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Abstract 

Spatial cognition has typically been studied as isolated 
parts—spatial perception, spatial memory, spatial 
attention, and so on. Although this approach has had 
many successes, it has failed to produce a detailed 
understanding of how the piece-meal processes that 
make-up spatial behavior occur together in time in a 
complex, behaving organism with a densely connected, 
highly interactive neural system. In the present report, 
we describe a neurally-plausible theory of spatial 
working memory, the Dynamic Neural Field Theory 
(DNFT). The DNFT specifies how information activated 
in spatial working memory (SWM) changes from 
second-to-second relative to perceived reference frames 
and long-term memories of previously responded-to 
locations. Moreover, this theory captures key aspects of 
the development of this cognitive system. 

Keywords: spatial cognition, cognitive 
development, working memory, long-term 
memory, dynamic systems theory, modeling, 
neural networks. 

Introduction 
It’s late at night. A coffee-addicted professor sits at his 

computer, surrounded by the myriad of objects that have 
taken up residence on his cluttered desk. With little fore-
thought, he reaches behind a stack of  papers, picks up a 
coffee cup, takes a sip, and places it back down, all the 
while staring intently at the computer screen. Not convinced 
by his own arguments, he gets up to retrieve a manuscript 
from the filing cabinet across the room. He sits back down, 
thinks, writes, and deletes. He stares off into space. With 
eyes transfixed on nothing, he reaches behind a stack of 
papers, picks up the coffee, and takes another sip. Still 
pursuing his muse, he retreats to the lab where he locates 
several graphs of new data on the lab coordinator’s 
immaculate desk. Ten minutes later, he returns to the office 
and begins typing furiously. The ideas are hot, the coffee is 
cold, and his reaches for the occluded cup are as precise and 
effortless as ever. 

In this report, we describe a new theory of spatial 
working memory—the Dynamic Neural Field Theory—that 
captures key aspects of the dynamics of spatial cognition in 
situations such as these, that is, the time-dependent 

processes that underlie coordinated spatial behavior. Such 
behavior requires that people remember the locations of 
important objects in the local surrounds with enough fidelity 
to coordinate a myriad of second-to-second decisions, 
actions, and attentional shifts. Moreover, the local “map” 
that is used in one workspace must be coordinated with 
other maps as people move from context to context—from 
the office desk, to the filing cabinet, to the desk in the lab. 
This requires the real-time, contextually-specific integration 
of past and present, of longer-term memory with short-term 
“working” memory. 

The processes that underlie spatial cognition have been 
primarily studied by isolating different aspects of what it 
takes to be spatially skilled. Researchers have examined the 
visual challenges in such situations (Luck & Vecera, 2002; 
Wolfe, 1998), how people calibrate and update sensori-
motor coordinate frames (Darling & Miller, 1993; John F. 
Soechting & Flanders, 1989), and the spatial reference 
frames people use over short and long time scales in small- 
and large-scale spaces (T. P. McNamara, Halpin, & Hardy, 
1992; T. P. H. McNamara, John A; Hardy, James K., 1992; 
Pick, Montello, & Somerville, 1988). And, more recently, 
neuroscientists have shed light on the neural processes 
involved in these different challenges, from cells in dorsal 
cortical areas like parietal cortex that are involved in 
coordinate transformations (Andersen, 1995), to cells in 
prefrontal cortex involved in the integration of “what” and 
“where” (Rao, Rainer, & Miller, 1997). 

Although we have learned a lot about these pieces of 
the puzzle, these advances in understanding remain pieces. 
To date, there is no theory that effectively integrates them. 
Thus, the goal of our theoretical efforts was to develop a 
model of spatial working memory capable of integrating the 
diverse processes that underlie spatially-grounded behavior.  

