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Abstract

While the aviation domain is exemplary for its complex 
cognitive skills, the pace of automation steadily increases 
making it crucial to train people as effectively as possible. 
Over the last three decades training programs have evolved a 
strong focus on personalized dynamic whole-tasks. Adapting 
training to the individual student’s progress is believed to be 
strongly related to increased training efficiency (Salden, Paas, 
& van Merriënboer, 2006). Four studies investigated a variety 
of personalized training methods. Results confirm the 
hypothesis that personalized instruction can have beneficial 
effects for the training of complex cognitive skills.  
 
Keywords: complex cognitive skills, personalized instruction, 
cognitive load, mental efficiency 

Introduction 
Technical domains like the chemical industry and aviation 
incorporate a vast amount of complex cognitive skills in 
highly demanding working environments. Mistakes can lead 
to dangerous situations and high costs, yet the available 
training time in which the complex job skills have to be 
mastered, is limited. Efficient training that offers trainees a 
powerful learning environment seems mandatory to ensure 
that they can acquire skills quickly and adequately, and 
learn how to apply these skills flexibly in new situations and 
tasks.  

One of the main characteristics of the aviation domain is 
that each task often contains new elements compared to the 
previous tasks. In other words, each new task can be 
considered as a transfer task in which the previously 
acquired knowledge needs to be applied differently. One 
should note that besides new elements, each learning task 
contains the basic skills that have to be acquired. Though 
the variability and complexity of the learning tasks increase 
during training, each task builds upon this basis. 

During the last three decades, training methods and 
programs have evolved in three important ways (for an 

overview see Salden, Paas, & van Merriënboer, 2006): from 
static to dynamic, from part-task based to whole-task based, 
and from group-based to personalized. Especially, the use of 
personalized selection of learning tasks is believed to be 
strongly related to increased training efficiency. 

Flexible learning on the basis of meaningful learning 
tasks requires some form of dynamic task selection.  An 
intelligent agent makes decisions about the most optimal 
learning-task sequence during the training or teaching 
process. In order to make appropriate decisions, information 
on the student’s progress is used such as indications of the 
level of performance and the costs related to reaching this 
performance.  

Although many Intelligent Tutoring Systems (ITS) have 
extended their capacity to adapt the selection of learning 
tasks to the individual learner’s needs by incorporating 
student models that keep track of a student’s performance 
history, we claim that they are lacking an important aspect 
of the learning process, namely, cognitive load. Although, 
the concept of cognitive load is sometimes measured (e.g., 
Kashihara, Hirashima, & Toyoda, 1995) it has never been 
used in ITSs as a determinant for task selection. There is no 
doubt that cognitive load is a crucial factor in the training of 
complex cognitive skills (e.g., Sweller, 1989; Sweller, van 
Merriënboer, & Paas, 1998), but usually, only performance 
measures such as speed and accuracy are used to select 
learning tasks. 

From the viewpoint of cognitive load theory (Paas, Renkl, 
& Sweller, 2003), dynamic task selection can be superior to 
fixed task selection as it provides the possibility to adjust 
the training to the cognitive state of the learner, thereby 
controlling the load that is imposed on a learner’s cognitive 
system. Although individual measures of performance and 
mental effort can be used as indicators of the cognitive 
demands a certain task places on the learner, the 
combination of both measures is considered a superior 
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estimate of the cognitive demands in the dynamic selection 
of training tasks. It is quite feasible for two people to attain 
the same performance levels, while one of them experiences 
a very high cognitive load and needs to work laboriously 
through a very effortful process, whereas the other person 
experiences a low cognitive load and reaches the same 
performance level with a minimum of effort. However, most 
people would agree that the next learning task should be less 
difficult for the first person than for the second person. Our 
claim is that task selection, and consequently training 
efficiency can be improved by taking the combination of 
performance and cognitive load measures into account. To 
obtain a good indication of the cognitive load that is 
imposed on a person’s cognitive system, mental effort 
measurements are used. 

