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Abstract

In many fields in psychology implicit tests are used to
measure some construct of interest, such as priming
measures to test implicit memory and the implicit asso-
ciation test to measure implicit attitudes. In sequence
learning, reaction times are regarded as an implicit test
of sequence knowledge. The validity and interpretation
of implicit tests hinges on its relationship with similar
explicit tests. Using different explicit measures, both
large associations and dissociations have been reported
between measures of sequence knowledge. Part of this
inconclusiveness of the results may be due to different
reliabilities and sensitivities of the measures being used.
In this paper, a latent variable model approach is used
to assess differences in reliability and sensitivity of reac-
tion times and online prediction performance in a typical
sequence learning task, with the aim of arriving at pre-
cise estimates of the correlations between implicit and
explicit measures of sequence knowledge.

Introduction

In many fields in psychology implicit test procedures are
used, for testing self-esteem, for testing attitudes, and
in learning and memory research. Many of these pro-
cedures rely on reaction times (RTs). That is, when
someone has a negative attitude towards caucasians, one
would not necessarily expect them to express this in an
explicit questionnaire. However, it may very well be pos-
sible to detect such attitudes in an implicit association
test by detecting differential responding to, say, pictures
of black and white people (Fazio & Olson, 2003). Simi-
larly, in memory research, priming effects may occur in
the absence of explicit recollection of the presented ma-
terial. In implicit learning research, a speed-up in RTs is
observed in the absence of verbally reportable knowledge
(Cleeremans & McClelland, 1991).

The use of implicit measures differs considerably in
these fields, and so does the interpretation of associa-
tions and dissociations that exist between implicit and
explicit measures. However, there is one important sim-
ilarity: the validity and interpretation of implicit tests
depends crucially on precise knowledge about its rela-
tionship with corresponding explicit tests. This relation-
ship, be it an association or a dissociation, is greatly in-
fluenced by the reliability of the measures involved. As
a consequence of differing reliabilities and sensitivities
of implicit and explicit measures, the true relationships
between these measures may be obscured (Buchner &
Wippich, 2000; Meier & Perrig, 2000).
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Many debates about the relationships between implicit
and explicit measures center on the type of knowledge
representations that underly participants’ responses to
these measures. There are two extreme possibilities for
these knowledge representations. The first possibility is
that there are two kinds of knowledge, implicit and ex-
plicit. One is measured by RTs, as in priming effects
or in the implicit association test, and the other is mea-
sured by explicit tasks such as questionnaires (in atti-
tude research) or recognition or recall tasks (in memory
research). The assumption of two kinds of knowledge
implies that it should be possible to dissociate them.

The second possibility is that there is only one kind
of knowledge but there are different measures, implicit
or explicit (see e.g. work by Shanks & colleagues). Fazio
& Olson (2003) state something similar about attitudes:
“... it is more appropriate to view the measure as im-
plicit or explicit, not the attitude” (emphasis added). In
taking this position, researchers implicitly take on the
challenge of finding plausible explanations of dissocia-
tions that are nonetheless found between implicit and
explicit measures.

The focus of this paper is on implicit sequence learn-
ing, although the proposed method of using factor analy-
sis to arrive at estimates of correlations between implicit
and explicit measures of a construct can be applied more
generally, and indeed has been recently in the area of at-
titude research (Blanton, Jaccard, Gonzalez & Christie
2006). In typical sequence learning experiments, partici-
pants are presented with a sequence of stimuli that they
have to respond to by pressing an appropriate response
button. Unbeknownst to participants, the sequence of
stimuli contains regularities that make upcoming stim-
uli predictable by previously seen stimuli. As a result
of this, a decrease in RTs is observed relative to a con-
trol condition with differently or randomly structured
stimuli. To establish that the learning process that un-
derlies the speed-up in RTs is indeed implicit, a test of
explicit knowledge is administered after the RT phase
of the experiment, and the correlation between implicit
and explicit test is computed. The results of such studies
however, are mixed, with some studies pointing to lim-
ited reportable knowledge (Reber, 1967; Cleeremans &
McClelland, 1991) and others pointing to high correla-
tions between implicit and explicit measures (Perruchet
& Amorim, 1992; Shanks & Johnstone, 1999). These dif-
ferences may be partly due to the different reliabilities



of implicit and explicit measures that are involved, and
in this paper we show a method of estimating those.

