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Abstract

Does dopamine code for uncertainty (Fiorillo, Tobler &
Schultz, 2003; 2005) or is the sustained activation recorded
from dopamine neurons a result of Temporal Difference (TD)
backpropagating errors (Niv, Duff & Dayan, 2005)? An
answer to this question could result in a better understanding
of the nature of dopamine signaling, with implications for
cognitive disorders, like Schizophrenia. A computer
simulation of uncertainty incorporating TD Learning
successfully modelled a Reinforcement Learning paradigm
and the detailed effects demonstrated in single dopamine
neuron recordings by Fiorillo et al. This alternate model
provides further evidence that the sustained increase seen in
dopamine firing, during uncertainty, is a result of averaging
firing from dopamine neurons across trials, and is not
normally found within individual trials, supporting the claims
of Niv and colleagues.
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Dopamine and Uncertainty

Current theories of the effects of dopamine on behaviour
focus on the role of dopamine in Reinforcement Learning,
where organisms learn to organise their behaviour under the
influence of goals, and expected future reward is believed to
drive action selection (McClure, Daw & Montague, 2003;
Montague, Dayan & Sejnowski, 1996; Schultz, Dayan &
Montague, 1997; Suri & Schultz, 1999). Single -cell
recordings of dopamine neurons have identified a phasic
dopamine burst of activity which is posited to be a reward
prediction error (Schultz, 1998; Waelti, Dickinson &
Schultz, 2001) and Temporal Difference (TD) Learning
(Sutton, 1988; Sutton & Barto, 1998), a form of
Reinforcement Learning, provides an explicit method of
modelling and quantifying this error (Hollerman & Schultz,
1998; Schultz et al., 1997). It is likely that disruption to the
dopamine system gives rise to an abnormality in
information processing by dopamine and some of the
symptoms currently associated with schizophrenia,
particularly psychosis and deficits in working memory.

It has been posited that dopamine also codes for
uncertainty (Fiorillo, Tobler & Schultz, 2003), as under
conditions of maximum uncertainty, observations of single
cell recordings have shown a sustained increase in activity
from presentation of a conditioned stimulus (CS) to the
expected time of a reward. They recorded the activity of
neurons in two primates, identified as dopamine neurons

from their electrophysiological characteristics, during a
delay paradigm of classical conditioning to receive a fixed
juice reward, while manipulating the probability of receipt
of the reward. Two related but distinct parameters of reward
were identified from the activation produced, after learning
had taken place: (i) A phasic burst of activity, or reward
prediction error, at the time of the expected reward, whose
magnitude increased as probability decreased; and (ii) a new
slower, sustained activity, above baseline, related to
motivationally relevant stimuli, which developed with
increasing levels of uncertainty, and varied with reward
magnitude. Both effects were found to occur independently
within a single population of dopamine neurons.
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Figure 1: Sustained activation of dopamine neurons with
uncertainty taken from Fiorillo et al. (2003) (A) Rasters and

histograms of single cell activity (B) Population histograms

With uncertainty, the sustained activation began on
presentation of a CS and increased in strength until a reward
was due, at which point the activation ceased (Figure 1B,
where P = 0.25, 0.5 and 0.75). This activation was greatest

2257



when uncertainty of reward was at a maximum, i.e., when
the reward was received on only 50% of occasions and
probability (p) was 0.5. Sustained activation was also seen
at lower values of uncertainty, when probability was 25%
and 75%, but to a lesser extent. No sustained activation was
seen when probability was certain at either zero or I,
suggesting that the sustained activation coded for
uncertainty.

However, this view is controversial as Niv, Duff and
Dayan, (2005) have suggested that the sustained activation,
or ‘ramping’ effect in the delay period, is due to
backpropagating TD prediction errors, and not to
uncertainty. Specifically, they suggest that it is the
asymmetric coding of those prediction errors that give rise
to the effects seen in time, over consecutive CS
presentations, due to a low baseline rate of activity in
dopamine neurons. Firing rates of positive prediction errors
typically rise to about 270% above baseline, while negative
errors only fall to approximately 55% below baseline
(Fiorillo et al. 2003). During uncertainty, these
asymmetrical positive and negative errors, when summed,
will not cancel each other out, as predicted by the TD
algorithm, even after extensive training periods. The overall
effect, as seen in Fiorillo et al., will be of (i) a positive
response across trials at the expected time of reward, and (ii)
a ‘ramping’ effect from presentation of the CS to the
expected time of reward, described by Fiorillo and
colleagues as sustained activation. The resulting effects
arise as a result of averaging across multiple trials and are
not a within trial phenomena.