Paas and van Merriënboer (1993) have developed a 
calculational approach for combining measures of mental 
effort and task performance that allows one to obtain 
information on the relative efficiency of instructional 
conditions. Based on Ahern and Beatty’s (1979) efficiency 
view on learning, it is proposed that learners’ behavior in a 
certain training condition is more efficient if (1) their 
performance is higher than might be expected on the basis 
of their invested mental effort, and/or (2) their invested 
mental effort is lower than might be expected on the basis of 
their performance. Thus, training conditions in which high 
performance is attained with a low mental effort investment 
are considered as ‘high efficient’. ‘Low efficient’ conditions 
are characterized by a combination of low performance and 
high mental effort. 

A first indication that the use of a combined performance 
and mental effort score can make personalized training more 
efficient was found in a study by Camp, Paas, Rikers, and 
van Merriënboer (2001). In this study four methods of task 
selection in the Air Traffic Control (ATC) domain were 
compared. In the first method, tasks were presented in a 
fixed, predetermined simple-to-complex sequence designed 
according to the 4C/ID-model (van Merriënboer, 1997). In 
the other three methods, the tasks were presented 
dynamically, based on either performance, mental effort, or 
the combination of both (i.e., mental efficiency). Results 
showed that dynamic task selection leads to more efficient 
training than non-dynamic task selection. However, 
dynamic task selection based on mental efficiency did not 
lead to more efficient training and better test performance 
than dynamic task selection based on performance or mental 
effort alone. 

Besides such system-controlled task selection, learner-
controlled selection may offer another form of personalized 
dynamic task selection because it gives the students control 
over what learning tasks they want to practice next. While a 
clear definition of learner control is missing, most studies in 
the field of computer-based training operationalize it in two 
ways: Either learners are given the option to request 
additional instructional material or they are given the option 
to bypass instructional material (Crooks & Klein, 1996). A 
third way was explored in the reported studies in which 

students could either select the task complexity, or the 
learning task itself from the entire task database.  

The basic theoretical claim for potential positive effects of 
learner control (i.e., personalized preference) is that trainees 
are able to select the appropriate tasks to practice while 
avoiding a possible overload of their cognitive system, 
thereby increasing the effectiveness and efficiency of 
learning (e.g., Borsook & Higginbotham-Wheat, 1991). 
However, several studies show that low-ability learners 
experience problems with the control they are given (e.g., 
Niemic, Sikorski, & Walberg, 1996; Steinberg, 1989). A 
possible explanation is that the given level of control is 
often not compatible with the learners’ abilities. 

According to Bell and Kozlowski (2002), it is critical to 
design instructional material that provides learners with a 
level of control they are able to handle. Furthermore, the 
‘expertise reversal effect’ (e.g., Kalyuga, Ayres, Chandler, 
& Sweller, 2003) indicates that the trainees’ increasing 
expertise level is probably the most important determinant 
for deciding on the appropriate level of freedom that is 
given to them. Support for this claim was found in recent 
studies (van Merriënboer, Schuurman, de Croock, & Paas, 
2002; Salden, Paas, & van Merriënboer, in press), which 
showed that learners who are given an appropriate level of 
control over task selection are well able to select their own 
learning tasks. 

Research Questions 
The main research question is how dynamic task selection 
can be used to optimize training programs, the learning 
process, and transfer test performance. More specific 
research questions focus on the different types of 
information that are required to effectively use dynamic task 
selection and on the role of the trainees themselves in this 
task selection process. For example, do performance 
measures contain sufficient information for dynamic task 
selection or are other measures, such as invested mental 
effort, also important to take into account? And to what 
extent are trainees able to fulfill an active role in the process 
of task selection? 

These research questions were addressed in four 
experiments with the first two studies focusing on Air 
Traffic Control (ATC) learning materials and the latter two 
studies on learning materials for the cockpit automation of 
the Flight Management System (FMS). 

