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Abstract

Spatial cognition has typically been studied as isolated
parts—spatial perception, spatial memory, spatial
attention, and so on. Although this approach has had
many successes, it has failed to produce a detailed
understanding of how the piece-meal processes that
make-up spatial behavior occur together in time in a
complex, behaving organism with a densely connected,
highly interactive neural system. In the present report,
we describe a neurally-plausible theory of spatial
working memory, the Dynamic Neural Field Theory
(DNFT). The DNFT specifies how information activated
in spatial working memory (SWM) changes from
second-to-second relative to perceived reference frames
and long-term memories of previously responded-to
locations. Moreover, this theory captures key aspects of
the development of this cognitive system.

Keywords: spatial cognition, cognitive
development, working memory, long-term
memory, dynamic systems theory, modeling,

neural networks.

Introduction

It’s late at night. A coffee-addicted professor sits at his
computer, surrounded by the myriad of objects that have
taken up residence on his cluttered desk. With little fore-
thought, he reaches behind a stack of papers, picks up a
coffee cup, takes a sip, and places it back down, all the
while staring intently at the computer screen. Not convinced
by his own arguments, he gets up to retrieve a manuscript
from the filing cabinet across the room. He sits back down,
thinks, writes, and deletes. He stares off into space. With
eyes transfixed on nothing, he reaches behind a stack of
papers, picks up the coffee, and takes another sip. Still
pursuing his muse, he retreats to the lab where he locates
several graphs of new data on the lab coordinator’s
immaculate desk. Ten minutes later, he returns to the office
and begins typing furiously. The ideas are hot, the coffee is
cold, and his reaches for the occluded cup are as precise and
effortless as ever.

In this report, we describe a new theory of spatial
working memory—the Dynamic Neural Field Theory—that
captures key aspects of the dynamics of spatial cognition in
situations such as these, that is, the time-dependent

processes that underlie coordinated spatial behavior. Such
behavior requires that people remember the locations of
important objects in the local surrounds with enough fidelity
to coordinate a myriad of second-to-second decisions,
actions, and attentional shifts. Moreover, the local “map”
that is used in one workspace must be coordinated with
other maps as people move from context to context—from
the office desk, to the filing cabinet, to the desk in the lab.
This requires the real-time, contextually-specific integration
of past and present, of longer-term memory with short-term
“working” memory.

The processes that underlie spatial cognition have been
primarily studied by isolating different aspects of what it
takes to be spatially skilled. Researchers have examined the
visual challenges in such situations (Luck & Vecera, 2002;
Wolfe, 1998), how people calibrate and update sensori-
motor coordinate frames (Darling & Miller, 1993; John F.
Soechting & Flanders, 1989), and the spatial reference
frames people use over short and long time scales in small-
and large-scale spaces (T. P. McNamara, Halpin, & Hardy,
1992; T. P. H. McNamara, John A; Hardy, James K., 1992;
Pick, Montello, & Somerville, 1988). And, more recently,
neuroscientists have shed light on the neural processes
involved in these different challenges, from cells in dorsal
cortical areas like parietal cortex that are involved in
coordinate transformations (Andersen, 1995), to cells in
prefrontal cortex involved in the integration of “what” and
“where” (Rao, Rainer, & Miller, 1997).

Although we have learned a lot about these pieces of
the puzzle, these advances in understanding remain pieces.
To date, there is no theory that effectively integrates them.
Thus, the goal of our theoretical efforts was to develop a
model of spatial working memory capable of integrating the
diverse processes that underlie spatially-grounded behavior.

