almost completely modulated by
consistency. For irregular words low frequencies resulted in a
much higher cross entropy error scores (0.067 vs 0.015) but
for regular words there was a much smaller effect of
frequency (0.007 vs 0.004). This is consistent with the
standard effect found in human reading latencies and with the
results found for PMSP96.

In addition to standard effects of consistency and frequency
one might also expect to see an effect of imageability (Strain,
Patterson, & Seidenberg, 1995) with high imageability items
having lower error scores than low imageability ones. To test
this, error scores from the high and low imageability word
sets were compared. The mean error score for high
imageability items was 0.0082 (SD=0.013) whilst the mean
error score for the low imageability items was 0.0223
(SD=0.0416). Submitting these scores to a t test revealed that
there was, as predicted, a significant difference (t=-7.08,
df=570, p<0.001).

Surface Dyslexia — Replication of PMSP

Before investigating the possibility that this model can
simulate the symptoms of phonological dyslexia it is
important to verify that like PMSP96 it is capable of
replicating the symptoms of surface dyslexia. Surface
dyslexia is characterised by poor reading of low frequency
exception words, coupled with accurate reading of nonwords.
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Errors made in reading irregular words tend to be
regularisations or LARCs (Patterson, Suzuki, Wydell, &
Sasanuma, 1995); for example reading PINT to rhyme with
MINT. To mimic the effect of semantic damage we gradually
reduced the strength of the semantic contribution whilst
simultaneously adding random noise to it. This was achieved
by decreasing the strength of the modulation factor from 4.8
to 0 in ten steps of 0.48 while simultaneously adding
increasing amounts of Gaussian noise with a standard
deviation increasing in ten steps of 0.75.

Figure 2 shows the results of this simulation. For clarity
the regular high frequency, high imageability and low
imageability word sets have been omitted — performance on
these word sets is very similar to that for low frequency
regular words. Low frequency irregular words are the most
affected by this manipulation with performance dropping to
53% for the worst damage. At this point performance on high
frequency irregular words is reduced to 89%; regularisation
errors constitute 79% of all errors made on irregular words;
while accuracy rates on all other word sets fall between 95%
and 98%. Note that for nonwords this represents a slight
improvement on the undamaged performance. This pattern of
results is consistent with that found in surface dyslexic
patients and with the results of PMSP96 Simulation 4.
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Figure 2. Effect of removal of semantic input

Simulation 2 — Phonological Damage

The architecture, network dynamics and training environment
used in this simulation were identical to that of Simulation 1.
Starting from the same ten fully trained networks we explored
the effect of damage to the phonological portion of the
network followed by a period of retraining. Phonological
damage was simulated by lesioning the links between input
and hidden layers whilst simultaneously adding noise to the
output of the hidden layer. Three levels of damage severity
were tested (15%, noise SD=.15; 30%, noise SD=.3 and 70%,
noise SD=0.7). As expected, performance immediately after
damage resulted in very large impairments for all stimuli
types and did not resemble phonological dyslexia. After
damage the network was allowed to recover for 200 epochs
by re-exposing it to the original learning environment. During

this recovery the noise on the output of the hidden units was
maintained. Figure 3 shows the results of this investigation
for the three levels of damage severity. At the most severe
level nonword reading is abolished while word reading
accuracy varies between 20% and 40% depending on the
stimuli set. The high imageability and regular high frequency
words are read with the highest accuracy while the low
imageability and irregular word sets are read with the least
accuracy. This pattern of results is what one might expect to
see in a rather severe case of phonological dyslexia. The only
possible criticism would be that there seems to be an effect of
consistency as well as one of imageability; an issue that will
be addressed in more detail in the discussion.

For the medium and mild levels of damage the pattern of
performance for words is very similar to that for severe
damage except that it is centred around progressively higher
mean scores: in the case of 30% damage scores range from
57% to 85%, while for milder 15% damage they range from
83% to 97%. In all cases irregular and low imageability
words are read less accurately than regular and high
imageability words. Nonword reading is seriously impaired
for all levels of damage with overall level of nonword reading
accuracy decreasing with increasing damage severity.
However, even at mild levels of damage nonword reading
accuracy is still only 47%.

To confirm the significance of the apparent effects of
lexicality, imageability and consistency we submitted the
results to a series of t tests: lexicality was tested by comparing
performance on low frequency regular words with
performance on regular nonwords; imageability was tested by
comparing performance on the high and low imageability
word sets; consistency was tested by comparing the low
frequency regular and irregular word sets. All of these
comparisons demonstrated highly significant differences (all
p’s <0.001).

