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Abstract

We compare three types of dual-route associative architec-
tures for learning the English past tense problem. Identical
computational resources are used in (1) a pre-specified modu-
lar architecture, with a rule mechanism and an exception
mechanism; (2) an architecture with two mechanisms that
demonstrate emergent specialization of function for regular
and exception verbs; and (3) a redundant system, where both
mechanisms attempt to learn all verbs. Networks in which
regular and exception verbs were learned in emergent or re-
dundant systems showed many of the behaviors thought to
derive from the operation of a modular system, and were
more effective at learning the training set overall. The pre-
specified modular solution was least efficient, due to a diffi-
culty in resolving the competition between the two modules
when they sought to drive the same output in different ways.
The results are discussed in the context of modularity theory.

Introduction

The notion of modularity figures early in the history of cog-
nitive science as a design principle for building complex
computational systems. Thus Marr (1982, p.325) argued that
‘any large computation should be split up into a collection
of small, nearly independent, specialized sub-processes’.
Fodor (1983) further developed the principle in the context
of cognition, suggesting that modularity is likely to hold
sway for low-level sensory and motor systems. For Fodor,
modularity represented a probable coalition of processing
properties (domain-specificity, informational encapsulation,
innate specification, fast operation, hardwired at a neural
level, autonomous, not assembled). Modularity saves a low-
level system from having to consult all an organism’s
knowledge in order to do its job, instead acting over a re-
stricted, propriety knowledge base and potentially employ-
ing specialized processes (see Fodor, 2000, for the distinc-
tion between epistemological and psychological modular-
ity). From a developmental perspective, a restricted domain
of operation simplifies the learning problem faced by the
given sub-system.

Fodor (1983) additionally argued that modularity would
not apply to the central cognitive system, where access to
background knowledge is available and computations are
subject to global constraints of context. Later he argued that
the central system might include the majority of cognition,
so that modules would have limited explanatory scope (Fo-
dor, 2000). However, others extended the principle of

modularity to high-level cognition, under what Fodor (2000)
refers to as the massive modularity thesis. This move was
driven both by (1) proposals from evolutionary psychology
that humans might inherit domain-specific reasoning sys-
tems (e.g., for detecting social cheats, for predicting other
people’s belief states), and (2) evidence from cognitive neu-
ropsychology of double dissociations between high-level
abilities in acquired brain damage. Debates continue about
the necessary and sufficient features that define a module
(e.g., for Coltheart, 1999, the main feature is domain speci-
ficity; Fodor, 2000, prefers encapsulation).

The aim of this article is to consider the computational
advantages and disadvantages in opting for modular archi-
tectures in systems required to learn different sorts of cogni-
tive problem. While accepting there are innate constraints
on the architecture of the cognitive system, our perspective
is essentially developmental: how does development occur
given the initial constraints in the system, modular or oth-
erwise? We seek to answer this question by generating and
comparing explicit developmental trajectories for systems
with different initial constraints.

As an illustration of this approach, Calabretta et al. (2003)
argued that the genotype of behaviorally complex organisms
is more likely to encode modular neural architectures be-
cause this avoids neural interference. They presented simu-
lations in which a connectionist network was presented with
letters on an input retina, and was required to output either
Where on the retina a letter appeared or What letter it was.
Table 1 shows different 3-layer architectures for systems
with common or separate inputs, outputs, and processing
resources. Calabretta et al. compared a system with common
processing resources (Table 1, panel 5) with a system incor-
porating modular structure (panel 7). The modular architec-
ture was consistently superior in learning the task.

Table 1: Architectures with different modular commitments
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This result arose because information required to compute
Where is different from the information required to compute
What. As a result, there is no advantage in sharing informa-
tion in a common representational layer. The modular archi-
tecture prevents the What channel from having to consider
irrelevant information from the Where channel and vice
versa, thereby aiding the learning process.

In this article, we evaluate the utility of modularity in an-
other domain, English past tense. The domain is of interest
because it has a dual structure requiring a child to learn (1) a
general regularity, that the past tense of most verbs is
formed by adding ‘-ed’ to the stem (e.g., talk=>talked); this
regularity is productive for novel verbs (wug=>wugged);
and (2) a restricted set of exceptions to the rule, of various
sorts (e.g., hit=>hit, sing=>sang, go=>went).

