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Abstract

Presented is an extension of the simple recurrent network
(SRN), termed the sequence encoder, which learns fixed-
width representations of variable-length sequences. This
architecture was used to learn orthographic representations
for nearly 75,000 English words, of which nearly 69,000
were multisyllabic. Analyses showed that sequence encoder
representations are shaped by the dependencies among
letters in English word forms that reflect orthographic
structure. The model was used to predict participant ratings
of the orthographic legality of pseudowords, and results
showed that the model accounted for a substantial amount
of variance in the ratings.

Introduction

Orthographic structure in English word forms is reflected
in complex dependencies among letters and positions
within each word. The probability of a given letter being
present in a word may depend upon the presence of other
letters, resulting in common clusters like GH. The
probability of finding a given letter may vary by position;
for instance, the letter Z is rarely found at the end of
English words. A representational scheme intended to
capture the structure of English word forms must be
sensitive to these as well as other kinds of dependencies.
Ideally, a representational scheme should be sufficiently
sensitive to the structure in its corpus to differentiate word
forms by their legality, where legality is determined by a
word form’s conformity to standard English dependencies.

Representational schemes have been used to build
models that capture the structure of English word forms,
notably those used in Plaut, McClelland, Seidenberg, and
Patterson (PMSP) and the dual route cascaded (DRC)
models of lexical processing (Plaut et al., 1996; Coltheart
et al.,, 2001). From the representational schemes used in
these two models it was possible to extract a substantial
amount of information about the structure in English word
forms. However, these representational schemes have
restricted models to processing only monosyllabic word
forms. This is due to difficulties inherent in representing
the position of letters in multisyllabic word forms, arising
from the increased variability in length of multisyllabic
word forms.

The difficulty with variable-length word forms can be
described as a problem of alignment. Choosing how to
align word forms of variable-length involves defining how
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the positions in one word relate to the positions in another.
A good alignment scheme should capture information
about the similarities between a pair of word forms. To
illustrate the problem, if the two orthographically similar
sequences JUMP and JUMPS are aligned by their first
letter then they share four of the same letters in the same
positions; thus for these two sequences, alignment by the
first letter suggests they are very similar. However, when
aligned by their first letter the two orthographically similar
sequences BACK and ABACK share 0 letters in the same
position. If BACK and ABACK are instead aligned by
their last letter, they share four letters in the same position.
However, when aligned by their last letter, JUMP and
JUMPS share no letters. Essentially, aligning word forms
by either their first or last letter, or even around vowels
(Daugherty & Seidenberg, 1992), fails to represent the
similarities in various word forms.

The desire to represent multisyllabic word forms
motivated our efforts to develop a mechanism for learning
representations of sequences that is based on the well-
known Serial Recurrent Network (SRN) architecture
(Elman, 1990; Jordan, 1986). The sequence encoder
(Kello et al., 2004) learns such representations in the
service of learning to encode and decode sequences of
variable-length. By virtue of being based on the SRN
architecture, the sequence encoder representations are
shaped by dependencies (e.g., conditional probabilities)
that exist in its training corpus of sequences. Thus the
sequence encoder may be used to learn representations of
both mono- and multisyllabic word forms.

The sequence encoder, shown in Figure 1, is created by
conjoining two SRNs. The first, called the encoding SRN,
receives a sequence of input letters and encodes them into
a single distributed representation, called the bridge
representation. The second, called the decoding SRN,
decodes the bridge representation into a sequence of output
letters.

By conjoining these two SRNs, the sequence encoder
can be trained to code all the letters of a word in order. By
contrast, a standard SRN that is presented with letters one
at a time and trained to simply predict each subsequent
letter will learn to code only the information necessary to
minimize the prediction error. For many kinds of lexical
corpora, it is either not necessary or not useful for the SRN
to code information about all, or even many, of the letters
in order to minimize the prediction error. The consequence



is that the learned representations will not be shaped to
code all the letters and their positions.
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Figure 1: The sequence encoder architecture

Most generally, the sequence encoder can be trained to
learn bridge representations for any variable-length
input/output mapping. In other words, input sequences do
not have to match output sequences in length or content.
However, the task of learning word forms is most directly
implemented by training the sequence encoder to
reproduce verbatim each input sequence as an output
sequence. This “auto-encoding” task forces the bridge
representations to code each letter in its position. It has
also been shown that connectionist auto-encoder models
exploit the statistical structure of their inputs (Bishop,
1995).