Implicit sequence learning

The status of knowledge resulting from implicit learn-
ing is highly controversial with people claiming that hu-
man learning is systematically accompanied by aware-
ness (Shanks & StJohn, 1994) and others claiming that
unconscious learning is a fundamental process in human
cognition (Reber, 1993). Another exponent of the latter
view is Destrebecqz, who has found a strong dissociation
between an implicit and an explicit measure of sequence
knowledge (Destrebecqz & Cleeremans, 2001). It should
be noted though that others have failed replicate their
results (Wilkinson & Shanks, 2004).

In much of the implicit learning research, the goal is es-
tablish implicit learning effects in the absence of explicit
knowledge. As a consequence, the validity of the explicit
knowledge test that is used is pivotal in evaluating this
research. Since Reber’s 1967 paper on implicit learning
of artificial grammars, there has been a heated debate
about the validity of different explicit knowledge tests.
In particular, it has been argued that the verbal report
task that was used by Reber to assess explicit knowledge
at the end of the experiment, is not sensitive enough to
bring out all the explicit knowledge that participants
may have in such an experiment (Perruchet & Amorim,
1992; Shanks & StJohn, 1994). As a result, researchers
have proposed other measures of explicit knowledge such
as the recognition task and the generation task.

In the recognition task, portions of the sequence of
stimuli that was presented to participants in the RT
task, are presented to them, and they are asked to give
a recognition rating. The results from the use of such
recognition tasks are similarly inconclusive as the results
from the verbal report tasks. Destrebecqz and Cleere-
mans (2001) found near baseline performance, whereas
others found high correlations between priming effects
as measured by RTs and a recognition task (Shanks &
Perruchet, 2002).

In the generation task, participants are required to re-
produce the sequence of stimuli that was presented to
them in the RT task. In different versions of the gen-
eration task, again different researchers found diverging
results, varying from near baseline performance (Cleere-
mans & McClelland, 1991; Jiménez, Méndez & Cleere-
mans, 1996) to high correlations between RTs and gener-
ation performance on trigrams of generated stimuli (Per-
ruchet & Amorim, 1992.

Some of the objections that were raised against the
verbal report task can be raised similarly against differ-
ent versions of the recognition and generation tasks. In
particular, the sensitivity and reliability of these tasks
are unknown. This is also true, of course, for the typical
RT measures that are used in sequence learning tasks.
As a consequence, observed correlations between implicit
and explicit measures can not be taken at face value.
Buchner & Wippich (2000) have shown that observed
correlations between implicit and explicit memory tasks
can be greatly reduced by different reliabilities of the
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Figure 1: Factor model.

measures involved. They propose to correct the observed
correlations by split-halves reliability estimates. In this
paper, a similar approach is taken to compare observed
and true correlations between implicit and explicit mea-
sures of sequence knowledge.

This current paper has three aims. First, to devise a
direct measure of sequence knowledge that can be mea-
sured repeatedly, and which can be measured concur-
rently with RTs, which are used as an indirect measure of
sequence knowledge. Second, to establish the reliability
of each of these measures. Third, and most importantly,
to arrive at estimates of the correlations between these
measures in such a way as to account for their different
reliabilities.

Analyzing reliability

In sequence learning, there are typically many repeated
measurements of the implicit measure of knowledge:
RTs. This feature of sequence learning experiments can
be exploited to arrive at reliability estimates of the RT
measure. In the factor model proposed in the current
paper, the repeated measurements of RTs are used as
indicators of the underlying factor of implicit knowledge.
Figure 1 depicts the factor model that is used to analyze
the data. In this model, P, and P, are the repeated
(parallel) measures of prediction performance, and R
and Ry are the repeated measures of RTs. These indi-
cators are pairwise regressed on a common underlying
factor representing explicit knowledge (EK) and implicit
knowledge (IK) respectively. Each of the indicators is
also associated with a reliability or measurement error
term €,, and ¢, for the measurement error of prediction
performance and RTs, respectively.

The model for the observed data can hence be ex-
pressed as:

P, =)\EK +¢p,i=1,2, (1)
Ri=MIK +e,,i=1,2, (2)



where €, and ¢, are the measurement errors, and A, and
A~ express the strength of the relationship between the
EK factor and prediction performance, and the strength
of the relationship between the IK factor and reaction
times respectively. The parameter of most interest in
this model is W15, the correlation between the latent fac-
tors EK and IK. Estimates of this parameter can be com-
pared with the observed correlations between prediction
performance and reaction performance.

To be able to apply this model, repeated measure-
ments of prediction performance must be available as
well as repeated measurements of RTs. In the experi-
ment presented below, a task is designed to allow these
repeated measurements of prediction performance.

Experiment

The goal of the experiment is to devise a direct measure
of sequence knowledge that can be measured repeatedly,
and concurrently with RTs. The measure that is used
for this purpose is an online prediction task in which
participants are required to predict the upcoming stimuli
at random trials during a serial RT task.