Requirements for an “integrated” approach to
spatial cognition

The example of reaching for an occluded coffee cup
highlights several requirements that a theory of spatial
cognition must meet. No previous models have handled all
of these challenges. I

Metric memory for locations. To successfully reach
for an occluded coffee cup, one must remember relatively
precise, spatially continuous, metric information, not just
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qualitative, categorical information. The neurophysiological
substrate of SWM fits quite naturally with this picture. This
substrate involves graded, metric representations that evolve
continuously in time under the influence of current sensory
information as well as the current activation state
(Constantinidis & Steinmetz, 1996; Rao et al.,, 1997,
Smyrnis, Taira, Ashe, & Georgopoulos, 1992). What is the
nature of this metric information? Evidence suggests that
many metric dimensions are used—head-centered, body-
centered, hand-centered, allocentric, and object-based (e.g.,
Graziano, Hu, & Gross, 1997; J.F. Soechting & Flanders,
1991). Given this, we contend that it is important not just to
specify which dimension is used in a given context, but to
know the processes involved in calibrating, coordinating,
and re-establishing metric, spatial information. The dynamic
neural field model described here provides a window on
these processes.

Forming a stable working memory. Given that spatial
memory must be linked to multiple sensory and motor
systems as well as to other internal processes (e.g. those
dealing with reference frames), and given that the state of
these multiple subsystems may vary in time due to the
complex behavior of the organism in changing
environments, the maintenance of spatial information in
working memory requires processes that stabilize metric
information against variable influences (Spencer & Schoner,
2003). Nervous systems can generate stability in a variety of
ways, for instance, by monitoring and updating spatial
information using sensory feedback. The resultant stable
states can be usefully characterized using the concepts of
dynamic systems theory (Braun, 1994). In this framework,
the space of possible states of a system is spanned by state
or behavioral variables (Schoner & Kelso, 1988). For every
possible state (or value of the state variables), a vector
predicts in which direction and at which rate the system's
state will evolve. Stable states are then values of the state
variables at which the rate of change is zero and to which
the system converges from nearby values. The DNFT uses
this concept of stability.

Spatial categories. As discussed above, reaching for an
occluded object requires precise metric information. Does
this indicate, however, that categorical or "coarse" spatial
information is not needed? To the contrary, several studies
have shown that metric information is supplemented by
categorical information (Huttenlocher, Hedges, & Duncan,
1991; Kosslyn, Chabris, Marsolek, & Koenig, 1992). For
instance, memory for a location is enhanced by
remembering where the target is relative to a visible
landmark or reference axis (Huttenlocher, Newcombe, &
Sandberg, 1994; Tversky, 1981). Similarly, memory is
enhanced by remembering where the target has been in the
past (Hund & Spencer, 2003; Spencer & Hund, 2003).
Although there are several models of how spatial category
information is used (Huttenlocher et al., 1991; Kosslyn et
al., 1992; T. P. McNamara & Diwadkar, 1997), two central
issues have not been addressed in the literature: (1) how
people form spatial categories, and (2) how people integrate
categorical and metric information in real-time. 7he DNFT

specifies a real-time, neurally-plausible process for spatial
category use and category formation.

Updating and re-establishing reference frames.
Spatial working memory must be "grounded" relative to a
reference frame. Typically, this is thought of in perceptual
terms where spatial information is kept current relative to
perceptual landmarks in the world. Spatial information can
also be considered relative to action frames of reference, for
instance, the reaching motion needed to acquire a coffee
cup. Within this context, there is a need (a) to ground spatial
information within a frame of reference, (b) to keep this
information calibrated and updated relative to on-line
changes in sensori-motor reference frames, and (c) to
flexibly re-established the reference frame when ties to the
sensori-motor context are cut (e.g., after intervening actions
in a different workspace).  Several neurally-plausible
approaches to (a) and (b) have been proposed (e.g., Pouget,
Deneve, & Duhamel, 2002); however, the challenges
involved in (c) have not been addressed (but see Burgess,
2002; Burgess, Becker, King, & O'Keefe, 2002 for related
work). The DNFT proposes a mechanism by which
reference frames can be re-established.

A dynamic neural field theory of spatial
working memory

The DNFT takes a first step toward addressing each of
the challenges a model of spatial cognition must overcome.

