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Abstract 

Does dopamine code for uncertainty (Fiorillo, Tobler & 
Schultz, 2003; 2005) or is the sustained activation recorded 
from dopamine neurons a result of Temporal Difference (TD) 
backpropagating errors (Niv, Duff & Dayan, 2005)? An 
answer to this question could result in a better understanding 
of the nature of dopamine signaling, with implications for 
cognitive disorders, like Schizophrenia. A computer 
simulation of uncertainty incorporating TD Learning 
successfully modelled a Reinforcement Learning paradigm 
and the detailed effects demonstrated in single dopamine 
neuron recordings by Fiorillo et al. This alternate model 
provides further evidence that the sustained increase seen in 
dopamine firing, during uncertainty, is a result of averaging 
firing from dopamine neurons across trials, and is not 
normally found within individual trials, supporting the claims 
of Niv and colleagues.  

Keywords: Dopamine; Uncertainty; Single Cell Recordings; 
Temporal Difference; Computer Simulation. 
 

Dopamine and Uncertainty 
Current theories of the effects of dopamine on behaviour 
focus on the role of dopamine in Reinforcement Learning, 
where organisms learn to organise their behaviour under the 
influence of goals, and expected future reward is believed to 
drive action selection (McClure, Daw & Montague, 2003; 
Montague, Dayan & Sejnowski, 1996; Schultz, Dayan & 
Montague, 1997; Suri & Schultz, 1999). Single cell 
recordings of dopamine neurons have identified a phasic 
dopamine burst of activity which is posited to be a reward 
prediction error (Schultz, 1998; Waelti, Dickinson & 
Schultz, 2001) and Temporal Difference (TD) Learning 
(Sutton, 1988; Sutton & Barto, 1998), a form of 
Reinforcement Learning, provides an explicit method of 
modelling and quantifying this error (Hollerman & Schultz, 
1998; Schultz et al., 1997). It is likely that disruption to the 
dopamine system gives rise to an abnormality in 
information processing by dopamine and some of the 
symptoms currently associated with schizophrenia, 
particularly psychosis and deficits in working memory. 
    It has been posited that dopamine also codes for 
uncertainty (Fiorillo, Tobler & Schultz, 2003), as under 
conditions of maximum uncertainty, observations of single 
cell recordings have shown a sustained increase in activity 
from presentation of a conditioned stimulus (CS) to the 
expected time of a reward. They recorded the activity of 
neurons in two primates, identified as dopamine neurons 

from their electrophysiological characteristics, during a 
delay paradigm of classical conditioning to receive a fixed 
juice reward, while manipulating the probability of receipt 
of the reward. Two related but distinct parameters of reward 
were identified from the activation produced, after learning 
had taken place: (i) A phasic burst of activity, or reward 
prediction error, at the time of the expected reward, whose 
magnitude increased as probability decreased; and (ii) a new 
slower, sustained activity, above baseline, related to 
motivationally relevant stimuli, which developed with 
increasing levels of uncertainty, and varied with reward 
magnitude. Both effects were found to occur independently 
within a single population of dopamine neurons. 
     

 
 

Figure 1: Sustained activation of dopamine neurons with 
uncertainty taken from Fiorillo et al. (2003) (A) Rasters and 
histograms of single cell activity (B) Population histograms 