Pinker (1991) proposed that children learn this domain us-
ing a modular architecture that comprises a ‘computational
component containing specific kinds of rules and represen-
tations’ and an ‘associative memory system with certain
properties of connectionist models’ (1999, p.531), which
learn the past tense rule and the exception verbs, respec-
tively. The rule-component operates as the default. For ex-
ceptions, the memory component blocks the rule mechanism
and delivers the exception form. Key empirical data indicate
that children pass through an extended phase of ‘over-
regularization’ where the rule is mistakenly applied to ex-
ception verbs (e.g., think=>thinked), suggestive of interfer-
ence between two mechanisms. Some researchers claim
there is evidence for the involvement of separate brain areas
for each mechanism (Tyler, Marslen-Wilson, & Stamatakis,
2005). A debate continues on the status of this theory (see
Thomas & Karmiloff-Smith, 2003, for a review), including
arguments that a single mechanism is sufficient, or three
mechanisms are necessary to accommodate rote memoriza-
tion of past tense forms in children (MacWhinney, 1978).

Our interest here is not to enter into this debate per se, but
to use computational simulations to explore whether (and
how) modular solutions offer an advantage for acquiring the
past tense domain. We begin with two assumptions. As-
sumption 1: the problem can be defined as one of learning
the mapping between phonological representations of the
verb stem and past tense form (this assumption may be
wrong; see Thomas & Karmiloff-Smith, 2003). Assumption
2: the developmental system has two learning mechanisms
available to it, one with computational properties better
suited to learning regular mappings and one able to learn
potentially arbitrary exceptions to the rule. Our architecture
corresponds to Table 1, panel 3.

Given our two mechanisms, there are at least three ways
to combine them that make different modular commitments.
Diverse computational components do not themselves de-
fine a modular architecture. To determine the architecture,
one must answer three questions. First, do input patterns get
separately channeled to the different mechanisms by some
‘gatekeeper’ that knows about regulars and exceptions?
Second, do the mechanisms compete to drive the output or
can they collaborate in producing a response? Third, are the

two mechanisms given equal opportunity to learn the prob-
lem, or does the improving performance of one mitigate the
need for the other to improve its accuracy? We refer to these
three dimensions, illustrated in Figure 1, as input competi-
tion, output competition, and update competition, respec-
tively (Thomas & Richardson, 2006). Using the same proc-
essing resources, decisions about competition then define
three architectures: (1) a pre-specified modular system ex-
ploiting input and output competition; (2) a system exhibit-
ing emergent specialization of function of its components,
using update competition only; and (3) a redundant system,
using output competition only. In the emergent system, each
mechanism only learns sufficient information to produce the
output in tandem with the other mechanism. In the redun-
dant system, each mechanism attempts to acquire the whole
task on its own. Thomas and Richardson (2006) showed that
both modular and emergent solutions produce double disso-
ciations between regular and exception verbs in the endstate,
although dissociations are stronger in the modular case; the
redundant system only shows single dissociations.

| Output |

W
W

XX

| Input |

Figure 1: Use of input (I), update (U) and output (O)
competition to create a modular, emergent, or redundant
system with the same two components

Decisions about modularity are not, therefore, simply about
combining components with different domain-specific com-
putational properties. In this example, the same components
and properties deliver different modular solutions. Restrict-
ing the information flow is also central to modularity, and
indeed may deliver pre-specified modularity even if indi-
vidual components have identical processing properties.

So our research question becomes, of the three ways of
using the same resources, is the modular one the best, as
implied by Pinker’s (1991) theory?

Pinker’s dual mechanism (DM) model

It is important to clarify that although the issues raised by
Pinker’s dual mechanism theory inspired these simulations,
we did not implement that theory. Both our learning mecha-
nisms were associative: respectively, a two-layer and a
three-layer connectionist network. The two-layer network is
better for learning regular mappings (faster, better generali-
zation), while the three-layer network is better able to learn
potentially arbitrary associations. By contrast, Pinker’s the-
ory specifies a rule-learning mechanism that acquires a
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symbolic rule operating over the variable verb stem. To
date, the developmental operation of this mechanism has not
been sufficiently clear to permit implementation (other than
it appears to invoke some combination of inductive and de-
ductive inferential processes; see Marcus et al., 1992). In
lieu, we utilized a readily available associative network op-
timized to learn regular mappings.