Method

Participants Participants were seven psychology stu-
dents from the Department of Psychology from the Uni-
versity of Amsterdam who received course credits for
their participation in the experiment.

Procedure Participants were seated in front of an Ap-
ple Imac computer and given a four-choice serial reaction
time (SRT) task. The experiment consisted of 11 blocks
of 144 trials each. Each block consisted of 12 repeti-
tions of a second-order conditional sequence of length
12: CDABDCADBACB, except in block 9, in which a
transfer sequence was used: CDBCABADCBDA. Such
sequences are frequently used in sequence learning ex-
periments (Perruchet & Amorim, 1992; Shanks & John-
stone, 1999). Stimuli were presented in one of four lo-
cations that were organized in a 2 x 2-grid as shown
in Figure 2. At RT trials, participants were required to
press the appropriate response on the numerical key-pad
of an ordinary keyboard. The response were congruently
mapped to the screen positions; keys 1, 2, 4, and 5 were
used.

Reaction time trials were interspersed with online pre-
diction trials at random points in the sequence. Pre-
diction trials were signaled by a display as depicted in
Figure 2. Note that the letters were not part of the ac-
tual display. Four question marks were placed at each of
the possible screen locations, and participants were in-
structed to predict the location of the next stimulus. In
the instructions, participants were made aware that in
the RT trials there were no repeating trials. At predic-
tion trials, they were instructed to refrain from typing
the same stimulus that was presented at the RT trial
immediately before the prediction trial. In each block,
there were 24 prediction trials, 2 at each position of the
12-element repeating sequence. A block never started
with a prediction trial, and there were at least 3 RT
trials in between consecutive prediction trials. Since
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Figure 2: Display for prediction trials.

the sequences that were used in this experiment were
second-order conditional, this spacing of prediction tri-
als ensured that correct prediction was always possible
based on previously seen stimuli. FEarlier research es-
tablished that online prediction task does not affect the
learning process in any significant way (Visser, Raijmak-
ers & Molenaar, 2006).

After the reaction time and online prediction phase of
the experiment were completed, a free generation task
was administered. In this task, participants are pre-
sented an initial stimulus, and are then required to gen-
erate a sequence of trials that mimics the sequence of
trials they were exposed to in the reaction time task.
In none of the tasks, feedback was provided to partic-
ipants. It has been argued that especially in the gen-
eration task, providing feedback may lead to undesir-
able side-effects (Perruchet & Amorim, 1992; Shanks &
Johnstone, 1999). Hence, in order to have maximal con-
gruence between the RT task, the prediction task and
the generation task, no feedback was provided at any of
them.

Results

To establish the well-known effects that are found in se-
quence learning, mean RT's were computed for each block
and for each participant separately. The means of these
means are plotted in Figure 3. The results unsurpris-
ingly replicate standard findings in sequence learning:
RTs decreased as a function of exposure to the repeating
sequence, and increased when the transfer sequence was
presented in block 9. The main effect of block number on
RTs is F(10,60) = 5.21,p < 0.001. More importantly,
there is a significant effect of transferring participants to
previously unseen stimuli in block 9 when compared with
the reaction times in block 10, F'(1,6) = 16.24, p < 0.01.
Because of possible deviations from normality, this dif-
ference was also tested using a Wilcoxon test providing
essentially the same result Z = —2.37, p < 0.05.

In Figure 4, the percentages correct predictions in
each block of trials are plotted. The pattern of predic-
tion performance mirrors that of the RT performance.



Implicit learning: RTs
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Figure 3: Mean reaction times.

There is an overall increase in prediction performance
as confirmed by a main effect of block on percentage
correct F(10,60) = 3.32,p < 0.01. Similarly, there is
a large drop in prediction performance when partici-
pants are transferred to a different sequence; the dif-
ference between prediction performance in block 9 and
block 10 is significant, F'(1,6) = 7.76,p < 0.05. Similar
to the RT data, a Wilcoxon test provides the same result
Z =—1.997, p < 0.05.

The result of decreasing RTs mimics standard findings
in sequence learning. The increase of prediction perfor-
mance is also unsurprising, although only a few stud-
ies have used a concurrent direct measure of sequence
knowledge, but see Shanks & Perruchet (2002). Only
Visser, Raijmakers & Molenaar (2006) have used con-
current direct and indirect measurements of sequence
knowledge throughout the learning phase of a sequence
learning experiment. In the next section, the relation-
ship between this measure and the reaction times is ex-
plored in more detail.