Using TD, Niv and colleagues successfully modelled both
effects identified by Fiorillo et al. (2003) during uncertainty.
They also showed that the shape of the ramp depended on
the learning rate, and that the difference in the steepness of
the ramp between delay and trace conditioning could be
accounted for by the low learning rates associated with trace
conditioning, resulting in a smaller or even negligible ramp.

In reply to Niv et al., Fiorillo and colleagues defend their
original claim that dopamine encodes uncertainty about
reward (Fiorillo, Tobler & Schultz, 2005). Three of the five
points raised are of particular interest to this study. Firstly,
they give two examples as evidence of sustained activation
within single trials, which is contrary to the postulations of
Niv et al., and secondly, they suggest that activity in the last
part of the delay period should reflect the activity of the
preceding trial. Finally, they suggest that other ways of
using TD to model dopamine as a TD error are more
biologically plausible than backpropagating TD errors. It is
important, therefore, to look at a range of models in order to
understand the limitations of using the TD algorithm to
model the role of dopamine.

In the present study a simulation of a ‘rat’ in a one-armed
maze was used to investigate the claims of Fiorillo and
colleagues, using an alternative TD model to Niv et al. The
maze modelled was similar to that used by McClure et al.
(2003) linking the ideas of reward prediction error and
incentive salience, but contained an additional ‘satiety’ state

and only allowed travel in one direction. The aim of this
investigation was to use TD learning to model the following
effects seen in dopamine neuron firing by Fiorillo and
colleagues: (a) The phasic activation at the expected time of
reward that increased as probability decreased; (b) the
sustained increase in activity from the onset of the CS until
the expected time of reward, during uncertainty, posited
either as uncertainty, or as backpropagating TD prediction
errors; and (c) the sustained activation increasing with
increasing reward magnitude. In addition, in the discussion
an attempt is made to address three of the points raised by
Fiorillo et al. (2005) in response to Niv et al. (2005).

Method

Temporal Difference

The maze incorporated an ‘actor-critic’ architecture
(McClure et al., 2003; Montague, Hyman & Cohen, 2004;
Sutton & Barto, 1998), a form of reinforcement TD learning
where an ‘adaptive critic’ computes a reward prediction
error, which is used by the ‘actor’ to choose those actions
that lead to reward.

The Critic The TD algorithm is designed to learn an
estimate of a value function V', representing expected total
future reward, from any state, s, (Equation 1), where t
represents time and subsequent time steps t =1, t =2 etc; E
is the expected value and r represents the value of the
reward. y is a discounting parameter between 0 and 1 and
has the effect of reducing previous estimates of reward
exponentially with time, so that a reward of yesterday is not
worth as much as a reward of today. Equation 2 is Equation
1 in a recursive form that can be used in the learning
process.

V*(St) =E[r+7yri+ +Y2 rt+2"‘Y3 re+3+...] [Eqn 1]

V(s = Elre+ vV (si-1)] [Eqn 2]

TD prediction error is a measure of the inconsistency for
estimates of value at successive time steps. The error, 3(t), is
derived by rearranging Equation 2 into Equation 3, which is
a measure of the relationship between two successive states
and the current reward. This will give estimates, V, of the
value function V*. The dopamine prediction error signal,
d(t), takes into account the current reward, plus the next
prediction multiplied by the discounting parameter y, minus
the current prediction. It is the error §(t) that is equivalent to
the dopamine reward prediction error, or learning signal, to
create better estimates of future reward.

8(1) =1+ YV(si+ 1) - V(s) [Eqn 3]
The Actor An extension to the TD model has been made to
include a role for dopamine in biasing action selection using
the same prediction error signal, d(t), to teach a system to
take the best actions, namely those that are followed by
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rewards (McClure et al., 2003; Montague et al., 1996). The
way an action is selected is that the actor randomly chooses
a possible action, and the anticipated d(t) is calculated using
Equation 3. The probability of taking this action is then
calculated from this 5(t) value using the softmax function in
Equation 4 (where m and b are parameters of the softmax
curve), which calculates the probability of that action
occurring from the anticipated d(t) value. If no action is
selected, time is increased by one step and another random
action is considered.
P (of taking action) = (1 + e ™©®0-®)! [Eqn 4]

Actions are generated with a probability of selection
based on the predicted values of their successor states,
preferring those actions that give a high burst of dopamine,
or TD error signal. There is a greater probability of
remaining at the same state and not making a move when
the error signal is low as all states become increasingly
probable.