Two further points are of note. First, Pinker’s model in-
cluded a blocking function (or ‘principle’) to co-ordinate the
operation of its two modular components. This function
turns out to be important for the behavior of our pre-
specified modular architecture, so it is worth summarizing
how it is supposed to work. Blocking overrides the opera-
tion of the rule <add -ed> when an exception past tense
form is retrieved from memory for a given verb stem (Mar-
cus et al., 1992, p.8-18). Retrieval failures explain the occa-
sional interference errors between the regular and exception
mechanisms. These ‘over-regularization errors’ (e.g.,
thinked) occur predominantly (but not exclusively) in child-
hood. The idea of blocking is derived from adult linguistic
theory and simply attributed to the child (Marcus et al.,
1992, p. 16). Second, in 1999, Pinker revised his model to
weaken its modular commitments. In the revised version,
the rule mechanism acquires the past tense rule while the
lexical memory attempts to learn (potentially) all of the past
tenses.

Simulations

We first briefly introduce details of the architectures, train-
ing and testing sets, and parameters. We then compare de-
velopmental trajectories for our modular, emergent, and
redundant systems on the past tense problem, considering
performance on the training set, interference errors, and
generalization to novel verb stems. Where the exception
mechanism was required to learn the full training set, its
level of resources turned out to be crucial, and so results are
presented for exception mechanisms with low and high re-
sources. Among the high resource conditions, we consider a
partially redundant architecture similar to the Revised DM
model, in order to retain contact with Pinker’s evolving the-
ory and to assess whether partial redundancy radically alters
the behavior of the model. Lastly, we will find that the three
varieties of modular system (low resource, high resource,
and Revised DM) present difficulties in coordinating the
output of their two mechanisms, and so we consider adjust-
ments to these models to optimize their performance.

Simulation details

Architecture: The network had 90 input units and 100 out-
put units. The ‘rule’ mechanism comprised a 2-layer net-
work directly connecting input and output units. The ‘ex-
ception” mechanism comprised a 3-layer network, with a
layer of hidden units interceding between the input and out-
put layers. Twenty hidden units were used in the low re-
source condition as this was the minimum value sufficient
to learn the exception past tenses on their own; 100 hidden
units were used in the high resource condition.

Training set: The training set was based on the simplified
rendition of the past tense problem used by Plunkett and
Marchman (1991). Verb stems were triphonemic consonant-
vowel strings encoded using binary phonetic features. Thirty
units encoded each phoneme. The output layer included an
additional 10-unit inflection morpheme. There were 410
regular verbs, 20 no-change exceptions, 68 vowel-change
exceptions, and 10 arbitrary exceptions. Hereafter, the ex-
ceptions are labeled EP1, EP2, and EP3f, respectively.
Training items were split into high and low frequency
groups. To ensure the acquisition of arbitrary exceptions,
these were given a higher token frequency than all other
patterns, marked by the ‘f”. For EP3f, the high frequency
factor was 0.9 and low 0.6, for all other verbs these values
were 0.3 and 0.1 (see Thomas & Karmiloff-Smith, 2003).
Generalization set: Novel stems could either share two
phonemes with existing verbs (rhymes) or only one pho-
neme (non-rhymes). There were 410 regular rhymes, 10
EP1 rhymes, 76 EP2 rhymes, 10 EP3f rhymes, and 56 non-
rhymes. We report extension of the rule to regular rhymes,
referred to as rule(sim); extension of the rule to non-rhymes
bearing low similarity to any stem in the training set, re-
ferred to as rule(nosim); extension of the rule to EP2 rhymes
(e.g., ling=>linged); and irregularization of EP2 rhymes
(e.g., ling=>lang).

Competition mechanisms: /nput competition was imple-
mented by training the 2-layer network and the 3-layer net-
work separately on regulars and exceptions respectively. It
therefore assumes a type of input gatekeeper (see Fodor,
2000, p.71-78, for a discussion of the difficulties with this
idea). For update competition, each mechanism was back-
propagated with error signals from the output generated by
both mechanisms combined; for no wupdate competition,
each mechanism received error signals from its own output
response alone. To capture output competition, the output of
each mechanism was assigned a ‘confidence’ value reflect-
ing how binary the vector was (since all targets were binary
feature sets). Formally, the output vector was thresholded at
0.5 (if x<0.5, x=0; if x>0.5, x=1) and the Euclidean distance
was derived between actual and thresholded versions. A
small distance indicates high confidence (see Plaut, 1997).
The mechanism with the highest confidence was assigned
the winner and drove the final output. For no output compe-
tition, the output of each mechanism was summed to create
the net input to the output layer.