The remainder of this paper examines the sequence
encoder’s ability to learn representations that are sensitive
to the structure of both mono- and multisyllabic word
forms. To this end, a sequence encoder was trained on
75,265 English orthographic word forms, varying in length
from 1 to 18 letters. The model’s sensitivity to the
dependencies in English word forms was assessed by
testing its ability to account for participants’ ratings of the
orthographic legality of pseudowords.

Modeling Method

Training corpus. Representations were learned for
74,265 English words, 68,945 of which were multisyllabic.
These words were chosen by intersecting the CMU
pronunciation dictionary (available at
http://www.speech.cs.cmu.edu/cgi-bin/cmudict) and the
Wall Street Journal Corpus (Marcus et al., 1993), then
discarding homographs (for purposes outside the scope of
the work discussed here) and words with more than 18
letters.

Input and output representations. Each letter in a
sequence was coded by activating a single unit in two
different banks of nodes. The first bank consisted of 26
units, each representing a single letter (A through Z) with
one additional unit representing the end of a sequence. The
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second bank consisted of two units which denoted whether
the current letter was a consonant or vowel (the vowel
letters were A, E, I, O, U and Y).

Model architecture. The sequence encoder, as shown in
Figure 1, was built from 7 layers of connectionist units.
The first layer received an input sequence on a set of 29
localist nodes. Activation for each letter in the sequence
was propagated to hidden and context layers, producing
distributed representations along each layers’ 500 nodes.
Activation flowed from these representations to the Bridge
layer, where they were accumulated to generate a single
500 dimension distributed representation for the entire
input sequence. Activation was then propagated thorough
a set of hidden and context layers each having 500 nodes,
to produce a sequence of localist representations along the
29 localist nodes of the output layer.

The representational layers of the sequence encoder were
connected as shown in Figure 1. Any two layers linked by
a solid arrow were fully connected; an independent
connection weight extended from each unit in the sending
layer to each unit in the receiving layer. Before training,
these weights were initialized to small random values. The
dashed arrows represent a copy function; the activation
pattern on the sending layer is copied onto the receiving
layer at the end of each time step.

The sequence encoder processed each sequence as a
number of discrete time steps, first encoding then decoding
a sequence. On each encoding time step, the input units
representing a single letter were activated and the encoding
SRN run. Upon completion of the last encoding time step,
a final bridge representation was generated.  Then, for
each decoding time step the bridge representation was run
through the decoding SRN, producing a pattern of
activation on the output layer. On each decoding time step,
the most active letter unit and consonant/vowel unit was
taken as the model’s response. For a sequence to be
correct, every letter and consonant/vowel value had to be
produced in the proper order.

The net input to each hidden and output unit was
calculated as the dot product of the incoming weight and
activation vectors. The activation of each hidden unit was
computed as the hyperbolic tangent of its net input. This
function is sigmoidal with asymptotes at -1 and 1. The
activation of each output unit was computed as the
exponential of its net input, normalized across the bank of
output units. This normalized exponential function is
appropriate because letters were coded as localist
representations and so could be interpreted as the
probability of the output of each letter (Rumelhart, 1995).

Weight updates were made after every batch of 50
training examples chosen at random from the corpus. For
each element of each sequence, error derivatives were
calculated and back-propagated up to the bridge
representation. This error signal was used to train the
decoding SRN, with a learning rate of 0.00005. Next, the
error signal accumulated on the bridge layer, for the entire



length of the sequence, was back-propagated through time
while the sequence was reset onto the input layer. Weight
updates were then made on the encoding SRN with a
learning rate of 0.00000001. A smaller learning rate was
needed for the encoding SRN because of the accumulation
of error derivatives on the bridge units. Learning appeared
to reach asymptote after 250,000 epochs of training, and
was halted.

Training and testing the sequence encoder. A coarse
test of the sequence encoder’s sensitivity to structure was
achieved by examining the model’s ability to auto-encode
3 different types of sequences. These three types of
sequences embody 3 different levels of legality, so a model
sensitive to the structure of English word forms should
process these different sequences with different degrees of
success.