Calculations and Methodology 
Throughout all four experiments performance was measured 
on 5-point scale (1 = very low; 5 = very high) concerning 
several performance variables. For the two ATC studies the 
mean performance was a combined measure of (a) number 
of commands, (b) time outside airway, (c) time without 
separation between airplanes, and (d) number of gate hits 
(i.e., safely directed airplanes to end point). Concerning the 
two FMS studies the mean performance consisted of (a) 
number of commands, (b) number of changes in flight route, 
and (c) amount of time pressure. 
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In all four experiment cognitive load was measured using 
a 5-point subjective rating scale (1 = very low; 5 = very 
high) on which students had to indicate their invested 
mental effort after the completion of each learning task. 

The combination of the average performance score and 
the invested mental effort score of the last executed task was 
used to determine the complexity level of the next to be 
presented task. The score was found by filling in the 
performance and the mental effort scores in the efficiency 
formula: 

Performance  −  Mental Effort 

       √2 

When the efficiency score was smaller than zero, task 
complexity was decreased; and if the efficiency score was 
larger than zero, task complexity was increased. 

Experiment 1 
The first study (Salden, Paas, Broers, & van Merriënboer, 
2004) compared the differential effects of four task selection 
methods on training efficiency (e.g., training time and 
number of tasks needed to reach the exit performance level) 
and transfer test performance in a computer-based Air 
Traffic Control (ATC) training program. A non-dynamic 
condition, in which the learning tasks are presented to the 
participants in a fixed, predetermined sequence, was 
compared to three dynamic conditions. The dynamic 
conditions selected learning tasks on the basis of 
performance, mental effort, or mental efficiency (i.e., a 
combination of performance and mental effort). The 
participants were first given an introduction to the ATC 
field and had to complete a practice task before they could 
continue with the actual training program. All participants 
start with a task of the lowest complexity level and then 
continued with learning tasks that are selected according to 
the condition they worked in. After the training was 
completed, they were presented with ten transfer tasks. 

Results Experiment 1 
Since several factors were fixed in the control condition 
they were excluded from three analyses: highest complexity 
level reached in training phase, absolute jump size between 
complexity levels, and total number of training tasks. 

With regard to the highest complexity level (F(2,65) = 
20.5, MSE = 3.31, p < .0001, η² = .39) the dynamic 
conditions differed significantly with the mental efficiency 
condition reaching a higher complexity level than both 
performance and mental effort conditions (t(65) = 2.72, p < 
.01). Furthermore, following a main effect (F(2,65) = 28.6, 
MSE = .01, p < .0001, η² = .47) the mental efficiency 
condition attained a larger jump size than the other two 
dynamic conditions (t(65) = 3.43, p < .01). Lastly, the 
efficiency condition did not execute less or more training 
tasks than the performance and mental effort conditions 
(t(65) = -.65, p = .52). 

Analyses (F(3,87) = 42.6, MSE = 225376.6, p < .0001, η² 
= .60) between all four conditions revealed that the fixed 
condition needed more time to complete the training (t(87) 
= 7.92, p < .0001) than the three dynamic conditions. While 
no difference in performance was found between the fixed 
condition and the three dynamic conditions, analysis on 
mental effort (F(3,87) = 8.3, MSE = .17, p < .0001, η² = .22) 
showed that the fixed condition did invest more mental 
effort (t(87) = 3.48, p < .001) during training than the 
dynamic conditions. 

Though no significant effects were found in performance 
or mental effort on the transfer test, an analysis on the 
training efficiency (F(3,87) = 7.3, MSE = 1.21, p < .0001, η² 
= .20) revealed that the fixed condition was less efficient 
(t(87) = -4.46, p < .0001) than the three dynamic conditions. 
There were no differences between the dynamic conditions 
regarding training efficiency. 

Experiment 2 
In the second Air Traffic Control study (Salden et al., in 
press) two personalized methods were contrasted to yoked 
control conditions. In one personalized condition, task 
selection was based on a combination of performance and 
invested mental effort (i.e., mental efficiency); in the other 
personalized condition, the learner was free to select the 
complexity level of the next learning task (i.e., learner 
control). Furthermore, participants in both personalized 
conditions were matched to “yoked” participants in two 
control conditions. That is, each individualized training 
sequence of a participant in the mental efficiency condition 
or the learner control condition was also presented to a 
participant in the corresponding yoked control condition. 
Note that the yoked participant was presented with the 
training sequence of someone else, hence no personalization 
occurred in the yoked conditions. After an introduction to 
the ATC field, all participants were given a short pre-
training before they started with the actual training program. 
After completion of the training all participants are 
presented with a two-fold transfer test consisting of ten 
transfer test tasks and a reaction time test. 
 

