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Abstract

While the aviation domain is exemplary for its complex
cognitive skills, the pace of automation steadily increases
making it crucial to train people as effectively as possible.
Over the last three decades training programs have evolved a
strong focus on personalized dynamic whole-tasks. Adapting
training to the individual student’s progress is believed to be
strongly related to increased training efficiency (Salden, Paas,
& van Merri€nboer, 2006). Four studies investigated a variety
of personalized training methods. Results confirm the
hypothesis that personalized instruction can have beneficial
effects for the training of complex cognitive skills.
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cognitive load, mental efficiency

Introduction

Technical domains like the chemical industry and aviation
incorporate a vast amount of complex cognitive skills in
highly demanding working environments. Mistakes can lead
to dangerous situations and high costs, yet the available
training time in which the complex job skills have to be
mastered, is limited. Efficient training that offers trainees a
powerful learning environment seems mandatory to ensure
that they can acquire skills quickly and adequately, and
learn how to apply these skills flexibly in new situations and
tasks.

One of the main characteristics of the aviation domain is
that each task often contains new elements compared to the
previous tasks. In other words, each new task can be
considered as a transfer task in which the previously
acquired knowledge needs to be applied differently. One
should note that besides new elements, each learning task
contains the basic skills that have to be acquired. Though
the variability and complexity of the learning tasks increase
during training, each task builds upon this basis.

During the last three decades, training methods and
programs have evolved in three important ways (for an

overview see Salden, Paas, & van Merriénboer, 2006): from
static to dynamic, from part-task based to whole-task based,
and from group-based to personalized. Especially, the use of
personalized selection of learning tasks is believed to be
strongly related to increased training efficiency.

Flexible learning on the basis of meaningful learning
tasks requires some form of dynamic task selection. An
intelligent agent makes decisions about the most optimal
learning-task sequence during the training or teaching
process. In order to make appropriate decisions, information
on the student’s progress is used such as indications of the
level of performance and the costs related to reaching this
performance.

Although many Intelligent Tutoring Systems (ITS) have
extended their capacity to adapt the selection of learning
tasks to the individual learner’s needs by incorporating
student models that keep track of a student’s performance
history, we claim that they are lacking an important aspect
of the learning process, namely, cognitive load. Although,
the concept of cognitive load is sometimes measured (e.g.,
Kashihara, Hirashima, & Toyoda, 1995) it has never been
used in ITSs as a determinant for task selection. There is no
doubt that cognitive load is a crucial factor in the training of
complex cognitive skills (e.g., Sweller, 1989; Sweller, van
Merriénboer, & Paas, 1998), but usually, only performance
measures such as speed and accuracy are used to select
learning tasks.

From the viewpoint of cognitive load theory (Paas, Renkl,
& Sweller, 2003), dynamic task selection can be superior to
fixed task selection as it provides the possibility to adjust
the training to the cognitive state of the learner, thereby
controlling the load that is imposed on a learner’s cognitive
system. Although individual measures of performance and
mental effort can be used as indicators of the cognitive
demands a certain task places on the learner, the
combination of both measures is considered a superior
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estimate of the cognitive demands in the dynamic selection
of training tasks. It is quite feasible for two people to attain
the same performance levels, while one of them experiences
a very high cognitive load and needs to work laboriously
through a very effortful process, whereas the other person
experiences a low cognitive load and reaches the same
performance level with a minimum of effort. However, most
people would agree that the next learning task should be less
difficult for the first person than for the second person. Our
claim is that task selection, and consequently training
efficiency can be improved by taking the combination of
performance and cognitive load measures into account. To
obtain a good indication of the cognitive load that is
imposed on a person’s cognitive system, mental effort
measurements are used.

Paas and van Merriénboer (1993) have developed a
calculational approach for combining measures of mental
effort and task performance that allows one to obtain
information on the relative efficiency of instructional
conditions. Based on Ahern and Beatty’s (1979) efficiency
view on learning, it is proposed that learners’ behavior in a
certain training condition is more efficient if (1) their
performance is higher than might be expected on the basis
of their invested mental effort, and/or (2) their invested
mental effort is lower than might be expected on the basis of
their performance. Thus, training conditions in which high
performance is attained with a low mental effort investment
are considered as ‘high efficient’. ‘Low efficient’ conditions
are characterized by a combination of low performance and
high mental effort.