Requirements for an “integrated” approach to 
spatial cognition 

The example of reaching for an occluded coffee cup 
highlights several requirements that a theory of spatial 
cognition must meet. No previous models have handled all 
of these challenges. I 

Metric memory for locations. To successfully reach 
for an occluded coffee cup, one must remember relatively 
precise, spatially continuous, metric information, not just 
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qualitative, categorical information.  The neurophysiological 
substrate of SWM fits quite naturally with this picture. This 
substrate involves graded, metric representations that evolve 
continuously in time under the influence of current sensory 
information as well as the current activation state 
(Constantinidis & Steinmetz, 1996; Rao et al., 1997; 
Smyrnis, Taira, Ashe, & Georgopoulos, 1992). What is the 
nature of this metric information? Evidence suggests that 
many metric dimensions are used—head-centered, body-
centered, hand-centered, allocentric, and object-based (e.g., 
Graziano, Hu, & Gross, 1997; J.F. Soechting & Flanders, 
1991). Given this, we contend that it is important not just to 
specify which dimension is used in a given context, but to 
know the processes involved in calibrating, coordinating, 
and re-establishing metric, spatial information. The dynamic 
neural field model described here provides a window on 
these processes. 

Forming a stable working memory. Given that spatial 
memory must be linked to multiple sensory and motor 
systems as well as to other internal processes (e.g. those 
dealing with reference frames), and given that the state of 
these multiple subsystems may vary in time due to the 
complex behavior of the organism in changing 
environments, the maintenance of spatial information in 
working memory requires processes that stabilize metric 
information against variable influences (Spencer & Schöner, 
2003). Nervous systems can generate stability in a variety of 
ways, for instance, by monitoring and updating spatial 
information using sensory feedback. The resultant stable 
states can be usefully characterized using the concepts of 
dynamic systems theory (Braun, 1994).  In this framework, 
the space of possible states of a system is spanned by state 
or behavioral variables (Schöner & Kelso, 1988).  For every 
possible state (or value of the state variables), a vector 
predicts in which direction and at which rate the system's 
state will evolve.  Stable states are then values of the state 
variables at which the rate of change is zero and to which 
the system converges from nearby values.  The DNFT uses 
this concept of stability. 

Spatial categories. As discussed above, reaching for an 
occluded object requires precise metric information. Does 
this indicate, however, that categorical or "coarse" spatial 
information is not needed? To the contrary, several studies 
have shown that metric information is supplemented by 
categorical information (Huttenlocher, Hedges, & Duncan, 
1991; Kosslyn, Chabris, Marsolek, & Koenig, 1992). For 
instance, memory for a location is enhanced by 
remembering where the target is relative to a visible 
landmark or reference axis (Huttenlocher, Newcombe, & 
Sandberg, 1994; Tversky, 1981). Similarly, memory is 
enhanced by remembering where the target has been in the 
past (Hund & Spencer, 2003; Spencer & Hund, 2003). 
Although there are several models of how spatial category 
information is used (Huttenlocher et al., 1991; Kosslyn et 
al., 1992; T. P. McNamara & Diwadkar, 1997), two central 
issues have not been addressed in the literature: (1) how 
people form spatial categories, and (2) how people integrate 
categorical and metric information in real-time. The DNFT 

specifies a real-time, neurally-plausible process for spatial 
category use and category formation. 

Updating and re-establishing reference frames. 
Spatial working memory must be "grounded" relative to a 
reference frame. Typically, this is thought of in perceptual 
terms where spatial information is kept current relative to 
perceptual landmarks in the world. Spatial information can 
also be considered relative to action frames of reference, for 
instance, the reaching motion needed to acquire a coffee 
cup. Within this context, there is a need (a) to ground spatial 
information within a frame of reference, (b) to keep this 
information calibrated and updated relative to on-line 
changes in sensori-motor reference frames, and (c) to 
flexibly re-established the reference frame when ties to the 
sensori-motor context are cut (e.g., after intervening actions 
in a different workspace).  Several neurally-plausible 
approaches to (a) and (b) have been proposed (e.g., Pouget, 
Deneve, & Duhamel, 2002); however, the challenges 
involved in (c) have not been addressed (but see Burgess, 
2002; Burgess, Becker, King, & O'Keefe, 2002 for related 
work). The DNFT proposes a mechanism by which 
reference frames can be re-established. 