 
    With uncertainty, the sustained activation began on 
presentation of a CS and increased in strength until a reward 
was due, at which point the activation ceased (Figure 1B, 
where P = 0.25, 0.5 and 0.75). This activation was greatest 
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when uncertainty of reward was at a maximum, i.e., when 
the reward was received on only 50% of occasions and 
probability (p) was 0.5. Sustained activation was also seen 
at lower values of uncertainty, when probability was 25% 
and 75%, but to a lesser extent. No sustained activation was 
seen when probability was certain at either zero or 1, 
suggesting that the sustained activation coded for 
uncertainty. 
    However, this view is controversial as Niv, Duff and 
Dayan, (2005) have suggested that the sustained activation, 
or ‘ramping’ effect in the delay period, is due to 
backpropagating TD prediction errors, and not to 
uncertainty. Specifically, they suggest that it is the 
asymmetric coding of those prediction errors that give rise 
to the effects seen in time, over consecutive CS 
presentations, due to a low baseline rate of activity in 
dopamine neurons. Firing rates of positive prediction errors 
typically rise to about 270% above baseline, while negative 
errors only fall to approximately 55% below baseline 
(Fiorillo et al. 2003). During uncertainty, these 
asymmetrical positive and negative errors, when summed, 
will not cancel each other out, as predicted by the TD 
algorithm, even after extensive training periods. The overall 
effect, as seen in Fiorillo et al., will be of (i) a positive 
response across trials at the expected time of reward, and (ii) 
a ‘ramping’ effect from presentation of the CS to the 
expected time of reward, described by Fiorillo and 
colleagues as sustained activation. The resulting effects 
arise as a result of averaging across multiple trials and are 
not a within trial phenomena. 
    Using TD, Niv and colleagues successfully modelled both 
effects identified by Fiorillo et al. (2003) during uncertainty. 
They also showed that the shape of the ramp depended on 
the learning rate, and that the difference in the steepness of 
the ramp between delay and trace conditioning could be 
accounted for by the low learning rates associated with trace 
conditioning, resulting in a smaller or even negligible ramp.     
    In reply to Niv et al., Fiorillo and colleagues defend their 
original claim that dopamine encodes uncertainty about 
reward (Fiorillo, Tobler & Schultz, 2005). Three of the five 
points raised are of particular interest to this study. Firstly, 
they give two examples as evidence of sustained activation 
within single trials, which is contrary to the postulations of 
Niv et al., and secondly, they suggest that activity in the last 
part of the delay period should reflect the activity of the 
preceding trial. Finally, they suggest that other ways of 
using TD to model dopamine as a TD error are more 
biologically plausible than backpropagating TD errors. It is 
important, therefore, to look at a range of models in order to 
understand the limitations of using the TD algorithm to 
model the role of dopamine. 
     In the present study a simulation of a ‘rat’ in a one-armed 
maze was used to investigate the claims of Fiorillo and 
colleagues, using an alternative TD model to Niv et al. The 
maze modelled was similar to that used by McClure et al. 
(2003) linking the ideas of reward prediction error and 
incentive salience, but contained an additional ‘satiety’ state 

and only allowed travel in one direction. The aim of this 
investigation was to use TD learning to model the following 
effects seen in dopamine neuron firing by Fiorillo and 
colleagues: (a) The phasic activation at the expected time of 
reward that increased as probability decreased; (b) the 
sustained increase in activity from the onset of the CS until 
the expected time of reward, during uncertainty, posited 
either as uncertainty, or as backpropagating TD prediction 
errors; and (c) the sustained activation increasing with 
increasing reward magnitude. In addition, in the discussion 
an attempt is made to address three of the points raised by 
Fiorillo et al. (2005) in response to Niv et al. (2005). 

Method 

Temporal Difference 
The maze incorporated an ‘actor-critic’ architecture 
(McClure et al., 2003; Montague, Hyman & Cohen, 2004; 
Sutton & Barto, 1998), a form of reinforcement TD learning 
where an ‘adaptive critic’ computes a reward prediction 
error, which is used by the ‘actor’ to choose those actions 
that lead to reward. 
 
The Critic The TD algorithm is designed to learn an 
estimate of a value function V*, representing expected total 
future reward, from any state, s, (Equation 1), where t 
represents time and subsequent time steps t = 1, t = 2 etc; E 
is the expected value and r represents the value of the 
reward. γ is a discounting parameter between 0 and 1 and 
has the effect of reducing previous estimates of reward 
exponentially with time, so that a reward of yesterday is not 
worth as much as a reward of today. Equation 2 is Equation 
1 in a recursive form that can be used in the learning 
process. 
 