Parameters: Models were trained using the backpropaga-
tion algorithm with a cross entropy error measure, learning
rate of 0.1, momentum of 0, for 500 epochs (random order
without replacement). The full training set was used rather
than an incrementally increasing set: while these simula-
tions capture acquisition of the overall domain, they do not
aim to capture an early high performance on a restricted set
of regular and exception verbs. Performance was measured
at 1, 2,5, 10, 25, 50, 100, 200, and 500 epochs of training.
Six replications of each network were run using different
random seeds. Error bars are omitted from figures for clarity
but all reported differences are reliable.
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Results

We begin with the developmental trajectories generated by
each system. Figure 2 (top panel) compares modular, emer-
gent and redundant systems when the exception mechanism
has low resources. The modular condition generated fast
learning of regulars and high generalization of the rule, even
to novel stems bearing low similarity to anything in the
training set (sim: 97%, nosim: 65%). For Pinker (1991,
p-532), rule(sim) and rule(nosim) generalization should be
at the same level, suggesting our proxy rule-learning
mechanism is not sufficiently powerful for the DM account.
However, the modular system could not learn the excep-
tions; the rule mechanism was always more confident of its
answer than the exception mechanism because it was learn-
ing a simpler function. The redundant system learned more
evenly but did not reach ceiling on either regulars or excep-
tions because the rule mechanism didn’t have the power,
and the exception mechanism didn’t have the resources, to
learn the whole problem. The emergent system reached ceil-
ing on regulars and exceptions, but with generalization at
84% (sim) and 31% (nosim).

When the exception mechanism was given higher re-
sources (middle panel), the modular system still failed on
exceptions, although there was now some presence of the
exceptions in the output, especially for EP3f. Both emergent
and redundant systems reached ceiling and showed compa-
rable generalization (sim: 87% vs 85%, nosim: 32% vs
28%). The modular system retained its much higher gener-
alization (sim: 97%, nosim: 61%). Performance in the Re-
vised DM condition, with an exception mechanism trained
on both regulars and exceptions, was similar to the modular.

Figure 2 (bottom panel) depicts interference errors (over-
regularization of exceptions) for each exception type across
training, for all systems. All systems exhibited these errors,
and all showed the comparatively reduced vulnerability of
the higher frequency EP3f patterns. For modular and Re-
vised DM systems, the errors never went away. Interference
errors per se, therefore, are not diagnostic of architecture. Of
course, their exact timing and proportions may be diagnostic
in a detailed comparison to empirical data, but this is out-
side the scope of the current simulations.

Let’s try and fix the modular systems. Exception map-
pings are more complicated. The rule mechanism is always
likely to be more confident of its regular response than the
exception mechanism is of its (mostly) unsystematic trans-
formations. One way to fix the problem is to bias the output
of the exception mechanism, amplifying its confidence
level. Figures 3, 4, and 5 show the change in developmental
trajectories that different levels of biasing produced, for the
low resource modular, high resource modular, and revised
DM respectively. In each case, results are split into training
(upper panel) and generalization (lower panel). The bias
factor simply multiplied the confidence value of the excep-
tion mechanism by a fixed value. We plot trajectories for
biases of x1 (original), x2, x5, x10, x50, x100, x200, x250,
and x1000. This way of fixing the modular systems may
seem post-hoc, but one can imagine how an optimal biasing
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Figure 2: Developmental trajectories and interference
errors for the different architectures

value for output competition might be derived during train-
ing. The bias starts at 1 and is increased (by some small
amount) each time the exception mechanism has the correct
output but fails to block the rule mechanism.

In the low resource modular system, none of the bias val-
ues considered were sufficient to allow exceptions to be
learned (Figure 3, upper panel). Notably, as exception bias
values were increased, regular learning slowed, rule gener-
alization decreased (lower panel), and irregularization of
novel stems (e.g., ling=>lang) increased (lower panel).
Nosim generalization, the key domain of the rule mecha-
nism, collapsed as soon as biasing exceeded x2. In the high
resource condition, the modular system reached ceiling per-
formance by the end of training when the exception bias
was x200 (marked by asterisks in Figure 4, upper panel). At
this bias level, generalization for rule(sim), shown in the
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Training set: Modular (low exception resources)
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Figure 3: Trajectories for the modular system (low resources).
Biasing increases the role of the exception mechanism

lower panel, was 83%. By comparison, for the emergent
system it was 87% and for the redundant 85%. For nosim,
the modular was 4%, the emergent was 32% and the redun-
dant was 28%. Acquisition of regulars was much slower for
the biased high resource modular system compared to emer-
gent and redundant solutions, but its acquisition of excep-
tions was faster.