A first indication that the use of a combined performance
and mental effort score can make personalized training more
efficient was found in a study by Camp, Paas, Rikers, and
van Merriénboer (2001). In this study four methods of task
selection in the Air Traffic Control (ATC) domain were
compared. In the first method, tasks were presented in a
fixed, predetermined simple-to-complex sequence designed
according to the 4C/ID-model (van Merriénboer, 1997). In
the other three methods, the tasks were presented
dynamically, based on either performance, mental effort, or
the combination of both (i.e., mental efficiency). Results
showed that dynamic task selection leads to more efficient
training than non-dynamic task selection. However,
dynamic task selection based on mental efficiency did not
lead to more efficient training and better test performance
than dynamic task selection based on performance or mental
effort alone.

Besides such system-controlled task selection, learner-
controlled selection may offer another form of personalized
dynamic task selection because it gives the students control
over what learning tasks they want to practice next. While a
clear definition of learner control is missing, most studies in
the field of computer-based training operationalize it in two
ways: Either learners are given the option to request
additional instructional material or they are given the option
to bypass instructional material (Crooks & Klein, 1996). A
third way was explored in the reported studies in which

students could either select the task complexity, or the
learning task itself from the entire task database.

The basic theoretical claim for potential positive effects of
learner control (i.e., personalized preference) is that trainees
are able to select the appropriate tasks to practice while
avoiding a possible overload of their cognitive system,
thereby increasing the effectiveness and efficiency of
learning (e.g., Borsook & Higginbotham-Wheat, 1991).
However, several studies show that low-ability learners
experience problems with the control they are given (e.g.,
Niemic, Sikorski, & Walberg, 1996; Steinberg, 1989). A
possible explanation is that the given level of control is
often not compatible with the learners’ abilities.

According to Bell and Kozlowski (2002), it is critical to
design instructional material that provides learners with a
level of control they are able to handle. Furthermore, the
‘expertise reversal effect’ (e.g., Kalyuga, Ayres, Chandler,
& Sweller, 2003) indicates that the trainees’ increasing
expertise level is probably the most important determinant
for deciding on the appropriate level of freedom that is
given to them. Support for this claim was found in recent
studies (van Merriénboer, Schuurman, de Croock, & Paas,
2002; Salden, Paas, & van Merri€nboer, in press), which
showed that learners who are given an appropriate level of
control over task selection are well able to select their own
learning tasks.

Research Questions

The main research question is how dynamic task selection
can be used to optimize training programs, the learning
process, and transfer test performance. More specific
research questions focus on the different types of
information that are required to effectively use dynamic task
selection and on the role of the trainees themselves in this
task selection process. For example, do performance
measures contain sufficient information for dynamic task
selection or are other measures, such as invested mental
effort, also important to take into account? And to what
extent are trainees able to fulfill an active role in the process
of task selection?

These research questions were addressed in four
experiments with the first two studies focusing on Air
Traffic Control (ATC) learning materials and the latter two
studies on learning materials for the cockpit automation of
the Flight Management System (FMS).

Calculations and Methodology

Throughout all four experiments performance was measured
on 5-point scale (1 = very low; 5 = very high) concerning
several performance variables. For the two ATC studies the
mean performance was a combined measure of (a) number
of commands, (b) time outside airway, (c) time without
separation between airplanes, and (d) number of gate hits
(i.e., safely directed airplanes to end point). Concerning the
two FMS studies the mean performance consisted of (a)
number of commands, (b) number of changes in flight route,
and (c¢) amount of time pressure.
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In all four experiment cognitive load was measured using
a 5-point subjective rating scale (1 = very low; 5 = very
high) on which students had to indicate their invested
mental effort after the completion of each learning task.

The combination of the average performance score and
the invested mental effort score of the last executed task was
used to determine the complexity level of the next to be
presented task. The score was found by filling in the
performance and the mental effort scores in the efficiency
formula:

Performance — Mental Effort

\2

When the efficiency score was smaller than zero, task
complexity was decreased; and if the efficiency score was
larger than zero, task complexity was increased.

Experiment 1

The first study (Salden, Paas, Broers, & van Merriénboer,
2004) compared the differential effects of four task selection
methods on training efficiency (e.g., training time and
number of tasks needed to reach the exit performance level)
and transfer test performance in a computer-based Air
Traffic Control (ATC) training program. A non-dynamic
condition, in which the learning tasks are presented to the
participants in a fixed, predetermined sequence, was
compared to three dynamic conditions. The dynamic
conditions selected learning tasks on the basis of
performance, mental effort, or mental efficiency (i.e., a
combination of performance and mental effort). The
participants were first given an introduction to the ATC
field and had to complete a practice task before they could
continue with the actual training program. All participants
start with a task of the lowest complexity level and then
continued with learning tasks that are selected according to
the condition they worked in. After the training was
completed, they were presented with ten transfer tasks.