V*(st) = E[rt + γ rt + 1 + γ2 rt + 2 + γ3 rt + 3 + …] [Eqn 1] 
 

V*(st) = E[rt + γV*(st + 1)]                              [Eqn 2] 
 

    TD prediction error is a measure of the inconsistency for 
estimates of value at successive time steps. The error, δ(t), is 
derived by rearranging Equation 2 into Equation 3, which is 
a measure of the relationship between two successive states 
and the current reward. This will give estimates, V, of the 
value function V*. The dopamine prediction error signal, 
δ(t), takes into account the current reward, plus the next 
prediction multiplied by the discounting parameter γ, minus 
the current prediction. It is the error δ(t) that is equivalent to 
the dopamine reward prediction error, or learning signal, to 
create better estimates of future reward.  
  

δ(t) = rt + γV(st + 1) - V(st)     [Eqn 3] 
 

The Actor An extension to the TD model has been made to 
include a role for dopamine in biasing action selection using 
the same prediction error signal, δ(t), to teach a system to 
take the best actions, namely those that are followed by 
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rewards (McClure et al., 2003; Montague et al., 1996). The 
way an action is selected is that the actor randomly chooses 
a possible action, and the anticipated δ(t) is calculated using 
Equation 3. The probability of taking this action is then 
calculated from this δ(t) value using the softmax function in 
Equation 4 (where m and b are parameters of the softmax 
curve), which calculates the probability of that action 
occurring from the anticipated δ(t) value. If no action is 
selected, time is increased by one step and another random 
action is considered. 
 

P (of taking action) = (1 + e –m (δ(t) - b) )-1
 [Eqn 4] 

 
    Actions are generated with a probability of selection 
based on the predicted values of their successor states, 
preferring those actions that give a high burst of dopamine, 
or TD error signal. There is a greater probability of 
remaining at the same state and not making a move when 
the error signal is low as all states become increasingly 
probable.  
    Learning takes place in the model according to Equation 
5, where α is a learning rate parameter.     
 

V(si)  V(si) + α δ(t) [Eqn 5] 
 

The Maze 
A computer simulation was constructed of a ‘rat’ learning to 
traverse a one-arm maze to receive a reward, using the TD 
algorithm with an ‘actor-critic’ architecture. Figure 2 shows 
a maze with positions modelled as five states, starting at 
State 0 (the CS) and progressing through intermediate states 
to receive a simulated reward in State 4 (the reward state). 
In order to model the breaks between maze runs in real rats, 
it was necessary to insert a ‘satiety’ state (State 5) into the 
maze, between the goal (State 4) and the start (State 0), 
where the transition between that state and State 0 remained 
at zero so that no learning could take place. This had the 
effect of resetting the value of start State 0 to zero, acting as 
a ‘resting’ state and ensuring that the ‘rat’ was always 
surprised when starting the maze. Without this additional 
state, the simulated rat learnt the value of the start state, and 
in effect, there was no CS. Intermediate states were added 
and removed, as required to make mazes of different 
lengths. 

 
Figure 2:  Maze with five states plus ‘satiety’ state 

Simulations 
Uncertainty – Degree of Probability The ranges of 
probabilities used for trials were 0.25, 0.5 (maximum 

uncertainty), or 0.75. The δ(t) values were recorded for each 
state transition, for a single probability in each trial. Each 
trial consisted of 1000 steps through a one-way maze with 
eight states plus a ‘satiety’ state, with a step being a 
transition from one state to the next, and a run being one 
complete journey through the maze, from start to finish. At 
the beginning of each trial the values of each state in the 
maze (V) were set to zero. Movement to the next state in the 
maze was selected according to the effect of TD learning on 
different probabilities of receiving a reward for each run.  
    In keeping with the biology of dopamine, namely the 
asymmetry in coding of positive and negative errors, any 
negative prediction errors were scaled by a factor of one 
sixth, the scaling factor used by Niv et al. (2005). The 
scaled δ(t) values were then averaged across fifty 
consecutive runs for each state, where γ = 0.98, and the 
magnitudes of the scaled values compared. This averaging 
corresponded to the summing of peri-stimulus-time-
histograms (PSTH) of activity over different trials and inter-
trial averaging used by Fiorillo et al. (2003). 
     