Learning takes place in the model according to Equation
5, where o is a learning rate parameter.
V(s) € V(s) +ad(t)  [EqnS5]

The Maze

A computer simulation was constructed of a ‘rat’ learning to
traverse a one-arm maze to receive a reward, using the TD
algorithm with an ‘actor-critic’ architecture. Figure 2 shows
a maze with positions modelled as five states, starting at
State 0 (the CS) and progressing through intermediate states
to receive a simulated reward in State 4 (the reward state).
In order to model the breaks between maze runs in real rats,
it was necessary to insert a ‘satiety’ state (State 5) into the
maze, between the goal (State 4) and the start (State 0),
where the transition between that state and State 0 remained
at zero so that no learning could take place. This had the
effect of resetting the value of start State 0 to zero, acting as
a ‘resting’ state and ensuring that the ‘rat’ was always
surprised when starting the maze. Without this additional
state, the simulated rat learnt the value of the start state, and
in effect, there was no CS. Intermediate states were added
and removed, as required to make mazes of different
lengths.

Figure 2: Maze with five states plus ‘satiety’ state

Simulations

Uncertainty — Degree of Probability The ranges of
probabilities used for trials were 0.25, 0.5 (maximum

uncertainty), or 0.75. The 3(t) values were recorded for each
state transition, for a single probability in each trial. Each
trial consisted of 1000 steps through a one-way maze with
eight states plus a ‘satiety’ state, with a step being a
transition from one state to the next, and a run being one
complete journey through the maze, from start to finish. At
the beginning of each trial the values of each state in the
maze (V) were set to zero. Movement to the next state in the
maze was selected according to the effect of TD learning on
different probabilities of receiving a reward for each run.

In keeping with the biology of dopamine, namely the
asymmetry in coding of positive and negative errors, any
negative prediction errors were scaled by a factor of one
sixth, the scaling factor used by Niv et al. (2005). The
scaled o(t) values were then averaged across fifty
consecutive runs for each state, where y = 0.98, and the
magnitudes of the scaled values compared. This averaging
corresponded to the summing of peri-stimulus-time-
histograms (PSTH) of activity over different trials and inter-
trial averaging used by Fiorillo et al. (2003).

Reward Magnitude Individual reward magnitudes of 0.5, 1
and 2 were compared in different trials to see the effect on
the sustained activation.

An Example of Learning

1

3(t)

0.2

13 5 7 9 1113 1517 19 21 23 25 27 29
runs

—+—CS: S8-S0 —=—S3-S4 -= R:S7-S8

Figure 3: Delta values for each state transition over first
thirty runs, p=1,r=1

With a probability of 1 and a maze of eight states plus a
‘satiety’ state, complete learning took place over the first
thirty runs (y = 1). On the first run a large prediction error,
d(t), was recorded at the expected time of the reward (S7-
S8), and as runs progressed, this d(t) was transferred back to
the CS (S8-S0). When full learning had taken place only the
CS elicited a reward prediction error. This effect is
demonstrated in Figure 3, which shows the J(t) at the
expected time of reward beginning at 1 and reducing to zero
by run 9 at which point the value of the state is learnt and
the reward fully predicted. The 6(t) at the CS begins at zero
and increases gradually to 1, from run 10 to run 30. An
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intermediate state transition S3-S4 is included which
records the d(t) backpropagated from the reward state by run
5. The error increases until run 8 and then reduces to zero by
run 21.

All the following tests with uncertainty were done post
training.

Results

Uncertainty — Degree of Probability

Eventually, by chance, actions were selected in trials for the
entire range of probabilities (p), 0.25, 0.5 or 0.75, and the
‘rat’ progressed along the maze towards the reward state
receiving the reward (r) of that state, r = 1. On subsequent
runs, learning occurred as the value of the reward was
propagated backwards, updating earlier states using a
proportion of the prediction error signal, d(t).

