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Abstract turn). As the child attends to the speech input to which it is

_ ) . exposed, it notices patterns in the signal (Saffran et @861
t‘?’oer‘ﬁgl!r(‘gue”ct:'gi'r‘;g“geh‘i:h'ggéit rgﬁgféf cgtth Wolrgés7eg§*¥1ern Christiansen et al. (1998) conceive of a second, immediate
tiansen, Allgn, & Seidenberg, 1998) follow E\%an (1990) in  taskinlanguage acquisition: namely, to continually updat
using simple recurrent networks (SRNs). The use of SRNs in Statistical representation of these salient patterns.
this context appears to be traditional rather than indepettyl This process is exemplified in a simple model presented in
motivated. Allen and Christiansen (1996). In this scenario, a network
This paper investigates whether alternatives to SRNs can receives input one phone at atime. Its immediate task ia lear
achieve similar performance. Specifically, it reports direp g predict the identity of the next phoRélThe immediate task
cation of part of Allen and Christiansen (1996), and a compar is “self-supervised” in that the next input provides immeei

ison with multi-layer perceptrons (MLPs). The major result :
are confirmed; however, the SRN topology is shown not to be feedback as to what the preceding output should have been.

necessary for the task addressed. MLPs perform equally well To model the contribution of distributional regularities a
even when they have access to less context. the phone level to the discovery of word boundaries, a neural
network with an input unit and an output unit for each phone
Introduction may be constructed, and the likelihood of a word boundary

Word segmentation is the task of recovering word boundarie&PProximated by measuring points at which the error in pre-
from an initially unsegmented stream of linguistic inpun-E  dicting the next phone is high (see Cairns et al., 1997, for a
glish writing marks these boundaries, making the taskatjvi Medel based on thisidea). In order to model the interaction o
but Chinese writing does not, neither does any variety of natuttérance-boundary info and distributional regularity,al-
ural speech. ditional unit, symbolizing an utterance boundary or pause i
If a language learner is to make any headway in vauir_speech, is added to the input layer, and correspondingaunit t

ing the words in a language, that learner must learn how g€ output layer. The idea of having multiple output nodes
pull these words out of running speech and hear them as se[/ning multiple problems simultaneously is referred $o a
arate words. By learning the indirect cues that signal word Nints” or “catalyst” nodes (see Suddarth & Kergosien, 1991
boundaries for a given language, the word learner solves thEn€ intuition (following Aslin et al., 1996) is that sinceteit-
word segmentation task. This begins early in the languag@NC€ Poundaries are a subset of word boundaries with more
acquisition process: studies show that babies begin to lea©" €SS representative properties, the utterance bourdry
word segmentation strategies around 7-9 months after birtRut Unit should be activated not only at utterance boundarie
(see e.g. Jusczyk, Houston, & Newsome, 1999, for a review ut (to a lesser degree) at all word boundaries. Hence, above
Many of the initial experimental studies of word segmen-average activation of the uttefance boundary output unit is
tation focused on individual cues: prosody (Jusczyk, cutused to measure the network’s performance on the derived

ler, & Redanz, 1993), allophonic variations (Jusczyk, Hahn task: identifying word boundaries. The other output units_,
& Bauman, 1999), distributional regularities (Saffran)iAs corresponding to phones, can be thought of as catalyst units

& Newport, 1996), and phonotactics (Friederici & Wessels, [0 the utterance boundary unit. _

1993). Similarly, early computational simulations of the A major pointof Allen and Christiansen (1996) is that word
word segmentation task focused on single cues. Brent angPundaries can be learned in this way only for languages with
Cartwright (1996) used distributional regularities as &,cu Particular statistical properties. It is straightforwaedcon-
combined with minimum description length as a Ianguage-Str”Ct artificial languages that lack these propertles.cﬁpe
independent heuristic. Caimns et al. (1997) also modeled thc@lly; for a language where each syllable is equally likely t
use of distributional regularities, but as a precursor tater| 0llow any other (or to end a word or an utterance), the net-
stage using stress (which was not explicitly modeled). rAsli work can learn at best only syllable boundaries. But if gerta

et al. (1996) modeled the generalization of segmental dues §89ments or groups of segments (such as syllables) are more

the en.dsf of utterances to the e_nds of words. . 1The assumption that the identity of the phone is unambigyous
Christiansen, Allen, and Seidenberg (1998) explicitly ad-gpservaple is itself an idealization. In real life, the mded segment

dresses the interaction among several cues: distributiega s not observable with perfect accuracy, particularly fdants who
ularities, stress, and utterance-boundary informatioheilT  may be presumed to be still learning the language’s invgnobr
model reflects a particular conception of the word segmengggﬂgsi- dlgﬁtsu;grggtrltc éptiicnié%%%gglttsggtgfemrr?gtnihyeyms
tatlon task, W'thm the Iarg_er context of Iangqage acqusiti ully addressing this problem would unduly complicate theded