A dynamic neural field theory of spatial 
working memory 

The DNFT takes a first step toward addressing each of 
the challenges a model of spatial cognition must overcome. 

Metric working memory. There is general agreement 
that some form of sustained activation is the most plausible 
neuronal substrate for short-term spatial memory 
(Constantinidis & Steinmetz, 1996; Fuster, 1995; Miller, 
Erickson, & Desimone, 1996). Exactly how sustained 
activation is neurally realized, however, is not clear. One 
class of models achieves a stable memory state using bi-
stable networks in which a stable state of sustained 
activation coexists with an “off-state” (Amari, 1989; Amari 
& Arbib, 1977; Compte, Brunel, Goldman-Rakic, & Wang, 
2000). Within the “on” state, locally excitatory and laterally 
inhibitory interactions among neurons create sustained 
activation patterns.  

The DNFT is in this class of neural networks (see also, 
Erlhagen & Schöner, 2002; Thelen, Schöner, Scheier, & 
Smith, 2001). To describe the theory, consider an activation 
field defined over a metric spatial dimension, x, the exact 
nature of which we shall examine below. The continuous 
evolution of the activation field is described by an activation 
dynamics, that is, a differential equation which generates the 
temporal evolution of the field by specifying a rate of 
change, du(x,t)/dt, for every activation level, u(x,t), at every 
field location, x, and any moment in time, t. The basic 
stabilization mechanism of the field is modeled by an 
inverse relationship between the rate of change and the 
current level of activation. This means that at high levels of 
activation, negative rates of change drive activation down, 
while at low levels, positive rates of change drive activation 
up. The activation level that emerges is a function of the 
balance of different inputs and interactions in the field. For 
example, when a negative resting level, h < 0, coexists with 
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a source of excitatory input, S > 0, then the resulting stable 
state of the activation dynamics 

τdu(x,t)/dt = –u(x,t) + h + S(x) 

is u(x) = h + S(x), the level at which positive and negative 
rates of change balance so that du/dt = 0. Note that τ is a 
parameter that fixes the time scale of the activation field.  

When the rate of change of activation at a field site, x, 
depends not only on the activation level, u(x,t), and current 
inputs, S(x), but also on the activation levels, u(x', t), at 
other field sites, x', then the activation dynamics are 
interactive. Locally excitatory interaction is described by a 
kernel, w(x-x'), such that 

τdu(x,t)/dt = –u(x,t) + h + S(x,t) + ∫ dx'w(x–

x')σ(u(x',t)) 
Only sufficiently activated sites, x', contribute to interaction. 
This is expressed by passing activation level through a 
sigmoidal function: 

σ(u) = 1/(1 + exp(–βu)) 

Such threshold functions are necessarily non-linear and are 
the basis for the bi-stability that structures the activation 
dynamics. Because cortical neurons never project both 
excitatorily and inhibitorily onto targets, the inhibitory 
lateral interaction must be mediated through an ensemble of 
interneurons. A generic formulation (Amari & Arbib, 1977) 
is to introduce a second, inhibitory activation field, v(x,t), 
which receives input from the excitatory activation field, 
u(x,t), and in turn inhibits that field: 

τu du(x,t)/dt = –u(x,t) + hu + S(x,t) + ∫ dx'w(x–

x')σ(u(x',t)) –c ∫ dx'wi(x–x')σ(v(x',t)) 

τv dv(x,t)/dt = –v(x,t) + hv + ∫ dx'w(x–x')σ(u(x',t)) 

Stabilizing the contents of working memory via 
spatial categories. The set of equations above describes a 
neurally-plausible bi-stable network for SWM. Although 
sustained activation peaks in this network are stably in the 

“on” state, they are inherently unstable with respect to the 
metric information they represent. One manifestation of this 
metric instability is the “drift” of sustained peaks under the 
influence of noisy inputs that are common in the nervous 
system (Compte et al., 2000). Peak drift can also be induced 
by small, localized input gradients into the excitatory layer 
of the field which attract sustained peaks if they are 
positioned sufficiently close to the gradient (Amari & Arbib, 
1977). Conversely, small localized inputs into the inhibitory 
layer cause peaks to drift away from the input gradient.  

