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Abstract
Various learning theories stress the importance of negative 
learning (e.g., Bruner, 1959; Hanson, 1956). However, the
effects of negative premises have rarely been discussed in 
any detail within theories of inductive reasoning (with the 
exception of Osherson et al., 1990). Although Sakamoto et al. 
(2005) have proposed some computational models that can
cope with negative premises and verified their psychological
validity, they did not consider cases where category-based
induction theory is ineffective, such as when the entities in
both negative and positive premises belong to the same 
category. The present study was conducted to test the 
hypothesis that, even when negative and positive premises 
involve same-category entities, people can estimate the 
likeliness of an argument conclusion by comparing feature
similarities. Based on this hypothesis, two computational 
models are proposed to simulate this cognitive mechanism.
While both these models were able to simulate the results 
obtained from the psychological experiment, a perceptron 
model could not. Finally, we argue that the mathematical 
equivalence (from Support Vector Machines perspective) of
these two models suggests that they represent a promising 
approach to modeling the effects of negative premises, and, 
thus, to fully handling the complexities of feature-based
induction on neural networks.

Introduction
This study is concerned with evaluating “arguments”,

such as:
Collies produce phagocytes.
Horses produce phagocytes.

Shepherds produce phagocytes.

The propositions above the line are referred to as
“premises” while the statement below is the “conclusion”.
The evaluation of an argument involves estimating the
likelihood of the conclusion based on the premises.
Osherson, Smith, Wilkie, Lopez, and Shafir (1990) refer to 
this kind of argument as a “categorical” argument, because 
the predicate (e. g., “produce phagocytes”) in the premises 
and conclusion is attributed to one or more entities (e. g., 
“Collies”, “Shepherds”).

The premises can also be negative in form (e. g., 
“Penguins do not produce phagocytes ”). Since classic
studies, such as discrimination learning (e. g., Hanson,
1956) and concept learning (e.g., Bruner,1959), the
importance of negative examples has been widely
recognized, and has been demonstrated in more recent

studies, such as causal learning (e.g., Buehner and Cheng, 
2005). However, the effects of negative premises have
rarely been discussed in any detail in the context of 
inductive reasoning studies concerned with the evaluation
of arguments.

Investigating the effects of negative premises can
undoubtedly contribute to our understanding of inductive
reasoning. For instance, cases where the entities in both 
negative and positive premises belong to the same category 
are clearly problematic for the category-based induction 
theory (Osherson et al., 1990) because it is impossible to 
distinguish between negative premises and positive
premises from the categorical viewpoint. In contrast to the 
similarity and coverage model based on category-based
induction theory, Sloman (1993) has proposed a feature-
based model based on a simple perceptron. According to 
Sloman, knowledge of category structure is not required for
the evaluation of arguments. Rather, he assumes that
argument evaluation is based on a simple computation of 
feature similarities between the entities of the premises and
the conclusion. Thus, Sloman’s feature-based model may be
more effective at coping with negative premises than
category-based induction theory. However, the
psychological validity of Sloman’s model has yet to be
tested in terms of processing negative premises.
Accordingly, this study examines the validity of feature-
based induction theory to handle these cases that are so 
problematic for category-based induction theory.

In terms of model construction, what kind of model can
adequately represent the cognitive process of feature-based
induction, including negative premises? In addition to
Sloman’s (1993) model, Sakamoto, Terai and Nakagawa 
(2005) have also proposed a feature-based model. While
structurally similar, their model extends the learning
algorithm in order to cope with negative premises.
Moreover, their model utilizes corpus-analysis results to 
compute feature similarities, rather than the results of
psychological evaluations used in Sloman’s model. This 
means that Sakamoto et al’s model is capable of simulating 
a far greater variety of entities than Sloman’s model (over 
20,000 compared to just 46), because the corpus analysis 
provides information for an enormous quantity of words. 
However, when induction of the appropriate category is
difficult, then the level of computation involved in the
feature similarity comparisons will far exceed the
computational capacity of simple perceptrons. This study 
therefore proposes a modified version of the Sakamoto et al 
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model, referred to as the “multi-layer feature-based neural 
network model”, which is compared with the previous
perceptron model.