Results Experiment 2 
Training effects were found between the two personalized 
conditions on highest complexity level attained (F(3,56) = 
3.04, MSE = 2.07, p < 0.5, η² = .14) and highest jump size 
between tasks (F(3,56) = 5.27, MSE = 0.03, p < 0.1, η² = 
.22). The mental efficiency condition reached a higher 
complexity level (t(56) = 2.19, p < .05) and made larger 
jumps between complexity levels  (t(56) = 2.69, p < .05) 
than the learner control condition. 

While no effects were found for invested mental effort 
during training, a strong trend was found for training 
performance (F(3, 56) = 2.74, MSE = 144.01, p = .05, η² = 
.13). Both personalized conditions obtained a higher 
performance than their corresponding yoked conditions 
(t(56) = 2.25, p < .05). Furthermore, the mental efficiency 
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condition attained a higher performance score (t(56) = 2.44, 
p < .05) than the learner control condition. 

No effects were found on the transfer tasks in terms of 
performance or mental efforts. However, the reaction time 
test revealed a main effect on conflict identification (F(3,56) 
= 8.18, MSE = 28.18, p < .0001, η² = .31). The personalized 
conditions (mental efficiency and learner control) made 
more correct conflict identifications (t(56) = 2.04, p < .05) 
than the yoked conditions. Furthermore, the learner control 
condition outperformed the mental efficiency condition by 
making more correct conflict identifications (t(56) = -3.58, p 
< .01). Lastly, while an analysis on training efficiency did 
not expose differences between the personalized conditions 
and their yoked conditions, it did reveal that the mental 
efficiency condition was les efficient (t(56) = -3.00, p < .01) 
than the learner control condition. 

Experiment 3 
The third study (Salden, Paas, van der Pal, & van 
Merriënboer, 2006) examined the effects of three task 
selection methods on training efficiency and test 
performance in a computer-based training program for 
programming a Flight Management System (FMS). A non-
dynamic condition, in which the learning tasks were 
presented to the participants in a fixed, predetermined 
sequence, was compared to two dynamic conditions. In the 
dynamic conditions, the learning tasks were either selected 
by the participants themselves (i.e., learner control) or by a 
task selection algorithm in the computer-based training 
program that used the participant’s self-ratings for 
performance and mental effort. The participants in the 
learner control condition had total freedom in selecting the 
learning task they wanted to practice next. All participants 
were presented with five test tasks after completion of the 
training.  

Results Experiment 3 
Because the number of learning tasks was preset in the fixed 
condition, one-sample t-tests were used to compare this 
number of tasks to those of the learner control and mental 
efficiency conditions. Both these dynamic conditions 
needed substantially less tasks (t(20) = -4.6, p < .001) than 
the fixed condition to complete the training. Furthermore, 
both dynamic conditions made larger jumps in complexity 
levels (t(20) = 4.3, p < .001) in the fixed condition. 
Following a main effect for training time (F(2,28) = 28.37, 
MSE = 444.40, p < .001, η² = .67) it was shown that the 
fixed condition needed more time (t(28) = 6.37, p < .001) to 
complete the training than both dynamic conditions. Lastly, 
the learner control condition needed less training time than 
the mental efficiency condition (t(28) = -4.20, p < .001). 

With regard to training performance (F(2,28) = 15.00, 
MSE = .08, p < .001, η² = .52), the fixed condition obtained 
a higher score (t(28) = 5.47, p < .001) than both dynamic 
conditions. Furthermore, no differences were found on the 
invested mental effort during training. 

Controlling for the number of learning tasks and total 
training time in the analyses for test performance, mental 
effort on test and training efficiency no effects were found. 