Reward Magnitude Individual reward magnitudes of 0.5, 1 
and 2 were compared in different trials to see the effect on 
the sustained activation. 

An Example of Learning 
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t)

CS: S8-S0 S3-S4 R: S7-S8
 

 
Figure 3: Delta values for each state transition over first 

thirty runs, p = 1, r = 1 
 

With a probability of 1 and a maze of eight states plus a 
‘satiety’ state, complete learning took place over the first 
thirty runs (γ = 1). On the first run a large prediction error, 
δ(t), was recorded at the expected time of the reward (S7-
S8), and as runs progressed, this δ(t) was transferred back to 
the CS (S8-S0). When full learning had taken place only the 
CS elicited a reward prediction error. This effect is 
demonstrated in Figure 3, which shows the δ(t) at the 
expected time of reward beginning at 1 and reducing to zero 
by run 9 at which point the value of the state is learnt and 
the reward fully predicted. The δ(t) at the CS begins at zero 
and increases gradually to 1, from run 10 to run 30. An 

  Start 
  r = 0 

State 1 
  r = 0 

State 2 
  r = 0  

State 3 
  r = 0 

  Goal 
  r = 1 

State 5 
 r = 0 
 v = 0 
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intermediate state transition S3-S4 is included which 
records the δ(t) backpropagated from the reward state by run 
5. The error increases until run 8 and then reduces to zero by 
run 21. 
    All the following tests with uncertainty were done post 
training. 

Results 

Uncertainty – Degree of Probability 
Eventually, by chance, actions were selected in trials for the 
entire range of probabilities (p), 0.25, 0.5 or 0.75, and the 
‘rat’ progressed along the maze towards the reward state 
receiving the reward (r) of that state, r = 1. On subsequent 
runs, learning occurred as the value of the reward was 
propagated backwards, updating earlier states using a 
proportion of the prediction error signal, δ(t).  
    The patterns of data obtained show that it is necessary for 
the history of previous runs to be taken into consideration 
when analysing reward prediction errors and not just the last 
trial. Accordingly, consecutive runs should be selected for 
averaging in order to preserve the backward chaining effect 
of the TD algorithm. The TD algorithm uses rewards 
obtained in the past to make predictions about future 
expected reward, affecting the values of all the states in the 
maze, which are continually being updated as the rat 
progresses along the maze. With uncertainty, the particular 
course a rat takes on a particular trial is novel in each trial, 
as it depends on the exact order of rewarded and non-
rewarded runs, which are delivered randomly by the 
computer program. The δ(t) values are then propagated 
backwards, in order, from later states to earlier states, as 
time progresses. 
    As the probability of obtaining a reward increased, from 
25% to 50% to 75%, so did the level of phasic activation at 
the CS (S8-S0) (Figure 5), with average δ(t) values of 0.23, 
0.57 and 0.70 respectively.  

 
(a) The phasic activations at the expected time of reward    
Without scaling the δ(t) values recorded for each state 
transition to compensate for the biologically asymmetric 
coding of positive and negative prediction errors, no average 
positive phasic activation was seen at the expected time of 
reward (Figure 4 S7-S8). However, after scaling δ(t) values 
by a factor of one sixth and averaging δ(t) values over 
consecutive trials, positive phasic activation was seen at the 
expected time of reward (Figure 5).  
     When comparing the average scaled δ(t) values across 
trials with probabilities of 0.25, 0.5 and 0.75, similar 
averaged, scaled δ(t) values were recorded of 0.16, 0.16 and 
0.14 respectively. However, if averages were taken over 
rewarded trials only, as suggested in Figure 2A in Fiorillo et 
al. (2003), δ(t) values would be positive at the expected time 
of reward as all negative values would be removed. In 
addition, there would be less non-rewarded runs to be 
removed at higher probabilities, resulting in the phasic 
activation varying monotonically with reward probability. 