Results Experiment 1

Since several factors were fixed in the control condition
they were excluded from three analyses: highest complexity
level reached in training phase, absolute jump size between
complexity levels, and total number of training tasks.

With regard to the highest complexity level (F(2,65) =
20.5, MSE = 3.31, p < .0001, n* = .39) the dynamic
conditions differed significantly with the mental efficiency
condition reaching a higher complexity level than both
performance and mental effort conditions (#(65) = 2.72, p <
.01). Furthermore, following a main effect (£(2,65) = 28.6,
MSE = .01, p < .0001, n* = .47) the mental efficiency
condition attained a larger jump size than the other two
dynamic conditions (#(65) = 3.43, p < .01). Lastly, the
efficiency condition did not execute less or more training
tasks than the performance and mental effort conditions
(1(65) =-.65, p = .52).

Analyses (F(3,87) = 42.6, MSE = 225376.6, p < .0001, »?
= .60) between all four conditions revealed that the fixed
condition needed more time to complete the training (#(87)
=7.92, p <.0001) than the three dynamic conditions. While
no difference in performance was found between the fixed
condition and the three dynamic conditions, analysis on
mental effort (F(3,87) = 8.3, MSE = .17, p <.0001, #* = .22)
showed that the fixed condition did invest more mental
effort (#(87) = 3.48, p < .001) during training than the
dynamic conditions.

Though no significant effects were found in performance
or mental effort on the transfer test, an analysis on the
training efficiency (F(3,87) = 7.3, MSE = 1.21, p <.0001, #?
= .20) revealed that the fixed condition was less efficient
(#(87) =-4.46, p <.0001) than the three dynamic conditions.
There were no differences between the dynamic conditions
regarding training efficiency.

Experiment 2

In the second Air Traffic Control study (Salden et al., in
press) two personalized methods were contrasted to yoked
control conditions. In one personalized condition, task
selection was based on a combination of performance and
invested mental effort (i.e., mental efficiency); in the other
personalized condition, the learner was free to select the
complexity level of the next learning task (i.e., learner
control). Furthermore, participants in both personalized
conditions were matched to “yoked” participants in two
control conditions. That is, each individualized training
sequence of a participant in the mental efficiency condition
or the learner control condition was also presented to a
participant in the corresponding yoked control condition.
Note that the yoked participant was presented with the
training sequence of someone else, hence no personalization
occurred in the yoked conditions. After an introduction to
the ATC field, all participants were given a short pre-
training before they started with the actual training program.
After completion of the training all participants are
presented with a two-fold transfer test consisting of ten
transfer test tasks and a reaction time test.

Results Experiment 2

Training effects were found between the two personalized
conditions on highest complexity level attained (F(3,56) =
3.04, MSE = 2.07, p < 0.5, n* = .14) and highest jump size
between tasks (F(3,56) = 5.27, MSE = 0.03, p < 0.1, n* =
.22). The mental efficiency condition reached a higher
complexity level (#(56) = 2.19, p < .05) and made larger
jumps between complexity levels (#56) = 2.69, p < .05)
than the learner control condition.

While no effects were found for invested mental effort
during training, a strong trend was found for training
performance (F(3, 56) = 2.74, MSE = 144.01, p = .05, > =
.13). Both personalized conditions obtained a higher
performance than their corresponding yoked conditions
(#(56) = 2.25, p < .05). Furthermore, the mental efficiency
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condition attained a higher performance score (#(56) = 2.44,
p <.05) than the learner control condition.

No effects were found on the transfer tasks in terms of
performance or mental efforts. However, the reaction time
test revealed a main effect on conflict identification (£(3,56)
= 8.18, MSE = 28.18, p <.0001, #*> = .31). The personalized
conditions (mental efficiency and learner control) made
more correct conflict identifications (#(56) = 2.04, p < .05)
than the yoked conditions. Furthermore, the learner control
condition outperformed the mental efficiency condition by
making more correct conflict identifications (#(56) =-3.58, p
< .01). Lastly, while an analysis on training efficiency did
not expose differences between the personalized conditions
and their yoked conditions, it did reveal that the mental
efficiency condition was les efficient (#56) =-3.00, p <.01)
than the learner control condition.