Experiment 4 
Since the data from study 3 suggest that some participants 
systematically overrated their performance, the role of self-
ratings was further investigated in a second FMS study 
(Salden, et al., 2006). More specifically, the fourth study 
investigated whether the higher amount of training time and 
the larger number of training tasks in the non-personalized 
condition confounded the results of the third study. 

The non-dynamic fixed condition was again compared to 
a mental efficiency condition in which students assessed 
their own performance and mental effort. As in the study 3, 
five test tasks were given after the participants had 
completed the training. 

Results Experiment 4 
Because the number of learning tasks was preset in the fixed 
condition, one-sample t-tests were used to compare the 
number of tasks with the mental efficiency condition. It was 
shown that the mental efficiency condition (t(19) = -2.9, p < 
.01, r = -.65) needed less training tasks than the fixed 
condition to complete the training. Furthermore, the mental 
efficiency condition made larger jumps in complexity levels 
(t(19) = 3.6, p < .01, r = .14) than the fixed condition. No 
effects were found for training performance and mental 
effort invested during training. 

Controlling for the number of learning tasks no effects 
were found for mental effort on test, test performance, and 
training efficiency. 
 
Results Experiments 3 and 4 Combined Experimenter’s 
observations of the participants in the mental efficiency 
conditions of both experiments suggested that the absence 
of clear beneficial effects for this condition might have been 
caused by the poor quality of self-ratings of performance 
(e.g., Tousignant & DesMarchais, 2002). In particular, it 
seemed that some of the participants overrated their 
performance as compared to their objective performance 
scores. To test this alternative hypothesis, a K-means cluster 
analysis on the differences between objective and subjective 
performance scores identified three groups of self-raters: 
Good self-raters, average self-raters, and bad self-raters. The 
extreme groups (i.e., good and bad self-raters) were 
compared to the combined fixed conditions of both studies 
on the test variables mental effort and performance. 
Kruskal-Wallis tests revealed that the participants in the 
fixed condition attained a higher test performance than the 
bad self-raters (χ² = 7.21, p < .01; M = 2.89, SD = .24, r = 
.10). However, no difference was found between the fixed 
condition and the good self-raters (χ² < 1; M = 3.27, SD = 
.22). In addition, the good self-raters attained a higher test 
performance (χ² = 5.04, p < .05, r = .19) than the bad self-
raters. These results revealed an important difference 
between good and bad self-raters, which might have 
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confounded possible beneficial effects of the efficiency 
method. 

General discussion 
The results of the four studies lead to the following 
conclusions. First of all, personalized instruction can have 
beneficial effects for the training of complex cognitive 
skills. Although the mental efficiency method did not lead 
to superior test results, it showed training benefits in every 
study. Furthermore, students are capable to use learner 
control of learning task selection effectively as shown in 
Experiment 2, where the students who trained with learner 
control exhibited superior performance on a reaction time 
test. Whereas students seem able to deal with the given 
control, Studies 3 and 4 indicate that self-ratings should be 
used with caution. Because these students were novice 
learners with the FMS, it is conceivable that the novelty of 
the task at hand disabled their ability to judge their own 
performance. Of all students in these two studies, only 33% 
of the students were able to estimate their performance 
accurately. 

Limitations to Research 
While personalized instruction can be beneficial, the four 
experiments also point out what might have limited possible 
effects of the training methods. 

First of all, when taking the results of all studies into 
account, questions arise why the overall performance during 
both training and test phases seems higher than in 
comparative studies. Although additional analyses revealed 
no ceiling or floor effects, it might be that the range of 
complexity used in our studies was too limited.  

This might imply that the overall complexity of the 
materials used could have been too low and suggest that 
possibly larger differences in performance and mental effort 
could have been found with more complex materials. 
Overall, the participants attained a slightly lower test 
performance than training performance, but the relatively 
high test performance scores suggest that they might have 
been able to execute even more complex tasks. 