Metric working memory. There is general agreement
that some form of sustained activation is the most plausible
neuronal substrate for short-term spatial memory
(Constantinidis & Steinmetz, 1996; Fuster, 1995; Miller,
Erickson, & Desimone, 1996). Exactly how sustained
activation is neurally realized, however, is not clear. One
class of models achieves a stable memory state using bi-
stable networks in which a stable state of sustained
activation coexists with an “off-state” (Amari, 1989; Amari
& Arbib, 1977; Compte, Brunel, Goldman-Rakic, & Wang,
2000). Within the “on” state, locally excitatory and laterally
inhibitory interactions among neurons create sustained
activation patterns.

The DNFT is in this class of neural networks (see also,
Erlhagen & Schoner, 2002; Thelen, Schoner, Scheier, &
Smith, 2001). To describe the theory, consider an activation
field defined over a metric spatial dimension, x, the exact
nature of which we shall examine below. The continuous
evolution of the activation field is described by an activation
dynamics, that is, a differential equation which generates the
temporal evolution of the field by specifying a rate of
change, du(x,?)/dt, for every activation level, u(x,?), at every
field location, x, and any moment in time, z. The basic
stabilization mechanism of the field is modeled by an
inverse relationship between the rate of change and the
current level of activation. This means that at high levels of
activation, negative rates of change drive activation down,
while at low levels, positive rates of change drive activation
up. The activation level that emerges is a function of the
balance of different inputs and interactions in the field. For
example, when a negative resting level, 4 < 0, coexists with
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a source of excitatory input, S > 0, then the resulting stable
state of the activation dynamics

tdu(x,t)/dt = —u(x,t) + h + S(x)

is u(x) = h + S(x), the level at which positive and negative
rates of change balance so that du/dt = 0. Note that 7 is a
parameter that fixes the time scale of the activation field.

When the rate of change of activation at a field site, x,
depends not only on the activation level, u(x,?), and current
inputs, S(x), but also on the activation levels, u(x’, f), at
other field sites, x’, then the activation dynamics are
interactive. Locally excitatory interaction is described by a
kernel, w(x-x"), such that

tdu(x, £)/dt = —u(x,t) + h + S(x, ) + '[ dx"w(x—
x)o(u(x'1))

Only sufficiently activated sites, x’, contribute to interaction.
This is expressed by passing activation level through a
sigmoidal function:

o(u) = 1/(1 + exp(—fu))

Such threshold functions are necessarily non-linear and are
the basis for the bi-stability that structures the activation
dynamics. Because cortical neurons never project both
excitatorily and inhibitorily onto targets, the inhibitory
lateral interaction must be mediated through an ensemble of
interneurons. A generic formulation (Amari & Arbib, 1977)
is to introduce a second, inhibitory activation field, v(x,?),
which receives input from the excitatory activation field,
u(x,t), and in turn inhibits that field:

T, du(x,0)/dt = —u(x,f) + h, + S(x, 1) + j dx'w(x—
x"o(u(x't)) — J dx'wi(x—x")o(v(x't))
T, dv(x, 0)/dt = —v(x,t) + h, + j dx'w(x—x")o(u(x",t))

Stabilizing the contents of working memory via
spatial categories. The set of equations above describes a
neurally-plausible bi-stable network for SWM. Although
sustained activation peaks in this network are stably in the
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Figure 1. The DNFT.
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“on” state, they are inherently unstable with respect to the
metric information they represent. One manifestation of this
metric instability is the “drift” of sustained peaks under the
influence of noisy inputs that are common in the nervous
system (Compte et al., 2000). Peak drift can also be induced
by small, localized input gradients into the excitatory layer
of the field which attract sustained peaks if they are
positioned sufficiently close to the gradient (Amari & Arbib,
1977). Conversely, small localized inputs into the inhibitory
layer cause peaks to drift away from the input gradient.