A further alternative model for coping with negative 
premises would also seem to be possible. Osherson, Stern, 
Wilkie, Stob, and Smith (1991) have also proposed a model 
to handle negative premises based on feature similarity,
involving more complex computation than possible with
perceptrons. However, the Osherson et al.‘s feature-based
model requires knowledge of relevant taxonomical
categories, and also utilizes psychological evaluations like 
Sloman’s model. As the restricted number of available 
entities (46, similar to Sloman’s model) makes it difficult to 
apply that model, this study also modifies the Osherson et
al feature-based model in order to handle greater numbers 
of entities and to eliminate the need for categorical
knowledge.

The outline of this study is as follows: First, the corpus 
analysis is described. The results of the corpus analysis 
were utilized in creating clear category definitions and in 
constructing the models. Second, a psychological
experiment is described which was conducted to examine
the effects of negative premises, that cannot be accounted 
for by the category-based induction theory. Third, two
models —the multilayer feature-based model and a
modified version of Osherson et al’s feature-based
model—are proposed and tested in terms of their
psychological validity. Finally, this study argues that the 
mathematical equivalence (from a support vector machine 
perspective) of these two models suggests that they
represent a promising approach to modeling the
complexities of feature-based induction on neural networks.

A Corpus Analysis for Category
Definitions and Model Construction

Categories used in this study are defined as latent semantic 
classes estimated from an analysis of the words in a 
Japanese corpus. The estimations were based on a soft-
clustering of words according to modifying frequencies in 
the corpus. The soft-clustering results are represented as
conditional probabilities of words given the latent classes .
From these probabilities, the conditional probabilities of 
feature word/phrases , given particular nouns, are also
computed. The models in this study applied these
conditional probabilities of feature words as the strengths of
the relationships between nouns (entities) and features.

The method of soft-clustering was based on a method of
similar structure to Pereira’s method or PLSI (Hofmann 
1999; Kameya & Sato 2005; Pereira, Tishby, and Lee 1993).
This method assumes that the co-occurrence probability of a
term “Ni” and a term “Aj”, P(Ni,Aj), can be represented as
formula  (1):

)()|()|(),( kkjk kiji CPCAPCNPANP ∑= , (1)

where P(Ni|Ck) is the conditional probability of term Ni,
given the latent semantic class Ck. Each of the probabilistic
parameters in the model, P(Ck), P(Ni|Ck), and P(Aj|Ck)  are 
estimated as values that maximize the likelihood of co-
occurrence data measured from a corpus using the EM

algorithm (See Kameya & Sato, 2005). In this study, term
“Ni” represented a noun, and term “Aj” represents  a feature 
word, such as a predicate. The number of latent classes was
fixed at 200.

For the actual estimation, the word co-occurrence
frequencies used were extracted from Japanese newspaper
articles, covering a ten-year span (1993-2002) of the
Mainichi Shimbun. This co-occurrence frequency data
comprises the combinations of 21,205 nouns and 83,176
predicates in modification relations. CaboCha (Kudo &
Matsumoto, 2002), a Japanese analysis tool for modification 
relations, was used for extraction.

In order to test the assumption that the latent classes 
correspond to categories, it is important to identify the 
meanings of the classes. In this case, it is possible to 
identify the meaning of a class from the conditional
probability of the latent class Ck given a predicate Aj
(P(Ck|Aj)) and the probability of the latent class Ck given a
noun Ni (P(Ck|Ni)), which can be computed from the
estimated parameters P(Ck), P(Ni|Ck), and P(Aj|Ck), applying 
the Bayesian theorem. 