First, sensitivity to the structure of English should result
in correct auto-encoding of the trained words. Second, to
demonstrate that the model discovered general structure
instead of memorizing the specific sequences in the
training corpus, the model was assessed for its ability to
correctly auto-encode “Legal Nonwords”. A legal
nonword is a sequence of letters that conform to the
structure of English word forms, but are not in the training
corpus (i.e., pseudowords). Correct performance of these
items required the model to generalize information about
the dependencies in the training corpus. Third, to test
whether the model learned about the structure of English
word forms and not how to auto-encode arbitrary
sequences, we assessed its performance on sequences of
letters that did not conform to the structure of English, here
called “illegal nonwords”. To achieve this analysis, we
needed to generate legal nonwords and illegal nonwords.

To create legal nonwords, we took each trained word
form and replaced one of its letters. These replacements
yielded new sequences which were not in the training
corpus. To make the new sequences legal, each
replacement letter was chosen from a word that shared the
letters surrounding the replaced letter. To illustrate, the
word SPORTY could be changed into SPARTY by
replacing the sequence SPORT with SPART, where
SPART occurs in the word SPARTAN. In this example, a
letter is replaced by a new legal letter, determined by
matching the 4 flanking letters. For each of the
replacements used to create a legal nonword, a single letter
was chosen at random and replaced with another letter of
the same class, vowel or consonant. Three letters to either
side were matched unless the beginning or end of the
sequence was encountered.

To create illegal nonwords, the letters in each of the
legal nonwords were scrambled. An inspection of the
resulting illegal nonwords revealed that this method
generally produced sequences that violated the structure of
English word forms.
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Model Results

The sequence encoder correctly processed 89% of the
words in its training corpus, including 88% of the 68,945
multisyllabic words. This performance demonstrated the
sequence encoder’s ability to generate representations in
the service of auto-encoding both monosyllabic and
multisyllabic word forms. The sequence encoder correctly
processed 76% of the legal nonwords, including 75% of
the multisyllabic legal nonwords. Finally, the model
correctly auto-encoded only 24% of the illegal nonwords.
The poor performance of the model on illegal nonwords
relative to legal nonwords is clear evidence that the auto-
encoding task drove the model to discover and exploit
dependencies among letters that reflect the structure of
English word forms.

The results of this simulation show that the sequence
encoder provides a viable means of learning
representations for large numbers of monosyllabic and
multisyllabic word forms. Representations were shaped by
the structure of English word forms, as evidenced by the
selective generalization to legal but not illegal nonwords.
This shaping occurred through the learning of
dependencies among letters and positions within the
sequences. This sensitivity to dependencies enabled the
model to differentiate between words based on their
legality, despite never having been explicitly trained to
perform this task.

Pseudoword Legality Ratings

The previous analysis suggests that the sequence encoder
was able to learn some amount of structure in both
monosyllabic and multisyllabic word forms. However, the
analysis provided little information about the extent to
which the bridge representations became sensitive to
different sorts of dependencies. Further, it did not show
whether the dependencies captured by the sequence
encoder corresponded to those to which real language users
are sensitive.  These questions were addressed by
evaluating the model’s sensitivity to orthographic structure
relative to behavioral data. In particular, we tested whether
the model’s success at processing novel word forms
predicted participants’ judgments about the legality of a
sequence of letters. We then examined the dependencies to
determine which might give rise to the sequence encoder’s
predictive power.

The sequence encoder’s sensitivity to the structure of
English word forms can be assessed by the model’s ability
to auto-encode novel sequences. Successful auto-encoding
of a novel word form requires the model to generalize
information about the structure of the learned word forms.
A failure to auto-encode a novel sequence reflects the
model’s inability to represent the novel sequence using the
information it acquired about the structure of English. As
such, the model’s success in processing each novel
sequence should reflect the legality of the sequence. The
following analysis tested the extent to which the sequence



encoder’s performance predicted participants’ judgments
of orthographic legality.

The comparison of the model and behavioral data was
performed with word forms within a restricted range of
legality; none of the sequences in this analysis were either
typical words (like FOOTBALL) or completely illegal
nonwords (like TLLBAOOF). Because of the restricted
range of legality, the model needed to differentiate
between subtle differences in legality, in order to account
for any variance in behavioral responses. This produced a
more rigorous test of the sequence encoder’s abilities.