A further aspect that might have attributed to the limited 
effects of the training methods might be found in the 
efficiency method. While it was originally developed to 
estimate the efficiency of experimental conditions the 
current studies used it as a determinant for dynamic task 
selection. To use it for this purpose, the relation between 
performance and mental effort (i.e., efficiency) is estimated 
for each learning task based on the performance and mental 
effort scores of the last executed task. The optimization of 
the learning process might have been limited due to the fact 
that the efficiency method does not take the history of 
previous learning tasks and associated performance and 
mental effort scores into account. 

Lastly, since the efficiency formula takes only 
performance and mental effort into account, it is insensitive 
to other important factors like motivation. However, an 
indication of the learner’s motivation might be found in the 

relationship between performance and mental effort. While 
a student who attains a low performance score but yet 
invests a high amount of mental effort is seen as low 
efficient according to the efficiency formula, the invested 
mental effort might also indicate that the student is highly 
motivated. In overview of the studies, the moderate levels of 
invested mental effort during training could indicate that 
motivation might decrease when trainees feel that they are 
not really challenged anymore. 

Implications 
Automation should be used carefully in training programs, 
especially for novice learners who are easily overloaded 
with the complexity of an extensive work environment of an 
Air Traffic Controller or a pilot. It might be good for them 
to start with a simplified and less automated training 
environment and after having acquired the basic skills, to 
advance to more complex training programs. 

In contrast to previous research, the studies have shown 
that students seem to be able to use learner control 
efficiently. Students who are given control over the learning 
tasks and their respective complexity level are able to create 
an effective training sequence. As long as the level of given 
control does not overload the students, they can shape their 
own training sequence. Further exploration of the level of 
given learner control, and of how to adapt the amount of 
control to the growing expertise of the learners during 
training, represents a promising line of future research. 

While students are able to select an appropriate learning 
task in terms of complexity, the FMS studies show that the 
capacity of estimating the quality of one’s own performance 
is lacking in most students. Since the students were novice 
learners, it is conceivable that the novelty of the task at hand 
disabled their ability to judge their own performance. While 
66% of all students overestimated their performance, only 
33% of the students were able to estimate their performance 
accurately.  

For future research it would be interesting to investigate 
to what extent more advanced students are able to use self 
assessment. The ‘expertise reversal effect’ (e.g., Kalyuga, et 
al., 2003) shows that instructional materials should be 
adjusted to the level of learner expertise. The elaborated 
instructional materials that are helpful at the start of a 
training program might become redundant when the student 
has attained a higher level of expertise. Not only might such 
more advanced students be able to deal with higher levels of 
learner control but they might also be capable to use self 
assessment more accurately than the novice learners in our 
studies. 

Also, in combination with self assessment, the use of peer 
assessment in novice students might lead to interesting 
effects. Research has shown that peer assessment positively 
influences the students’ view on learning and assessment, 
improves learning satisfaction, and enhances clarity of the 
learning criteria (e.g., Sluijsmans, Moerkerke, Dochy, & van 
Merriënboer, 2001). Furthermore, by learning to assess their 
peers, the students reflect more on their own performance 

2103



 

 

(e.g., Sobral, 1997) and the awareness of the quality of their 
own performance improves (e.g., Anderson & Freiberg, 
1995). More advanced students who have used peer 
assessment in early training phases might also be more 
capable in rating their own performance in a later training 
phase.  

Final Remarks 
The current studies can be seen as a first attempt to 
investigate the possibilities, benefits, and limitations of 
personalized training methods that are based on an extensive 
instructional design model such as the 4C/ID model. To use 
an extensive instructional design model as the basis for 
training development and to adapt the actual training to the 
needs of the individual learner is something that has started 
only recently. Also, the additional use of the concept of 
cognitive load in the process of dynamic task selection is 
not to be found in many studies.  

Though the studies have not delivered indisputable 
support for the claim that personalized training methods are 
more effective, they have shown that personalized 
instruction can have beneficial effects for the individual 
learner. While some questions are left unanswered and new 
ones have arisen, the studies give various leads and clues on 
how to proceed with the investigation of personalized 
training methods. 
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