0.892let’s eat0.555rice cake10

0.894clear
one's plate0.594barleycorn9

0.894boil0.716pizza8

0.913can eat0.720Chinese
noodle7

0.918don’t eat0.734curry6

0.920stew0.739meat5
0.927want to eat0.817vegetable soup4

0.937fill one’s
mouth with0.811grain foods3

0.978eat0.867set meal2

0.987boil down0.876steak1
P(c1|aj)P(c1|ni)

Class of Foods(c1)

0.781keep0.555currency10
0.802

buy
and add0.594house9

0.802not sell0.628foreign
bonds8

0.841borrow on0.657farmland7

0.852sell0.662cruiser6

0.877vend out0.757real
estate5

0.884release0.780building estate4

0.899increase0.791place3

0.916list0.862government
bonds2

0.929issue0.929stock1
P(c2|aj)P(c2|ni)

Class of Valuable assets(c2)

Table 1.
Examples of estimated classes and

their representative members
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This probability denotes the class membership of each 
word. Based on the estimations, most of the latent classes 
were identified as meaningful categories, as shown in Table
1.

From the estimated parameters P(Ck), P(Ni|Ck), and
P(Aj|Ck), it is also possible to compute the conditional
probabilities of feature words given particular nouns, as 
follows:

∑
∑=

k kki

k kkikj
ij CPCNP

CPCNPCAP
NAP

)()|(

)()|()|(
)|( .  (2)

In this study, this conditional probability P(Aj |Ni) is 
assumed as the strengths of the relationships between
features and entities. When a certain feature word has a high
conditional probability given a particular noun, it is natural 
that the entity denoted by the noun has  the feature indicated 
by the feature word. This conditional probability was
therefore applied in the models.

Problematic Experimental Data for the 
Category-based Induction Theory

This study hypothesizes that people are able to estimate the 
likeliness of an argument conclusion, even when the entities
of both negative and positive premises belong to the same 
category, by comparing feature similarities. This is
something which the usual category-based induction theory 
cannot fully explain. In order to test this hypothesis, the
following psychological experiment was conducted.

METHOD
Participants: Undergraduate students (N = 114) were
randomly assigned to one of two inductive reasoning tasks
presented in a questionnaire format; 59 students completed
one task list, while 55 students completed the other task list.

Materials and Procedure: The questionnaire task lists
required inductive reasoning. Each list consisted of three
task sets of inductive reasoning arguments. Each set
contained two positive premises where the entities belong to 
a particular category, a negative premise, and thirty
conclusions that share the same premise statements (See
Figure 1). In the within -category condition, the negative 

premise belongs to the same category as the positive
premises. In contrast, in the between-category condition, the
negative premise belongs to a different category from the 
positive premises (See Table 2).

Table 2. Example of the inductive reasoning task sets  
(inductive reasoning about the category of learning subject)

within between
"physics"positive

premise "astronomy"

negative
premise "French"

"shopping"
(fromthe category

of leisure)

conclusion
chosen from 

the category of 
learning subjects

chosen from
the category of

 learning subjects 
and leisure

Please estimate how likely the following conclusion is true 
given the above premises:

Now you know the following premises:

Mr.H likes “physics”.
Mr. H likes “astronomy”.

Mr. H doesn’t like “French” .

strongly
likely likely neutral unlikely

strongly
unlikely

…

Mr. H likes “chemistry” .

relatively
likely

relatively
unlikely

Figure 1. Example of inductive reasoning tasks
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Low-rating group in
the within category

condition

High-rating group in
the within category

condition
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between category condition

��

Figure 2. Conclusion likelihood ratings as a function of the 
within -category and between-category condition,

and two rating groups (**: p<0.01)

Table 3. Examp le of t wo rating groups
based on the ratings in the within -category condition.

 ratings
within

ratings
between

P(‘learning
subject’|n)

"mathematics" 6.000 5.864 0.727
"arithmetic" 5.745 5.661 0.711
"chemistry" 5.236 5.492 0.677