Method

The sequence encoder’s ability to generalize was compared
to participants’ judgments about the legality of 600
nonwords. The nonwords for this analysis were developed
using the previously described method for generating legal
nonwords. To generate word forms distinct from real
English, the procedure previously discussed was run
iteratively, 5 times on each word. This resulted in 600
relatively legal nonwords, each of which corresponded to a
real word with up to 5 of its letters replaced.

As would be expected, the nonwords created by
replacing up to 5 letters in each word tended to be less
legal than those produced by replacing a single letter. This
resulted in decreased performance on these new legal
nonwords relative to those previously discussed - 71%
instead of 76% correct, respectively. Also, the shorter
word forms created by this procedure tended to be more
legal than the longer word forms. The final 600 sequences
were chosen by randomly selecting 150 of the new legal
nonwords from the 4 most frequent lengths; 5, 6, 7, and 8
letters. Length was restricted to this range to reduce any
confounding length effects introduced by the procedure
used to make nonwords. This was necessary because
iteratively replacing 5 letters would have a different effect
on a word form composed of 3 letters than one composed
of 13 letters. Of the final 600 new legal nonwords, 571
were multisyllabic. A representative sample of the word
forms used in this analysis is shown in Table 1.

Worst performance Best performance

0 1 2 3 4
sriteanf roadham wingins broins roins
voruranc baclater ronte shiriner teres
aterkan dertlee prare macee lanter
mislerl naintira battly barss cears
crultie crerley tonkies bardey stors
dexcuges bencham hantend gaged funter
debsane overetle dleised cerel lired
lotingke gertisos stadio penscs panen

echoc corleder boalans jurded rones
intail tatzir mause sloners beins

Table 1: Legal nonwords for which P, a measure of the
sequence encoder’s performance, was closest to each of the
integers; 0, 1, 2, 3, and 4.
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To formulate a more sensitive measure of the model’s
generalization it was necessary to measure the model’s
performance beyond a binary (correct or incorrect)
distinction. Instead, a continuous measure of the sequence
encoder’s performance was generated for each of the 600
words. This was possible because the model tended to
activate target nodes less than the maximum allowed.

One conceptual interpretation of a connectionist model’s
output is that the activation of each output node reflects the
probability (nodes assume a value between 0 and 1) of
producing the represented feature. So the probability of
producing a fully correct sequence could be calculated as
the product of the activation on each of the target nodes.
However, because many of the model’s outputs were
asymptotically correct, a logarithmic transform was used to
provide a more sensitive measure. A continuous measure
of the model’s performance was created

P=—log(1-(Ta,)).

where P represents the model’s performance on a given
sequence and a; is the activity on target node 7 in the
sequence (the activation on a perfectly produced target
node was 1). For the nonwords used in this analysis, P
assumed a value between 0 and 4, (for all but 3 discarded
outliers) with 0 being the worst produced word form and 4
being the best produced.

Nine participants judged each of the 600 legal nonwords
for their conformity to the structure of English word forms.
Participants were instructed to consider the likelihood that
each sequence was an English word they were unfamiliar
with. Legality judgments for each of the 600 word forms
were made on a 5 point scale.

Results

Table 1 shows the 10 word forms for which P was closest
to each of the integers; 0, 1, 2, 3, and 4. Inspection of this
table yields two observations, which are corroborated by
later analysis. First, the model generated a reasonable
estimation of the legality of nonwords. That is, word
forms in the left most column were less regular than those
in the right most column. Second, the length of a sequence
interacted with the model’s proxy for legality - sequence
length accounted for 17.2% of the variance in P. However,
sequence length also accounted for 5.1% of the variance in
the participants’ average responses. Because the model
and participants responded differentially to items of
different length, we can partially attribute the length by
legality interaction to an anomaly in the procedure used to
generate the legal nonwords.
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Figure 2: The sequence encoder’s performance on word
forms receiving different legality ratings from participants