Correlations between reaction times and predic-
tion performance The observed correlation between
mean RTs and mean prediction performance over the 11
blocks of the experiment is r = —0.60,t = —2.2128, df =
9,p = 0.0542, where r has a 95 percent confidence inter-
val from -0.880 to 0.0097. When leaving out block 9, the
correlation changes to r = —.80 with p < 0.05.

In order to compare prediction performance with re-
action times in more detail, the factor model from Fig-
ure 1 was fitted on the reaction times and percentages
correct predictions of blocks 1 through 8 and blocks 10
and 11. Block 9 was left out of these analyses because in
that block the transfer sequence was presented to par-
ticipants. Model fitting was done in the following way.
First, mean RTs to the last trial of each trigram occur-
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Figure 4: Mean percentage correct predictions.

ring in the repeating sequence were computed. This was
done separately for each block. For example, the mean
reaction time to a D stimulus occurring after AB was
438.3 ms in block 1, and 413.5 ms in block 11. Sec-
ond, and similarly, the percentages correct predictions
were computed for each trigram, and for each block sep-
arately. For example, the percentage correct predictions
for predicting a D after AB was 21.4% in block 1 and
67.1% in block 11. Factor models were estimated on
the basis of the correlation matrices between two mea-
sures of RTs of subsequent blocks and two measures of
prediction performance of subsequent blocks. Such ob-
served correlations between RTs and an explicit mea-
sure of performance are typically reported in research on
the relationship between implicit and explicit sequence
knowledge (see e.g. Perruchet & Amorim, 1992; Jiménez
et al., 1996).

First, five separate factor models were fitted on data
from five pairs of consecutive blocks of the experi-
ment; the resulting model parameters, along with the
goodness-of-fit measures, and the observed correlations,
are reported in Table 1. Reaction times from block 1
served as indicator R; in the factor model, and RTs from
block 2 served as indicator Rs in the model. Similarly,
prediction performance in block 1 served as indicator P;
in the model, and performance in block 2 as indicator
Ps; and similarly for blocks 5 through 8 and blocks 10
and 11. To identify the factor model, the measurement
error parameters €,, and €,, were set to be equal, and
so were the measurement error parameters €,, and &,.
Similarly, the factor loadings related to the EK factor
Ap, and Ap, were set to be equal, and so were the factor
loadings related to the IK factor A,, and A,,. Models
were fitted using Lisrel (Joreskog & Sorbom, 1999).

Table 1 reports three goodness-fit-measures, the 2,
along with the corresponding df and p-value, the CFI



Table 1: Observed (obs) correlations and latent (lat) correlations.

model obs low/up lat low/up €p/Er x> df p CFI SRMR
bl1l & 2 -.67 -84/-36 -.94 -1.00/-.72 .09/.35 246 5 .78 1.0 .061
bl 3 & 4 -75 -.88/-49 -75 -94/-50 .13/.16 556 5 .33 1.0 .076
bl5 & 6 -64 -83/-32 -62 -96/-42 .13/31 130 5 .93 .98 .021
bl7T&8  -50 -75/-12 -96 -1.00/-58 .22/50 427 5 51 1.0 .10
bl 10 & 11 -42 -.70/-.02 -1.0 -1.00/-.62 .39/.45 1.76 5 .88 1.0 .062
combined  -.60 -.70/-47 -84 -98/-70 .18/.36 30.3 45 .95 1.0 .090

and the SRMR. The SRMR indicates slight misfit for
the model of block 7 & 8 and for the combined data
model. According to the x? and CFI criteria all models
adequately capture the data (see Hu & Bentler, 1999,
for discussion of cut-off values of fit indexes of factor
models). Note that the relevant ‘sample size’ n in these
model fits is not the number of subjects but rather the
number of trigrams that is being analyzed, i.e. n = 12.

In each row of the Table, the observed correlation is
given along with it’s 95% confidence interval, the latent
correlation as estimated in the factor model, along with
it’s 95% confidence interval and the measurement error
parameters ¢, and €,. The parameter of interest is the
correlation between the EK en IK factor that is esti-
mated in the factor model, i.e. the correlation between
knowledge measured by prediction performance and the
knowledge measured by RT's, as well as the measurement
error parameters. As can be seen in Table 1, the correla-
tions between RTs and online prediction are rather high
overall. This is even more so for the latent correlations
estimated in the fitted factor models, indicating atten-
uation of the observed correlations. Note that three of
the five latent correlations have -1.0 included in their
95% confidence interval, indicating that the data is con-
sistent with a correlation of -1.0 between the EK en IK
factors. This observation is confirmed by non-significant
x2-difference tests for setting the latent correlation to -1
for these three models.