High-
rating
group

"pharmacy" 4.655 4.712 0.701
"Japanese
literature" 3.836 3.729 0.717

"English" 3.036 4.136 0.699
"Chinese" 2.964 3.441 0.801

Low-
rating
group

"Hangeul" 2.800 3.407 0.701
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The premise and conclusion statements all consisted of a 
combination of a predicate (Mr. H likes ‘~’) and an entity 
(curry), such as “Mr. H likes curry.” In the case of negative
premises, the predicate involved a negative verbal form, 
such as “Mr. H doesn’t like sports.” As shown in Figure 1,
the participants were asked to rate the likelihood of the
conclusions on a 7-point scale, given a set of three premises 
presented above the conclusions. For each task list, the two
conditions were counterbalanced among the three task sets.

RESULTS
The results for the two conditions were compared in terms 
of conclusion ratings. These conclusions were divided
equally into a high-rating group and a low-rating group
based on the rating scores in the within-category condition.
Table 3 shows the members of each group. As shown in 
Figure 2, only the low-rating group of the within category 
condition was significantly different from that group of the 
between category condition. On the other hand, the high-
rating group of the within category condition is not strongly 
different from the group of the between category condition.
For example, when the negative premise entity is “French”
that belongs to the category of learning subject, the rating 
of conclusion entity “English” is significantly lower than 
when the negative premise is “shopping”. However, the
ratings of conclusion entity “chemistry” in the cases of
negative premise “French” and negative premise
“shopping,” are not radically different. This would suggest 
that “English” was judged as being similar to “French”, and
hence its rating with the negative premise “French” was
lower than that with the negative premise “shopping”. As
shown in Table 3, membership to the relevant category 
(P(C |N)) does not in itself yield a simple explanation of the 
similarity between negative premises and conclusions,
which is problematic for the category-based induction
theory. In the next section, we will explore a solution to
such complex similarity judgments within inductive
reasoning by constructing some models  based on the
feature-based induction theory.

Construction of the Models
Previous Perceptron Model: This study proposes two
types of models. However, because their psychological
validity is compared with the validity of the feature-based
perceptron model proposed by Sakamoto et al. (2005), it is 
appropriate to start with a brief description of the feature-
based perceptron model.

The feature-based perceptron model is an extended
version of Sloman’s model (Sloman, 1993), which consists 
of an input layer and one output node, where the weights 
between the input nodes and the output node are estimated 
by the usual delta method using the features strengths of 
positive and negative premises, which are computed as the 
conditional probability P(Aj|Ni), as previously detailed,
according to the following formulas:

)()](1[)()( 1
+++

−
+ −+= iiii NONONWNW , (3)

)()](0[)()( 1
−−−

−
− −+= iiii NONONWNW , (4)

)()]([)()( 1
−−−

− −+= iiii
c
i NONOTNWNW , (5)

2)(
)(

)(
i

i
i

NI
NIW

NO
⋅

= ,

c
iiii NNNN ,, −+∈ , (6)

where +
iN  is the ith positive premise entity, −

iN  is the ith 
negative premise entity, and c

iN  is the ith conclusion entity.
W( +

iN ), W( −
iN ) and W( c

iN ) indicate the weights when
+
iN  , −

iN and c
iN are encoded as the premises and the 

conclusion, respectively. Ti denotes the target value for the 
ith conclusion. This value is obtained from psychological 
experiment. W represents  the current weight when entity 

iN  is input. I(Ni) is the feature vector of Ni, and the values 
of P(Aj|Ni) are used for this vector. O(Ni) is the activation 
value of the output node as the response to I(Ni). In the 
actual simulation, the number of the vector elements was 20.
The feature words that are strongly related to the categories,
including both positive and negative premise words, are
selected. This  selection is based on the assumption that only 
properties relevant to the context are used for induction (e.g.,
Shafto, Kemp, Baraff, Coley, and Tenenbaum, 2005).