The patterns of data obtained show that it is necessary for
the history of previous runs to be taken into consideration
when analysing reward prediction errors and not just the last
trial. Accordingly, consecutive runs should be selected for
averaging in order to preserve the backward chaining effect
of the TD algorithm. The TD algorithm uses rewards
obtained in the past to make predictions about future
expected reward, affecting the values of all the states in the
maze, which are continually being updated as the rat
progresses along the maze. With uncertainty, the particular
course a rat takes on a particular trial is novel in each trial,
as it depends on the exact order of rewarded and non-
rewarded runs, which are delivered randomly by the
computer program. The §(t) values are then propagated
backwards, in order, from later states to earlier states, as
time progresses.

As the probability of obtaining a reward increased, from
25% to 50% to 75%, so did the level of phasic activation at
the CS (S8-S0) (Figure 5), with average d(t) values of 0.23,
0.57 and 0.70 respectively.

(a) The phasic activations at the expected time of reward
Without scaling the d8(t) values recorded for each state
transition to compensate for the biologically asymmetric
coding of positive and negative prediction errors, no average
positive phasic activation was seen at the expected time of
reward (Figure 4 S7-S8). However, after scaling 5(t) values
by a factor of one sixth and averaging d(t) values over
consecutive trials, positive phasic activation was seen at the
expected time of reward (Figure 5).

When comparing the average scaled 6(t) values across
trials with probabilities of 0.25, 0.5 and 0.75, similar
averaged, scaled 6(t) values were recorded of 0.16, 0.16 and
0.14 respectively. However, if averages were taken over
rewarded trials only, as suggested in Figure 2A in Fiorillo et
al. (2003), 8(t) values would be positive at the expected time
of reward as all negative values would be removed. In
addition, there would be less non-rewarded runs to be
removed at higher probabilities, resulting in the phasic
activation varying monotonically with reward probability.

There would also be less of an effect on the phasic
activation seen at the CS as the effect of reward would take
longer to reach that state. As suggested above, difficulties
arise when the backpropagating chain of reward prediction
errors is broken and runs are taken out of context of the trial
history.
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Figure 4: Average 6(t) values, before scaling, for each state
transition over 50 runs, when p = 0.25, 0.5 and 0.75, a.= 0.9
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Figure 5: Average d(t) values, after scaling, for each state
transition over 50 runs, when p = 0.25, 0.5 and 0.75, a.= 0.9

In conclusion, phasic activations were seen at the
expected time of reward, in accordance with the findings of
Fiorillo et al., when §(t) values were scaled to compensate
for the asymmetric coding. However, unless rewarded only
trials were averaged, the phasic activation did not vary
monotonically with reward probability.

(b) The sustained increase in activity Figure 4 shows that
no ‘ramping’ effect is seen from plotting the average d(t)
values obtained for probabilities of 0.25, 0.5 and 0.75 for
each state transition. Here the symmetrical positive and
negative errors effectively cancel each other out, in
accordance with the TD algorithm. However, when the d(t)
values were scaled by a factor of one sixth to compensate
for the biological asymmetric coding of positive and
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negative errors, and averaged across consecutive runs,
positive d(t) values were seen that corresponded to the
sustained activation and ‘ramping’ effects reported in
Fiorillo et al. (2003) and Niv et al. (2005) respectively
(Figure 5). The magnitude of the ramping effect is
marginally greater for maximum probability, p = 0.5 than
for the lower probabilities of p = 0.25 and p = 0.75, in
accordance with the findings of Fiorillo et al. However, the
difference seen between the two trials with probabilities of
0.25 and 0.75, which are comparable levels of uncertainty,
could be accounted for by the different reward history for
each. This difference should be negligible if more trials
were taken into account.

(¢) Reward Magnitude The value of the reward was
manipulated across different trials, with rewards given of
0.5, 1 and 2. The size of the reward had an effect on the
range of d(t) values available for each state. With a larger
reward comes a larger range of possible d(t) values, and,
accordingly, larger ‘ramping’ effects (Figure 6). Therefore,
the sustained activation increased with increasing reward
magnitude, in accordance with Fiorillo et al. (2003).
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Figure 6: Scaled average d(t) values over 30 runs for reward
values of 0.5, 1 and 2, p=0.5, a = 0.5

Discussion

A simulation of reinforcement learning, incorporating an
‘actor-critic’ architecture of TD learning, successfully
modelled the following properties of dopamine
demonstrated by Fiorillo et al. (2003): (a) The phasic
activations at the expected time of reward; (b) the sustained
increase in activity from the onset of the conditioned
stimulus until the expected time of reward, during
uncertainty; and (c) the sustained activation increasing with
increasing reward magnitude. This supports the argument
by Niv et al. (2005) that the ramping effect seen during
uncertainty is a result of backpropagating TD errors and not
a within-trial encoding of uncertainty.