Experiment 3

The third study (Salden, Paas, van der Pal, & van
Merriénboer, 2006) examined the effects of three task
selection methods on training efficiency and test
performance in a computer-based training program for
programming a Flight Management System (FMS). A non-
dynamic condition, in which the learning tasks were
presented to the participants in a fixed, predetermined
sequence, was compared to two dynamic conditions. In the
dynamic conditions, the learning tasks were either selected
by the participants themselves (i.e., learner control) or by a
task selection algorithm in the computer-based training
program that used the participant’s self-ratings for
performance and mental effort. The participants in the
learner control condition had total freedom in selecting the
learning task they wanted to practice next. All participants
were presented with five test tasks after completion of the
training.

Results Experiment 3

Because the number of learning tasks was preset in the fixed
condition, one-sample t-tests were used to compare this
number of tasks to those of the learner control and mental
efficiency conditions. Both these dynamic conditions
needed substantially less tasks (#(20) = -4.6, p < .001) than
the fixed condition to complete the training. Furthermore,
both dynamic conditions made larger jumps in complexity
levels (#(20) = 4.3, p < .001) in the fixed condition.
Following a main effect for training time (F(2,28) = 28.37,
MSE = 44440, p < .001, #* = .67) it was shown that the
fixed condition needed more time (#28) = 6.37, p <.001) to
complete the training than both dynamic conditions. Lastly,
the learner control condition needed less training time than
the mental efficiency condition (#(28) = -4.20, p <.001).

With regard to training performance (£(2,28) = 15.00,
MSE = .08, p <.001, #*> = .52), the fixed condition obtained
a higher score (#(28) = 5.47, p < .001) than both dynamic
conditions. Furthermore, no differences were found on the
invested mental effort during training.

Controlling for the number of learning tasks and total
training time in the analyses for test performance, mental
effort on test and training efficiency no effects were found.

Experiment 4

Since the data from study 3 suggest that some participants
systematically overrated their performance, the role of self-
ratings was further investigated in a second FMS study
(Salden, et al., 2006). More specifically, the fourth study
investigated whether the higher amount of training time and
the larger number of training tasks in the non-personalized
condition confounded the results of the third study.

The non-dynamic fixed condition was again compared to
a mental efficiency condition in which students assessed
their own performance and mental effort. As in the study 3,
five test tasks were given after the participants had
completed the training.

Results Experiment 4

Because the number of learning tasks was preset in the fixed
condition, one-sample t-tests were used to compare the
number of tasks with the mental efficiency condition. It was
shown that the mental efficiency condition (#(19) =-2.9, p <
.01, » = -.65) needed less training tasks than the fixed
condition to complete the training. Furthermore, the mental
efficiency condition made larger jumps in complexity levels
(?(19) = 3.6, p < .01, r = .14) than the fixed condition. No
effects were found for training performance and mental
effort invested during training.

Controlling for the number of learning tasks no effects
were found for mental effort on test, test performance, and
training efficiency.

Results Experiments 3 and 4 Combined Experimenter’s
observations of the participants in the mental efficiency
conditions of both experiments suggested that the absence
of clear beneficial effects for this condition might have been
caused by the poor quality of self-ratings of performance
(e.g., Tousignant & DesMarchais, 2002). In particular, it
seemed that some of the participants overrated their
performance as compared to their objective performance
scores. To test this alternative hypothesis, a K-means cluster
analysis on the differences between objective and subjective
performance scores identified three groups of self-raters:
Good self-raters, average self-raters, and bad self-raters. The
extreme groups (i.e., good and bad self-raters) were
compared to the combined fixed conditions of both studies
on the test variables mental effort and performance.
Kruskal-Wallis tests revealed that the participants in the
fixed condition attained a higher test performance than the
bad self-raters (x> = 7.21, p < .01; M =2.89, SD = 24, r =
.10). However, no difference was found between the fixed
condition and the good self-raters (y* < 1; M = 3.27, SD =
.22). In addition, the good self-raters attained a higher test
performance (¥*> = 5.04, p < .05, » = .19) than the bad self-
raters. These results revealed an important difference
between good and bad self-raters, which might have
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confounded possible beneficial effects of the efficiency
method.

General discussion

The results of the four studies lead to the following
conclusions. First of all, personalized instruction can have
beneficial effects for the training of complex cognitive
skills. Although the mental efficiency method did not lead
to superior test results, it showed training benefits in every
study. Furthermore, students are capable to use learner
control of learning task selection effectively as shown in
Experiment 2, where the students who trained with learner
control exhibited superior performance on a reaction time
test. Whereas students seem able to deal with the given
control, Studies 3 and 4 indicate that self-ratings should be
used with caution. Because these students were novice
learners with the FMS, it is conceivable that the novelty of
the task at hand disabled their ability to judge their own
performance. Of all students in these two studies, only 33%
of the students were able to estimate their performance
accurately.