Multilayer Neural Network Model: It is well known that 
this type of perceptron model cannot solve complex
problems, such as linearly inseparable problems . The
similarity-based induction processing that is indicated from 
the experimental data would appear to be beyond the
computational capacity of a perceptron-based model.
Accordingly, this study modifies the previous perceptron 
model to create a multi-layer model. The structure of the 
multilayer model is shown in Figure 3, and involves the 
following formula:

( )∑=
i

k
ii

k fWo σ , (7)

( )∑=
j

k
jij

k
i xwf σ , (8)

where ok denotes the activation value of the output node 
when the pattern of the k th conclusion Nk

c is input, Wi
indicates the weights between the ith middle layer node and 
the output node, fik represents the activation value of the ith
middle layer node, and xj

k denotes the jth element of the k th
input pattern corresponding to P(Aj|Nk

c). The activation 
strength of the output node ok represents the likelihood of 
the conclusion. An ordinary sigmoid function was adopted 
as the activate function, σ , while the usual back
propagation method was employed as the learning rule. 
The premises and the conclusions were used for the learning 
process. In the learning process, the weight parameters are 
tuned so that the activation value of the output node ok

equals 1 in the case of positive premises, equals 0 in the 
case of negative premises, and equals each value obtained
from the conclusion ratings of psychological experiment in 
the case of conclusions. The number of input nodes is 20, 
which is the same for the prior perceptron model. The 
number of middle layer nodes is set at 2, to keep the model 
as simple as possible.
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Regression Model Based on Similarity Distance: This 
study also proposes another model of complex induction 
based on feature similarities, which is an extension of the 
Osherson et al. (1991) similarity regression model. In that 
model, the likelihood of a certain conclusion is computed 
using the linear summation of two kinds of similarities: the 
similarities that exist between the conclusion entity and the 
positive premises and the similarities that exist between the 
conclusion entity and the negative premises. These
similarities are based on the features. The regression model 
proposed in this study has greater flexibility than the
previous perceptron model, and is, therefore , also capable of 
simulating human performance for the complex task of 
induction based on feature similarities.
In that model, the likelihood of a conclusion including 
entity ci, denoted as v(ci), is represented as follows:

( ) ( ) ( ) constNbNaNv c
i

c
i

c
i ++= −+ SIMSIM , (9)

where ( ) ∑
+

−
+

+

=
n

j

dc
i

ijeN βSIM , (10)

( ) ∑
−

−
−

−

=
n

j

dc
i

ijeN βSIM , (11)

( ) ( )( )∑ ++ −=
m

k
jk

c
ikij NAPNAPd

2
|| , (12)

( ) ( )( )∑ −− −=
m

k
jk

c
ikij NAPNAPd

2
|| . (13)

where a, b, and const are parameters estimated from the 
likelihood of the positive premises (defined as value 7), the
likelihood of the negative premises (defined as value 1), and 
the likelihood of each conclusion (value obtained from the 
experiment). +

jN is the entity of the positive premise, and 
−
jN is the entity of the negative premise. SIM+( c

iN ) and 

SIM-(
c
iN ) are the original functions for the feature

similarities in this model. SIM+( c
iN ) represents the

similarities between the conclusion entity c
iN and the

positive premise entities, while SIM-(
c
iN ) denotes the

similarities between c
iN  and the negative premise entities.

ß is the only parameter in these functions. dij
+ and dij

- are 
also the original functions for word distance based on the 
feature words (denoted as ak). Here, the number of feature 
words m is fixed to 20, matching the other models in this 
study. Although another similarity function was used in 
Osherson et al’s model, as it required knowledge about
some taxonomical categories and about the feature strengths 
of entities based on human ratings, that function would not 
allow the extended model to handle vast quantities of
features that change dynamically according to context.

Evaluating the Model Simulations according to 
the Experimental Data

Simulations for all three models were executed. Table 4
shows correlation coefficients between the simulation
results and the results from the psychological experiment of
the within category condition, and F ratio (the fitness
indices for the models). On the other hand, all correlation 
coefficients in the cases of the between category condition 
were larger than 0.7 and significant at p < 0.01, and all F
ratio were also significant at p < 0.05. Considering these 
results, it is clear that the two models proposed in this study 
correlate well with both conditions, while the previous
model only correlates with the between-category condition. 
These results indicate that the previous model is not able to 
simulate the experimental results obtained when the entities 
in positive and negative premises both belong to the same 
category.