How might such gradients arise? A specific mechanism 
is through long-term memory traces of activation patterns. 
Whenever and wherever above threshold activation is 
present in WM, traces of activation can be slowly built up. 
This can be modeled through a simple linear activation 
dynamics of an additional set of fields—the LTM fields—
which receive inputs from the corresponding layers of WM. 
Conversely, LTM traces feed back as excitatory inputs into 
the corresponding layers of WM: 

τtracedutrace/dt = –utrace + σ(u); 
τtracedvtrace/dt = –vtrace + σ(v); 

τudu/dt = … + cu,traceutrace + noise 
τvdu/dt = … + cv,tracevtrace + noise 

A LTM trace of the excitatory layer will generate a 
small source of input that stabilizes WM peaks near the 
locations at which peaks have been activated earlier. Such 
excitatory memory traces form the neural substrate of 
spatial categories. Conversely, LTM traces of the inhibitory 
layer will generate a source of input that repels memory 
items from field sites that have been activated earlier. Such 
traces provide long-term discriminative information, 
amplifying activation differences based on past experiences. 
If excitatory memory traces are the substrate from which 
spatial categories are built, then inhibitory memory traces 
maximize the differences between categories.  

Updating and re-establishing reference frames. To 
this point, we have described a neural mechanism for SWM 
and spatial categories but have remained vague on the 
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    Figure 1. The DNFT.           Figure 2. Simulations of data from Spencer & Hund (2003) 
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dimension, x, over which activation peaks are defined and 
how that dimension is linked to a sensori-motor reference 
frame. In some cases, this issue is relatively straightforward. 
For instance, the moment when the location of a coffee cup 
is first detected, the rich perceptual scene creates a context 
in which spatial relationships are defined and can be kept in 
register by relatively well-understood neural mechanisms 
(Devene & Pouget, 2003; Graziano et al., 1997).  

What happens, however, when the sensory link to this 
context is interrupted, such as when we get up and leave the 
room and later return? In this case, a connection must be 
made between LTM traces originally represented in some 
frame of reference, x, and the current sensory layout. Such a 
connection can be made if, during the original activities, the 
perceptual structure is allowed to induce peaks of activation 
in SWM that leave LTM traces of the context. Such traces 
can later be re-activated, and a pattern-matching process can 
be used to detect a match and estimate the amount of shift, 
Δy, needed to bring the remembered and current sensory 
frames into register. In this way, context-based memories 
can be re-established to help organize and coordinate on-
going spatial activities. Although this aspect of the model is 
currently under development, we contend that the LTM 
mechanisms described previously provide an entry point 
into this problem. That said, this is, at present, an under-
developed aspect of our approach (though see Steinhage & 
Schöner, 1998 for evidence that the dynamic field 
framework we adopt here can address these challenges 
within an autonomous robotics setting). 

The DNFT and strong ties to behavior. To illustrate 
how the DNFT captures real-time behavior, consider our 
spatial estimation task (Spencer & Hund, 2002; Spencer & 
Hund, 2003). In this task, participants are seated at a large 
empty table and a target object is displayed for 2s. After 
delays ranging from 0 – 20s, participants are asked to 
reproduce the location of the target by, for instance, pointing 
to the location. As the memory delay increases, adults’ 
responses are systematically biased away from the midline 
symmetry axis of the table and toward an average or 
“prototypical” target location.  

Figure 1 shows a simulation of the DNFT during a 
single trial in this task. The top layer—the perceptual 
field—captures the perception of the spatial context and the 
target presentation. The next two layers are the excitatory, u, 
and inhibitory, v, layers of SWM. The bottom two layers 
show activation in the excitatory, ultm, and inhibitory, vltm, 
memory traces. Within each layer, spatial location is along 
x, where 0˚ is the midline of the space and positive locations 
are rightward; y captures time from the start (back of figure) 
to the end of a trial; and z shows activation.  