How might such gradients arise? A specific mechanism
is through long-term memory traces of activation patterns.
Whenever and wherever above threshold activation is
present in WM, traces of activation can be slowly built up.
This can be modeled through a simple linear activation
dynamics of an additional set of fields—the LTM fields—
which receive inputs from the corresponding layers of WM.
Conversely, LTM traces feed back as excitatory inputs into
the corresponding layers of WM:

Ttracedutrace/ dt = —Utrace + U(u),
Ttracedvtrace/ dt = —Vorace + O'(V);

T, du/dt = ...+ Cyyacellirace T NOISE
Tdu/dt = ... + ¢, paceVirace T NOISE

A LTM trace of the excitatory layer will generate a
small source of input that stabilizes WM peaks near the
locations at which peaks have been activated earlier. Such
excitatory memory traces form the neural substrate of
spatial categories. Conversely, LTM traces of the inhibitory
layer will generate a source of input that repels memory
items from field sites that have been activated earlier. Such
traces provide long-term discriminative information,
amplifying activation differences based on past experiences.
If excitatory memory traces are the substrate from which
spatial categories are built, then inhibitory memory traces
maximize the differences between categories.

Updating and re-establishing reference frames. To
this point, we have described a neural mechanism for SWM
and spatial categories but have remained vague on the
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Figure 2. Simulations of data from Spencer & Hund (2003)
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dimension, x, over which activation peaks are defined and
how that dimension is linked to a sensori-motor reference
frame. In some cases, this issue is relatively straightforward.
For instance, the moment when the location of a coffee cup
is first detected, the rich perceptual scene creates a context
in which spatial relationships are defined and can be kept in
register by relatively well-understood neural mechanisms
(Devene & Pouget, 2003; Graziano et al., 1997).

What happens, however, when the sensory link to this
context is interrupted, such as when we get up and leave the
room and later return? In this case, a connection must be
made between LTM traces originally represented in some
frame of reference, x, and the current sensory layout. Such a
connection can be made if, during the original activities, the
perceptual structure is allowed to induce peaks of activation
in SWM that leave LTM traces of the context. Such traces
can later be re-activated, and a pattern-matching process can
be used to detect a match and estimate the amount of shift,
Ay, needed to bring the remembered and current sensory
frames into register. In this way, context-based memories
can be re-established to help organize and coordinate on-
going spatial activities. Although this aspect of the model is
currently under development, we contend that the LTM
mechanisms described previously provide an entry point
into this problem. That said, this is, at present, an under-
developed aspect of our approach (though see Steinhage &
Schoner, 1998 for evidence that the dynamic field
framework we adopt here can address these challenges
within an autonomous robotics setting).

The DNFT and strong ties to behavior. To illustrate
how the DNFT captures real-time behavior, consider our
spatial estimation task (Spencer & Hund, 2002; Spencer &
Hund, 2003). In this task, participants are seated at a large
empty table and a target object is displayed for 2s. After
delays ranging from 0 — 20s, participants are asked to
reproduce the location of the target by, for instance, pointing
to the location. As the memory delay increases, adults’
responses are systematically biased away from the midline
symmetry axis of the table and toward an average or
“prototypical” target location.

Figure 1 shows a simulation of the DNFT during a
single trial in this task. The top layer—the perceptual
field—captures the perception of the spatial context and the
target presentation. The next two layers are the excitatory, u,
and inhibitory, v, layers of SWM. The bottom two layers
show activation in the excitatory, u;,,, and inhibitory, v,
memory traces. Within each layer, spatial location is along
x, where 0° is the midline of the space and positive locations
are rightward; y captures time from the start (back of figure)
to the end of a trial; and z shows activation.