Because the separate models are based on n = 12
items only, the confidence intervals of these parameters
are quite large. Therefor, we also fitted a combined
model on the five data sets together. This model is a
multi-group model, in which all parameters were con-
strained to be equal across the five measurement occa-
sions. The tenability of these constraints together was
tested using a y2-difference test which was found to be
non-significant, y? = 14.95, df = 20, p = .78, indicating
that the constraints did not significantly influence model
goodness-of-fit. The parameter estimates and goodness-
of-fit indexes of this model are in the last line of Table 1.

In the combined model, the latent correlation between
EK and IK is -.84 with a confidence interval of -.70 to
-.98, whereas the observed correlation is -.60 with con-
fidence interval endpoints of -.47 and -.70. Hence, the
observed correlation between IK and EK is greatly in-
fluenced by (different amounts of) measurement error in
the implicit and explicit measures. The high latent cor-
relation between the EK and IK factors in the models

2321

indicate that a common knowledge base underlies re-
sponding to both types of trials. High correlations be-
tween direct and indirect measures of sequence learning
have been found before, e.g. by Perruchet & Amorim
(1992) who found a correlation of -0.8 between RTs and
a generation task administered at the end of training.

It should be noted that these correlations have to be
interpreted with care, as our sample size is fairly small.
Even though sample size is small, the reliability of es-
timates of correlations need not be threatened. As said
above, the appropriate n in these factor models is not the
sample size, but the number of trigrams under analysis.
Moreover, the data entering into the factor model con-
sists of RT's averaged over many repeated trials and over
subjects. As a consequence, those data are much more
reliable than the typical situation in factor analysis in
which between-subject variability is investigated.

The difference between the observed and latent corre-
lation was tested by fixing the latent correlation to the
value of the observed correlation. In the model for the
combined data, this results in a y2-difference of 6.2 with
df =1, p < .05, indicating that the latent correlation is
significantly larger than the observed correlation.

Measurement error is higher for the RTs (e,) than for
the prediction performance (g,), x?-difference of 6.1 with
df =1, p < .05 for setting those parameters equal, and
both are significantly different from zero. Hence, the di-
rect measure of sequence knowledge, online prediction,
has lower measurement error than does the indirect mea-
sure of sequence knowledge, RTs.

Conclusion & discussion

A factor analysis model was presented that allows pre-
cise analysis of correlations between implicit and explicit
measures of a given construct. This method was ap-
plied to a sequence learning task. In order to apply this
method, multiple indicators, or multiple measurements
of the same type need to be administered to participants.
Having multiple measurements provides the possibility
of separating measurement error from tests from the un-
derlying constructs they are purported to measure.

An experiment was devised that contains multiple
measurements of a direct measure of sequence know-
ledge in the form of the online prediction task. Perfor-
mance on this task, i.e. the increase in prediction ability,
was highly correlated with the (decrease in) RTs. This
overall correlation indicates that improvement on both
measures proceeds in a similar vein.



The application that was presented clearly indicates
that the presence of measurement error attenuates the
observed correlations between implicit and explicit mea-
sures of underlying constructs. Failing to observe the
presence of (different levels of) measurement error may
lead to gross underestimates of the correlations of inter-
est. It was shown that in the case of sequence knowledge
as measured by reaction times and prediction perfor-
mance, the data show strong evidence of a single under-
lying knowledge base for improvement on both measures
in a sequence learning experiment. In fact, a number of
the estimated correlations were consistent with a corre-
lation of -1.0 between the latent factors EK and IK for
explicit and implicit knowledge, and the model for the
combined data has a latent correlation of -.84, also in-
dicating a very strong association between implicit and
explicit measures of sequence knowledge. These num-
bers should however be interpreted with care because of
the rather small sample size that we tested. Better es-
timates of the latent correlations may be arrived at by
using a multi-level factor model, with random effects for
subjects and measurement occasions.

The aim of the present paper was to provide a method
for reliably estimating correlations between constructs
that are measured with different measurement error.
The investigation of measurement error and its influ-
ence on correlations between the constructs of interest
is essential in the fields of research that use implicit and
explicit measures. The factor model that we presented is
an excellent tool to investigate these issues, and its ap-
plication is hence a prerequisite for answering important
substantive questions in those fields of research. More-
over, the present methodology can easily be extended to
include other measures of sequence knowledge as well,
such as the recognition task or a generation task admin-
istered at the end of training, as is commonly done in se-
quence learning research. The only requirement for using
this methodology is that multiple indicators are available
to measure both implicit and explicit constructs.
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