There would also be less of an effect on the phasic 
activation seen at the CS as the effect of reward would take 
longer to reach that state. As suggested above, difficulties 
arise when the backpropagating chain of reward prediction 
errors is broken and runs are taken out of context of the trial 
history.  
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Figure 4: Average δ(t) values, before scaling, for each state 
transition over 50 runs, when p = 0.25, 0.5 and 0.75, α = 0.9 
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Figure 5: Average δ(t) values, after scaling, for each state 

transition over 50 runs, when p = 0.25, 0.5 and 0.75, α = 0.9    
 
    In conclusion, phasic activations were seen at the 
expected time of reward, in accordance with the findings of 
Fiorillo et al., when δ(t) values were scaled to compensate 
for the asymmetric coding. However, unless rewarded only 
trials were averaged, the phasic activation did not vary 
monotonically with reward probability. 
 
 (b) The sustained increase in activity Figure 4 shows that 
no ‘ramping’ effect is seen from plotting the average δ(t) 
values obtained for probabilities of 0.25, 0.5 and 0.75 for 
each state transition. Here the symmetrical positive and 
negative errors effectively cancel each other out, in 
accordance with the TD algorithm. However, when the δ(t) 
values were scaled by a factor of one sixth to compensate 
for the biological asymmetric coding of positive and 
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negative errors, and averaged across consecutive runs, 
positive δ(t) values were seen that corresponded to the 
sustained activation and ‘ramping’ effects reported in 
Fiorillo et al. (2003) and Niv et al. (2005) respectively 
(Figure 5). The magnitude of the ramping effect is 
marginally greater for maximum probability, p = 0.5 than 
for the lower probabilities of p = 0.25 and p = 0.75, in 
accordance with the findings of Fiorillo et al. However, the 
difference seen between the two trials with probabilities of 
0.25 and 0.75, which are comparable levels of uncertainty, 
could be accounted for by the different reward history for 
each. This difference should be negligible if more trials 
were taken into account. 
 
(c) Reward Magnitude The value of the reward was 
manipulated across different trials, with rewards given of 
0.5, 1 and 2. The size of the reward had an effect on the 
range of δ(t) values available for each state. With a larger 
reward comes a larger range of possible δ(t) values, and, 
accordingly, larger ‘ramping’ effects (Figure 6). Therefore, 
the sustained activation increased with increasing reward 
magnitude, in accordance with Fiorillo et al. (2003). 
 

 
 
Figure 6: Scaled average δ(t) values over 30 runs for reward 

values of 0.5, 1 and 2, p = 0.5, α = 0.5  

Discussion 
A simulation of reinforcement learning, incorporating an 
‘actor-critic’ architecture of TD learning, successfully 
modelled the following properties of dopamine 
demonstrated by Fiorillo et al. (2003): (a) The phasic 
activations at the expected time of reward; (b) the sustained 
increase in activity from the onset of the conditioned 
stimulus until the expected time of reward, during 
uncertainty; and (c) the sustained activation increasing with 
increasing reward magnitude.  This supports the argument 
by Niv et al. (2005) that the ramping effect seen during 
uncertainty is a result of backpropagating TD errors and not 
a within-trial encoding of uncertainty. 
    In response to the claims of Niv and colleagues, Fiorillo 
et al. (2005) raised several points in support of their original 
argument, three of which are relevant to this study. Firstly, 
they refer to the difficulty of determining whether or not 