To check the experimental paradigm, Cronbach’s alpha
was calculated for the 9 participants’ responses. At 0.87, it
shows the participants’ judgments were largely internally
consistent. We then tested the correspondence between the
model’s performance on novel sequences (P) and the
participants’ ratings for each word form. This was
achieved by calculating the model’s average performance
on each of the 5 ratings provided by each participant.
Figure 2 was created by averaging this quantity across
participants. As depicted in this figure, each of the 5
different ratings provided by a participant tended to be
associated with the production of a different response
pattern from the model, F (4, 32) = 38.64, p <.001. This
statistically significant capacity of the sequence encoder to
account for behavioral data suggests it has developed a
sensitivity to the structure of mono and multisyllabic
English word forms. Further, the sequence encoder’s
sensitivity to dependencies is in some way similar to the
sensitivity of native English readers.

To depict the model’s ability to predict human behavior,
we used a regression analysis to compare the model’s
performance on each of the legal nonwords with the
average of the 9 participants’ response to each item.
Figure 3 is a scatter plot showing the relationship between
the sequence encoder’s proxy for legality and the average
of the participants’ judgments of legality, by item. As
depicted, the model predicted 14.5% of the variance in the
participants’ judgments. This demonstrates that the model
became sensitive to some dependencies to which the
participants were also sensitive. This suggests that the
sequence encoder discovered some structure in English
orthography similar to that discovered by a skilled English
reader.
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Figure 3: Scatter plot of participant and model responses

Conclusions
The present work examines the sequence encoder’s ability
to generate representations that are sensitive to the
structure of orthographic word forms. The sequence
encoder learned representations for more than 75,000
English words, varying in length from 1 to 18 letters, with
nearly 69,000 of the learned words being multisyllabic.

In processing multisyllabic words, the sequence encoder
overcame problems associated with representing positions
in variable-length sequences. While other connectionist
systems have been used to process sequences, this
sequence encoder is particularly suited to learning
representations of lexical stimuli, an ability which may be
useful in future models of lexical processing. To elaborate
on this point, we will briefly contrast the sequence encoder
with three related connectionist systems.

The sequence encoder is an extension of the SRN, which
was designed to process sequences while performing the
prediction task (Elman, 1990; Jordan, 1986). These SRNs
maintain a representation of prior elements in order to
predict an upcoming element. Prediction is accomplished
by using whatever conditional probabilities exist in the
trained sequences (Elman, 1995). The sequence encoder
inherits the SRN’s sensitivity to conditional probabilities,
but goes beyond the standard SRN by creating a task that
explicitly forces representations to code all the elements of
a sequence along with their positions. The sequence
encoder thus becomes sensitive to conditional probabilities
among all the letters of a word, which is also generally true
of skilled readers (see McClelland & Rumelhart, 1981).

Another connectionist system for processing variable-
length sequences is the recurrent auto-associative memory
(RAAM; Pollack, 1990). In RAAMs, connectionist units
are trained to pack and unpack representations in a strictly
recursive fashion. By varying the number of recursive
steps, the model can input or output a variable-length
sequence. However, the strictly recursive nature of this
process makes it ill-suited to the problem of learning word



forms. The RAAM architecture imposes a fixed
hierarchical structure on each sequence, while English
words are characterized by a more rough hierarchical
organization that is free to vary from one word to the next
(Andrews et al., 2004).

A recently-developed connectionist system uses fully
recurrent networks to learn representations of variable-
length sequences (Botvinick & Plaut, in press). In this
architecture, a sequence is input to the model one element
at a time, much like the sequence encoder, until an output
cue triggers the model to reproduce the sequence. This
architecture was developed as a model of serial recall, a
task with notable differences from lexical processing, and
is therefore not well-suited to our current needs. In
particular, the model requires extensive training, and it is
unclear how well it would scale and generalize in much
larger linguistic domains like the one discussed here.

Current models of the lexical system incorporate only
monosyllabic words, because their representational
schemes cannot easily incorporate multisyllabic words
(Coltheart et al., 2001; Plaut et al., 1996). The sequence
encoder’s ability to learn representations for large numbers
of multisyllabic words could be exploited to develop new
models of impaired and unimpaired lexical processing (see
Kello, in press). These models could process a number of
words approaching an adult’s vocabulary and could
address large quantities of behavioral data regarding
multisyllabic words (Balota et al., 2002). These are some
of the directions that are currently being pursued with the
sequence encoder.
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