-Regular High Freq
|:|Regular Low Freq
-Irregular High Freq
-Irregular Low Freq
E=High Imageabiity
[ZLow imageabiiity

-Regular Nonwords

Y

Mean Percentage Correct

15(0.15) 3(0.3) 7(0.7)

o

Phonological Lesion (S.D. of noise in brackets)

Figure 3. Performance after phonological damage and
recovery
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Discussion

Two simulations were conducted using a network architecture
similar to PMSP96 (Simulation 4). The first simulation
demonstrated that our implementation performs similarly to
PMSP96, in that it can reproduce the cardinal features of
normal reading, as well as the symptoms of surface dyslexia.
The second simulation explored the possibility that damage to
the phonological portion of the model, followed by a period
of recovery would lead to performance resembling that found
in phonological dyslexia. This simulation demonstrated that a
full range of lexicality effects could be modelled; coupled
with the imageability effects that are characteristic of
phonological dyslexia. This is the first time that such large
lexicality effects have been modelled in a network which also
has the capacity to learn. Moreover, it is the first time that
simulations of surface and phonological dyslexia have been
produced from the same connectionist architecture.

One slightly unexpected aspect of these results is the
persistence of a consistency effect following phonological
damage. This is not traditionally associated with phonological
dyslexia. However, although it is not often reported,
phonological dyslexics do often exhibit consistency effects. A
re-analysis of data from Berndt et al (1996) reveals that 9 out
of 10 of the patients in the series showed more accurate
reading of regular than of irregular words with the
performance difference ranging from 2% to 20%. When data
from all of the patients are submitted to statistical analysis
these differences are shown to be significant (t=2.32, df=9,
p=0.023, one tailed). Data from the only other case series of
phonological dyslexics (Crisp & Lambon Ralph, in press) is
even more emphatic, 10 out of 12 patients showed a
superiority for regular words varying from 5% to 33% and
the group as a whole showed a very significant consistency
effect (t=4.41, df=11, p<0.001, one tailed). The mean size of
the consistency effect for the two sets of patients (including
those who did not exhibit a consistency effect) was 5% for the
Berndt et al. set and 14% for the Crisp and Lambon Ralph set.
This compares with a mean consistency effect of 16% for the
network (averaged across all damage severities). In the light
of this it seems reasonable to suggest that this simulation has
captured a hitherto unremarked feature of phonological
dyslexia.

These results pose two important questions: (1) What are
the critical components in these simulations that are essential
to successfully modelling phonological dyslexia? (2) How do
these results mesh with those reported by Welbourne and
Lambon Ralph (2005)?

Two features of these simulations seem likely to have
significantly contributed to their success in modelling
phonological dyslexia. Firstly, the fact that the phonological
damage was generalised in nature, affecting both the ability
of the network to map from orthography to phonology and the
integrity of its phonological representations. This was
achieved by combining damage to the connections in the
O—P pathway with noise added to the output of the
phonological hidden units. Without the addition of noise it is
probable that the network would have been able to recover by
finding solutions that relied more on the regularities in the
training set; resulting in reduced lexicality effects and an
increased influence of consistency. The idea that

phonological dyslexia arises from generalized phonological
damage is consistent with the primary systems hypothesis
(Patterson & Lambon Ralph, 1999), which assumes that
reading is subserved by the more general pre-existing
language systems and that the acquired dyslexias arise from
generalized damage to one of these systems. Indeed, the
current model could be regarded as a first step towards an
implementation of the primary systems hypothesis. Of course,
a full implementation would require a model that was able to
perform additional linguistic tasks such as speech,
comprehension and repetition.

The second key factor in this simulation is the inclusion of
a period of recovery after damage. Welbourne and Lambon
Ralph (2005) found that including a period of recovery was
helpful when modelling surface dyslexia because it magnified
the effect of small pre-existing processing biases into large
performance dissociations. Exactly the same effect is
produced in these simulations, but this time the biases are
towards lexicality and imageability effects rather than a
frequency/consistency interaction.

It is important to consider how the results of this simulation
mesh with the results reported by Welbourne and Lambon
Ralph (2005). In that simulation, damage to an isolated
phonological network resulted in a surface dyslexic
performance; here, on the other hand, surface dyslexia arises
from damage to the semantic portion of the network whilst
damage to the phonological portion produced the symptoms
of phonological dyslexia. At first glance this seems somewhat
inconsistent; how is it that surface dyslexia can arise from two
different damage loci? In reality, there is no inconsistency; in
both cases the endpoint is the same. Surface dyslexia occurs
where the phonological system has insufficient computational
resources to successfully process all of the words in its corpus
and has no available support from semantics. Welbourne and
Lambon Ralph (2005) achieved this situation by damaging a
phonological system that was initially over competent in that
it could read without any support from semantics. In the
current simulation the same situation was achieved, more
realistically, by removing semantics from a network where
reading was supported by a division of labour between
phonology and semantics. Only in this latter situation, where
there is the potential for a division of labour, can damage to
the phonological system result in phonological dyslexia.

This study represents a considerable step forward in that it
is the first time that a single implementation of the triangle
model has been able to produce both the
frequency/consistency interactions typical of surface dyslexia
and the lexicality/ imageability effects associated with
phonological dyslexia.
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