activity increases on single trials as Niv et al. (2005) did not 
specify what a single trial increase in delay-period activity 
should look like. In our simulations, Figure 7 is an example 
of a single trial (or a single run in this simulation), and is 
represented by recording the scaled prediction errors, δ(t), 
for each state transition, for one run through the maze. This 
run is analogous to the activity of a single neuron in a single 
trial over time and is simply a snapshot of the δ(t) values for 
each state, which may be either positive or negative with 
respect to baseline firing, depending on the history of 
previous runs. 
    The single run in Figure 7 is taken from actual run 6 in 
Figure 8 and represents non-rewarded run N preceded by 
….RNRNR, where R is a rewarded run. The preceding RNR 
can be clearly identified in the δ(t) values seen for state 
transitions S4-S5, S5-S6 and S6-S7 respectively, but the 
results of earlier runs are harder to make out further back in 
time, as the TD algorithm ensures rewards or non-rewards 
in the past are not worth as much as those of the present.  
    Examination of many single runs through the maze did 
not reveal a ramping effect. Fiorillo et al. (2005) provided 
two examples of possible sustained activation in single 
trials, but these effects could have occurred quite by chance 
due to the order of rewarded and non-rewarded trials, as 
explained above, and not necessarily be examples of 
uncertainty. Indeed, if this within trial ramping effect were a 
regular occurrence then there would be many examples of 
single trials in support of the uncertainty hypothesis.  
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Figure 7: An example of a single trial: 
Scaled δ(t) values for a single run, p = 0.5, r = 1 

 
    Secondly, Fiorillo and colleagues claimed that if activity 
during the delay period is due to backpropagating error 
signals that originated on previous trials, then the activity in 
the last part of the delay period of each individual trial 
should reflect the last reward outcome. Specifically, they 
suggest that if the preceding trial was rewarded, there 
should be more activity at the end of the delay period, and 
less activity if it was not rewarded, but they found no 
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dependence of neural activity on the outcome of preceding 
trials. 
    Our results show that it is necessary for more of the 
history of previous runs to be taken into consideration than 
just the last reward outcome, when analysing reward 
prediction errors. For example, Figure 8 shows a history of 
rewarded and non-rewarded runs RNRNRNNNNN. After 
scaling, large δ(t) values were seen for runs 1-6 because 
alternate rewards and non-rewards were given, but runs 7-10 
were not rewarded and, consequently, gradual extinction of 
the negative prediction error occurred. This example shows 
that it is not always the case that less activity will be seen if 
a trial is not rewarded (and vice versa), as runs 8-10 show an 
increase in firing (towards baseline) following non-
rewarded runs.  

 
Figure 8: Scaled average δ(t) values at expected time of 

reward (S7-S8) recorded over 10 runs, p = 0.5, r = 1  
 
    Finally, Fiorillo et al. (2005) raise the argument that other 
TD models of dopamine are more biologically plausible 
than backpropagating TD errors, for example Suri & 
Schultz (1999), and it is important, therefore, to look at a 
range of models in order to understand the limitations of 
using the TD algorithm to model the role of dopamine. 
However, our work has shown that the predictions of Niv et 
al. (2005) are robust in the sense that they transfer to 
another type of model, albeit still using the same TD 
algorithm.  

Conclusion 
This alternate TD model to Niv et al. (2005) has effectively 
simulated conditioning in a Reinforcement Learning 
paradigm and successfully modelled the effects 
demonstrated in single dopamine neuron recordings, 
suggested to be coding for uncertainty, by Fiorillo et al. 
(2003). In addition, we have demonstrated what a single 
trial in TD Learning might look like and provide further 

evidence that ramping of the reward prediction error, δ(t), is 
not normally found within a trial of a single dopamine 
firing, but instead arises from averaging across trials. 
    Our simulations add further weight to the criticisms of 
Niv et al. that the effects demonstrated by Fiorillo and 
colleagues are due to backpropagating TD errors, and not a 
within-trial encoding of uncertainty. We support the claims 
by Niv et al. (2005) that the ramping signal is the best 
evidence yet for the nature of the learning mechanism of a 
shift in dopamine activity from expected time of reward to 
the CS. 
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