The simulation begins with SWM in “reference” mode.
In this mode, the resting level, #, of SWM is raised,
allowing multiple reference peaks to form, driven by
activation in the perceptual field. In the simulation, two
reference peaks have formed reflecting participants’
perception of the midline axis and the right edge of the
table. Next, the target is turned on at -20°. This event
triggers a lowering of the resting level in SWM to move this

activation

field into “memory” mode. In this mode, the field selects the
dominant input—the target—and a self-sustaining peak
forms at the location in SWM associated with the position
of the target. This “on” or “peak” state is stably maintained
during the memory delay; however, the peak “drifts”
systematically away from 0° that is, away from midline.
Consequently, when the model responds at the “go” signal
by moving to the location associated with maximal
activation, the model makes a leftward error. This is caused
by the inhibitory input from the inhibitory memory trace
(Vim)- Note that this bias is slightly counteracted by the
excitatory memory trace (u,,).

Figure 2 shows quantitative fits of the model to results
from Spencer and Hund (2003). The model provides an
excellent fit to both constant (top panel) and variable
(bottom panels) errors. Importantly, these simulation results
were generated with a single parameter setting.

The development of spatial working memory. SWM
must be conceptualized in a way that can interface with
critical developments in spatial cognitive abilities. For
instance, early in development, human infants do not
succeed in stabilizing remembered spatial information. This
is most dramatically illustrated in the Piagetian A-not-B task
(Piaget, 1954; Smith, Thelen, Titzer, & McLin, 1999).
Beyond infancy, we still see the challenge of stabilizing
metric working memory. In a version of the A-not-B task
where children search for toys buried in the sand, memory
for a B location is distorted in a graded manner toward A
(Spencer, Smith, & Thelen, 2001). Importantly, this bias
increases systematically as the memory delay increases
(Schutte & Spencer, 2002), and, with increasing age, the
amount of deviation toward A decreases.

The DNFT offers a unified account of these
developmental effects. According to our spatial precision
hypothesis, the spatial precision of neural interactions
becomes more precise and more stable over development
(Schutte, Spencer, & Schoner, 2003; Spencer & Hund,

2003). This hypothesis is captured in Figure 3. Each curve
0.25

0.2

0.15 A

0.1 Excitatory/ 1\ Early development
inhibitory gradient 4

0.05 - 1l
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location (x’)
Figure 3. The spatial precision hypothesis
in this figure shows an example of a Gaussian interaction
function, w(x-x"), at some point in development where the
spatial precision of local excitatory interactions is given by
oy, the strength of lateral inhibition is given by w;, and the
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overall strength of interaction is given by the excitatory
scaling parameter, w,. We capture developmental changes in
interaction by coupling variations in the spatial precision
parameter, o,,, to changes in the scaling parameter, w,:

w, =S,/ exp(o,/a.) ,

where S, specifies the overall strength of the developmental
modulation of interaction and «, specifies the steepness of
the exponential modulation in interaction over development.
Using this equation, we can capture the proposed
developmental changes in neural interaction by only
changing a single parameter, o,,. This is illustrated in Figure
3 where we varied o,, quantitatively to produce the different
curves. Two changes in interaction are apparent. As the
interaction functions move from early development (darker
lines) to later development (lighter lines), the spatial
precision of interaction narrows, and the excitatory /
inhibitory gradient becomes steeper. This results in
relatively unstable self-sustaining peaks early in
development that are sensitive to input across a broad spatial
range, as well as stable self-sustaining peaks later in
development that are only sensitive to input at narrow
separations. This can explain, for instance, the reduction in
A-not-B-type effects in the sandbox task over development.

Conclusions

The DNFT provides the first formal theory of spatial
working memory that integrates sensori-motor, working
memory, and long-term memory processes in a neurally-
plausible framework that is grounded by a close interplay
between theoretical and experimental work. We contend
that this theory takes an important first step toward an
understanding of the processes that govern human activity
in space—how people think about space, how people
organize spatial activities, and the local “maps” of the world
people bring with them from context to context. And,
critically, this theory offers novel insights into the
development of the spatial working memory system.
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