In response to the claims of Niv and colleagues, Fiorillo
et al. (2005) raised several points in support of their original
argument, three of which are relevant to this study. Firstly,
they refer to the difficulty of determining whether or not

activity increases on single trials as Niv et al. (2005) did not
specify what a single trial increase in delay-period activity
should look like. In our simulations, Figure 7 is an example
of a single trial (or a single run in this simulation), and is
represented by recording the scaled prediction errors, 5(t),
for each state transition, for one run through the maze. This
run is analogous to the activity of a single neuron in a single
trial over time and is simply a snapshot of the &(t) values for
each state, which may be either positive or negative with
respect to baseline firing, depending on the history of
previous runs.

The single run in Figure 7 is taken from actual run 6 in
Figure 8 and represents non-rewarded run N preceded by
....RNRNR, where R is a rewarded run. The preceding RNR
can be clearly identified in the 3(t) values seen for state
transitions S4-S5, S5-S6 and S6-S7 respectively, but the
results of earlier runs are harder to make out further back in
time, as the TD algorithm ensures rewards or non-rewards
in the past are not worth as much as those of the present.

Examination of many single runs through the maze did
not reveal a ramping effect. Fiorillo et al. (2005) provided
two examples of possible sustained activation in single
trials, but these effects could have occurred quite by chance
due to the order of rewarded and non-rewarded trials, as
explained above, and not necessarily be examples of
uncertainty. Indeed, if this within trial ramping effect were a
regular occurrence then there would be many examples of
single trials in support of the uncertainty hypothesis.
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Figure 7: An example of a single trial:
Scaled 6(t) values for a single run, p=0.5,r=1

Secondly, Fiorillo and colleagues claimed that if activity
during the delay period is due to backpropagating error
signals that originated on previous trials, then the activity in
the last part of the delay period of each individual trial
should reflect the last reward outcome. Specifically, they
suggest that if the preceding trial was rewarded, there
should be more activity at the end of the delay period, and
less activity if it was not rewarded, but they found no
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dependence of neural activity on the outcome of preceding
trials.

Our results show that it is necessary for more of the
history of previous runs to be taken into consideration than
just the last reward outcome, when analysing reward
prediction errors. For example, Figure 8 shows a history of
rewarded and non-rewarded runs RNRNRNNNNN. After
scaling, large 8(t) values were seen for runs 1-6 because
alternate rewards and non-rewards were given, but runs 7-10
were not rewarded and, consequently, gradual extinction of
the negative prediction error occurred. This example shows
that it is not always the case that less activity will be seen if
a trial is not rewarded (and vice versa), as runs 8-10 show an
increase in firing (towards baseline) following non-
rewarded runs.
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Figure 8: Scaled average d(t) values at expected time of
reward (S7-S8) recorded over 10 runs, p=0.5,r=1

Finally, Fiorillo et al. (2005) raise the argument that other
TD models of dopamine are more biologically plausible
than backpropagating TD errors, for example Suri &
Schultz (1999), and it is important, therefore, to look at a
range of models in order to understand the limitations of
using the TD algorithm to model the role of dopamine.
However, our work has shown that the predictions of Niv et
al. (2005) are robust in the sense that they transfer to
another type of model, albeit still using the same TD
algorithm.

Conclusion

This alternate TD model to Niv et al. (2005) has effectively
simulated conditioning in a Reinforcement Learning
paradigm and successfully modelled the effects
demonstrated in single dopamine neuron recordings,
suggested to be coding for uncertainty, by Fiorillo et al.
(2003). In addition, we have demonstrated what a single
trial in TD Learning might look like and provide further

evidence that ramping of the reward prediction error, 3(t), is
not normally found within a trial of a single dopamine
firing, but instead arises from averaging across trials.

Our simulations add further weight to the criticisms of
Niv et al. that the effects demonstrated by Fiorillo and
colleagues are due to backpropagating TD errors, and not a
within-trial encoding of uncertainty. We support the claims
by Niv et al. (2005) that the ramping signal is the best
evidence yet for the nature of the learning mechanism of a
shift in dopamine activity from expected time of reward to
the CS.
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