The simulation begins with SWM in “reference” mode. 
In this mode, the resting level, h, of SWM is raised, 
allowing multiple reference peaks to form, driven by 
activation in the perceptual field. In the simulation, two 
reference peaks have formed reflecting participants’ 
perception of the midline axis and the right edge of the 
table. Next, the target is turned on at -20°. This event 
triggers a lowering of the resting level in SWM to move this 

field into “memory” mode. In this mode, the field selects the 
dominant input—the target—and a self-sustaining peak 
forms at the location in SWM associated with the position 
of the target. This “on” or “peak” state is stably maintained 
during the memory delay; however, the peak “drifts” 
systematically away from 0º, that is, away from midline. 
Consequently, when the model responds at the “go” signal 
by moving to the location associated with maximal 
activation, the model makes a leftward error. This is caused 
by the inhibitory input from the inhibitory memory trace 
(vltm). Note that this bias is slightly counteracted by the 
excitatory memory trace (ultm).  

Figure 2 shows quantitative fits of the model to results 
from Spencer and Hund (2003). The model provides an 
excellent fit to both constant (top panel) and variable 
(bottom panels) errors. Importantly, these simulation results 
were generated with a single parameter setting.  

The development of spatial working memory. SWM 
must be conceptualized in a way that can interface with 
critical developments in spatial cognitive abilities. For 
instance, early in development, human infants do not 
succeed in stabilizing remembered spatial information. This 
is most dramatically illustrated in the Piagetian A-not-B task 
(Piaget, 1954; Smith, Thelen, Titzer, & McLin, 1999). 
Beyond infancy, we still see the challenge of stabilizing 
metric working memory. In a version of the A-not-B task 
where children search for toys buried in the sand, memory 
for a B location is distorted in a graded manner toward A 
(Spencer, Smith, & Thelen, 2001). Importantly, this bias 
increases systematically as the memory delay increases 
(Schutte & Spencer, 2002), and, with increasing age, the 
amount of deviation toward A decreases.  

The DNFT offers a unified account of these 
developmental effects. According to our spatial precision 
hypothesis, the spatial precision of neural interactions 
becomes more precise and more stable over development 
(Schutte, Spencer, & Schöner, 2003; Spencer & Hund, 
2003). This hypothesis is captured in Figure 3. Each curve  

 
in this figure shows an example of a Gaussian interaction 
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overall strength of interaction is given by the excitatory 
scaling parameter, we. We capture developmental changes in 
interaction by coupling variations in the spatial precision 
parameter, σw, to changes in the scaling parameter, we: 

we = Se / exp(σw/αe) , 

where Se specifies the overall strength of the developmental 
modulation of interaction and αe specifies the steepness of 
the exponential modulation in interaction over development.  

Using this equation, we can capture the proposed 
developmental changes in neural interaction by only 
changing a single parameter, σw. This is illustrated in Figure 
3 where we varied σw quantitatively to produce the different 
curves. Two changes in interaction are apparent. As the 
interaction functions move from early development (darker 
lines) to later development (lighter lines), the spatial 
precision of interaction narrows, and the excitatory / 
inhibitory gradient becomes steeper. This results in 
relatively unstable self-sustaining peaks early in 
development that are sensitive to input across a broad spatial 
range, as well as stable self-sustaining peaks later in 
development that are only sensitive to input at narrow 
separations. This can explain, for instance, the reduction in 
A-not-B-type effects in the sandbox task over development.  

Conclusions 
The DNFT provides the first formal theory of spatial 

working memory that integrates sensori-motor, working 
memory, and long-term memory processes in a neurally-
plausible framework that is grounded by a close interplay 
between theoretical and experimental work. We contend 
that this theory takes an important first step toward an 
understanding of the processes that govern human activity 
in space—how people think about space, how people 
organize spatial activities, and the local “maps” of the world 
people bring with them from context to context. And, 
critically, this theory offers novel insights into the 
development of the spatial working memory system. 
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