Discussion
The experiment results reported in this study are consistent 
with the hypothesis  that people can estimate the likelihood 
of a conclusion, even when the entities in both positive and 
the negative premises belong to the same category, based on 
comparisons of the similarities between entities in positive
premises and conclusions, and between those in negative

Table 4. Correlation coefficients
of the within category condition

 set1 set2 set3
Regression Model    

correlation coefficient **0.939 **0.841 **0.936 
F ratio **30.06 **9.71 **28.58 

Multilayer Model    
correlation coefficient **0.968 **0.816 **0.899 

F ratio **135.94 **17.93 **37.93 
Perceptron Model    

correlation coefficient 0.185n.s. -0.09n.s. 0.36n.s. 
F ratio 0.32n.s. 0.08n.s. 1.43n.s. 

k

…

likelihood
of the conclusion

x1

the kth feature patterns : 

k x2
k x3

k x4
k

o1
k

1f 2
kf

)....|(),|(),|(),|( 4321
c
k

c
k

c
k

c
k naPnaPnaPnaP

x5
k

Figure 3. Structure of Multilayer Neural Network Model
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premises and conclusions. Thus, these results provide
verification of this hypothesis. The previous perceptron
model, proposed by Sakamoto et al. (2005), was not able to 
simulate this experimental result.
From the comparisons of the simulation and experimental
results, it is clear that the multilayer neural network model
and the regression model based on similarity distance both
correlated well with the results from the experiments, and 
that the performance of these models was better than the
perceptron model. These results indicate the computational 
capacity of a perceptron model is not sufficient to handle 
cases where the induction of the appropriate category is
difficult. On the other hand, the fact that the two proposed 
models both correlated well with the experimental data
would seem to imply that two quite different approaches 
can both provide equally adequate accounts of the cognitive
mechanisms underlying inductive reasoning. Despite their 
different theoretical underpinnings, however, the two
proposed models would be represented in essentially
identical ways in terms of support vector machines (SVMs) 
(Vapnik, 1995). SVMs are a kind of multilayer neural 
networks that provide solutions to the types of problems
associated with multilayer neural networks, such as
determining the number of multilayer-nodes and local
minimum convergence. In order to avoid such problems, 
SVMs map feature patterns onto another dimensional space,
where they become linearly partitioned. However, the
computation of such complex mapping can also be achieved 
by a nonlinear-function computation, known as the kernel 
function. The kernel function is unconstrained except in
instances where the function satisfies the mathematical
condition of ‘positive definiteness’. Returning to consider 
the regression model based on similarity distance proposed
in this study, formulas (10) and (11) would correspond to 
the nonlinear mapping of the feature patterns ( )c

ik NAP |

and ( )jk NAP | . Moreover, as dij is a symmetric function 

of the feature pattern, ( )c
ik NAP |  and ( )jk NAP | , then 

ijde β−
is also symmetric, that means that

ijde β−
has

‘positive definiteness’ and thus satisfies the condition of the 
kernel function. This instance indicates that the regression 
model can be represented as a SVM, that is, a multi-layer
neural network. Consequently, the two models proposed in 
this study both have properties that are mathematically
equivalent to the extent that after mapping feature patterns, 
which are nonlinear, linear partitions, as expressed in
formula (7) and (8), can be achieved in the case of the 
regression model. Thus, despite their surface differences,
the two models proposed in this study would both appear to 
be tapping into the basic cognitive mechanisms underlying 
the complex nature of inductive reasoning involving feature 
comparisons. In conclusion, in certain circumstances,
people are able to estimate the likelihood of an argument’s
conclusion through complex processing involving
comparisons of feature similarities between the entities in

positive premises and the conclusion, and between the
entities in negative premises and the conclusion.
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