Limitations to Research

While personalized instruction can be beneficial, the four
experiments also point out what might have limited possible
effects of the training methods.

First of all, when taking the results of all studies into
account, questions arise why the overall performance during
both training and test phases seems higher than in
comparative studies. Although additional analyses revealed
no ceiling or floor effects, it might be that the range of
complexity used in our studies was too limited.

This might imply that the overall complexity of the
materials used could have been too low and suggest that
possibly larger differences in performance and mental effort
could have been found with more complex materials.
Overall, the participants attained a slightly lower test
performance than training performance, but the relatively
high test performance scores suggest that they might have
been able to execute even more complex tasks.

A further aspect that might have attributed to the limited
effects of the training methods might be found in the
efficiency method. While it was originally developed to
estimate the efficiency of experimental conditions the
current studies used it as a determinant for dynamic task
selection. To use it for this purpose, the relation between
performance and mental effort (i.e., efficiency) is estimated
for each learning task based on the performance and mental
effort scores of the last executed task. The optimization of
the learning process might have been limited due to the fact
that the efficiency method does not take the history of
previous learning tasks and associated performance and
mental effort scores into account.

Lastly, since the efficiency formula takes only
performance and mental effort into account, it is insensitive
to other important factors like motivation. However, an
indication of the learner’s motivation might be found in the

relationship between performance and mental effort. While
a student who attains a low performance score but yet
invests a high amount of mental effort is seen as low
efficient according to the efficiency formula, the invested
mental effort might also indicate that the student is highly
motivated. In overview of the studies, the moderate levels of
invested mental effort during training could indicate that
motivation might decrease when trainees feel that they are
not really challenged anymore.

Implications

Automation should be used carefully in training programs,
especially for novice learners who are easily overloaded
with the complexity of an extensive work environment of an
Air Traffic Controller or a pilot. It might be good for them
to start with a simplified and less automated training
environment and after having acquired the basic skills, to
advance to more complex training programs.

In contrast to previous research, the studies have shown
that students seem to be able to use learner control
efficiently. Students who are given control over the learning
tasks and their respective complexity level are able to create
an effective training sequence. As long as the level of given
control does not overload the students, they can shape their
own training sequence. Further exploration of the level of
given learner control, and of how to adapt the amount of
control to the growing expertise of the learners during
training, represents a promising line of future research.

While students are able to select an appropriate learning
task in terms of complexity, the FMS studies show that the
capacity of estimating the quality of one’s own performance
is lacking in most students. Since the students were novice
learners, it is conceivable that the novelty of the task at hand
disabled their ability to judge their own performance. While
66% of all students overestimated their performance, only
33% of the students were able to estimate their performance
accurately.

For future research it would be interesting to investigate
to what extent more advanced students are able to use self
assessment. The ‘expertise reversal effect’ (e.g., Kalyuga, et
al., 2003) shows that instructional materials should be
adjusted to the level of learner expertise. The elaborated
instructional materials that are helpful at the start of a
training program might become redundant when the student
has attained a higher level of expertise. Not only might such
more advanced students be able to deal with higher levels of
learner control but they might also be capable to use self
assessment more accurately than the novice learners in our
studies.

Also, in combination with self assessment, the use of peer
assessment in novice students might lead to interesting
effects. Research has shown that peer assessment positively
influences the students’ view on learning and assessment,
improves learning satisfaction, and enhances clarity of the
learning criteria (e.g., Sluijjsmans, Moerkerke, Dochy, & van
Merri€nboer, 2001). Furthermore, by learning to assess their
peers, the students reflect more on their own performance
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(e.g., Sobral, 1997) and the awareness of the quality of their
own performance improves (e.g., Anderson & Freiberg,
1995). More advanced students who have used peer
assessment in early training phases might also be more
capable in rating their own performance in a later training
phase.

Final Remarks

The current studies can be seen as a first attempt to
investigate the possibilities, benefits, and limitations of
personalized training methods that are based on an extensive
instructional design model such as the 4C/ID model. To use
an extensive instructional design model as the basis for
training development and to adapt the actual training to the
needs of the individual learner is something that has started
only recently. Also, the additional use of the concept of
cognitive load in the process of dynamic task selection is
not to be found in many studies.

Though the studies have not delivered indisputable
support for the claim that personalized training methods are
more effective, they have shown that personalized
instruction can have beneficial effects for the individual
learner. While some questions are left unanswered and new
ones have arisen, the studies give various leads and clues on
how to proceed with the investigation of personalized
training methods.
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