Finally, the partially redundant Revised DM condition
(Figure 5) revealed superior performance on regulars com-
pared to the high resource modular system. However, since
the exception mechanism was now required to learn the
whole training set, its confidence needed greater amplifica-
tion. Performance was just under ceiling with a bias of
x1000. The main difference between Revised DM and high
resource modular was that the former did not experience the
marked slowing in regular verb acquisition, or reduction in
generalization. Final sim generalization of the rule was 90%,
slightly higher than emergent and (fully) redundant. This
marginal increase in generalization was the sole benefit of
the rule-dedicated mechanism. (Nosim was at a level of
28%, comparable to emergent and modular systems). The
generalization advantage stemmed from the fact that, while
the influence of the rule mechanism was initially reduced
this function was taken up early in training by the exception
mechanism, which was itself able to generalize the rule.
Figure 5 (bottom panel) demonstrates how the relative con-
tribution of the two mechanisms to driving regular verb and
rule generalization alters across development.

Proportion of responses

100%

K ion
route Bias
80% —1
—2
—5
—10

—+—50
— 100
—*=200
—250
——1000
20%
0% +

~ m w g g = w w g g -~ wow g g -~ won
N 3

o
<
ES

2
<
&

Rule(sim) Rule(nosm) RuIe(EP25|m) Irregulanse
(EP2sim)

Figure 4: Trajectories for the modular system (high re-

sources) B1as1ng increases the role of the exception

i R

Discussion

The main findings were that (a) emergent and redundant
architectures were more effective than the modular system
at learning regular and exception verbs; and (b) emergent
and redundant architectures exhibited behaviors thought to
derive from the operation of a modular system.

Modular solutions to the past tense were problematic be-
cause the component mechanisms generated different out-
puts for the same input. The competition between the
mechanisms then had to be resolved. While redundant archi-
tectures also required the settling of this competition, the
mechanisms were more often than not offering similar out-
puts. What the modular system gained by including a dedi-
cated rule mechanism it then lost in mediating the competi-
tion between its two mechanisms. For the exception mecha-
nism to speak loud enough to block the rule mechanism, it
had to eat into the generalization offered by the rule mecha-
nism. Both emergent and redundant architectures were more
successful developmental solutions. The emergent was most
efficient in terms of resources because update competition
maximized cooperation between its two components. Inter-
ference errors in children (thinked) have been seen as diag-
nostic of a modular solution and faulty blocking, but these
errors also appeared in emergent and redundant acquisition.

Our results are consistent with other simulation results re-
ported. When Calabretta et al. (2000) trained a robot to learn
a sensorimotor task, duplication of partially adapted mod-
ules greatly facilitated evolution of functional specializa-
tion. But there was no evidence that functionally specialized
modular systems had inherently better performance or were
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more trainable than non-specialized modular systems. In the
language domain, our results are reminiscent of those of
Hahn and Nakisa (2000) in a model learning the German
plural. Addition of an explicit rule for the default plural did
not aid generalization (although in that model, the rule
mechanism was not an integrated developmental element).
One may question whether the disadvantage of the modular
architecture stems from the way we have implemented it,
using a strictly competitive method for driving output. The
response to this is threefold. First, adding an adaptive ele-
ment to the competitive mechanism in the form of a bias did
not make the modular architecture the best. Second, co-
operative use of the mechanisms fits better with the partial
specialization exhibited with the emergent approach. And
third, strict output competition is the existing proposal in
Pinker’s dual mechanism theory of past tense acquisition.
Although we did not implement that theory here, the simula-
tions raise questions over its viability with regard to the na-
ture and developmental function of the ‘blocking principle’.

Conclusion

What is modularity good for? Modular developmental solu-
tions are good when computational components drive sepa-
rate outputs and the information required by each output is
independent (Calabretta et al., 2003). Pre-specified modular
architectures are bad (or at least inefficient) when compo-
nents receive information from a common input and have to
drive a common output. This is because a competition must
be resolved for which module will drive the output. Either
an emergent or redundant solution using the same resources
may be superior. For the problem domain considered, coop-
eration is more efficient than competition.
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