The infant’s primary task is the comprehension of the speecinder discussion, although Christiansen and Allen (198@)esses
around it (as well as producing comprehensible speech iitin part.
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likely to appear at the ends of words than others (as seems thallenging, these results show that the additional tasks a
be the case with most human languages), and a sufficientlyally help the net learn the derived task of interest. Hence
large sample of the language is available to the learnenm, theit provides a plausible way of combining multiple cues in a

the network can learn. computational model.
On the other hand, the specific type of network used (SRN
A summary of the Allen and Christiansen versus time-windowed MLP) seems to be inherited from ear-
; ; lier studies such as Elman (1990). Elman (1990) developed
(1996) smulations his SRN topology to deal with sequential problems such as
M ethod language, and SRNs have been used for modeling a num-

ber of language tasks where memory of indefinite length is

- o o =" needed. However, the usefulness of SRNs for modeling mem-
structed to train the net: a “variable transition prob&pili ory of longer time sequences has been shown to be some-
(vtp) language, and a language with *flat” transitional @ob \ypat jimited, a weakness sometimes known as the “latch-
bilities between syllables. Each of these languages used th, s oroplem (Hochreiter, Bengio, Frasconi, & Schmidhyber
same twelve syllable types: 'b’, d’, "p’, or 't' followed bi&’, 5001 Ting, Cernansky, & Benuskova, 2004). Some have at-
I, or ‘u’. Each language consisted only of three-syllable (o hteq 1o develop alternative ways of modeling memory, to
six-segment (CVCVCV) words. The *flat” language con- ,ercome some of these limitations (Hochreiter & Schmid-

tained 12 such words constructed to maintain aword—internq,luber, 1997). But for some language processing tasks, par-
transitional probability of 0.667 from one syllable to amet, icjarly those dealing with spegechgprgcessing ?rathen tr?a
the *vip” language used 15 words following different restri  |onq6r’range or syntactically complex tasks), arguaty-si
tions: for example, no word begins in ‘b’ or ends in ‘u’. ler and easier-to-train models such as time-windowedimult
Both languages were trained using a simple recurrent ”Q%yer perceptrons (MLPs) are still used (e.g. Zhu, Chen-Mor

(SRN) wi'th 8 un[ts each in the input and output layers ar]dgan, & Stolcke, 2004: Morgan, Chen, Zhu, & Stolcke, 2004).
30 each in the hidden and context layers. Word boundarieS i ps have also been used to model word segmenta-

were not explicitly marked, but utterance boundaries @orr tion  Aslin et al. (1996) decided to use a time-windowed

sponding to the last input unit) were placed at intervalgfan \ ps rather than SRNSs, explicitly stating their preference

ing from 2 to 6 words long. Training was done for seven it- 4, grounds of simplicity. An additional complexity result-
erations over a corpus with 120 instances of each word in th g from this choice is the need to explicitly vary the length

mini-language; testing was done on a corpus without markedt e time window, but this too had an upside, in that one
utterance boundaries. knows explicitly what contribution each time step in theopri
history is making.

Allen and Christiansen (1996) do not explicitly defend
For all experiments, the dependent measure was activation &RNs as an essential design choice, although they seem to
the utterance boundary output unit. On the vtp language, thprefer it implicitly to feed-forward networks (given thaiety
network predicts a significantly higher activation for werd incorporate the cue from Aslin et al. (1996) within their re-
boundary positions (0.204 on average) than for word in-current framework). Whether their use of SRNs rather than
ternal positions (0.04 on average), including other sydlab MLPs is crucial to their model is an open question. While
boundary positions. The network trained and tested on théhis question is perhaps secondary to other consideraitons
flat language showed higher activation at syllable- boundaris nevertheless worth considering for two reasons:
positions, but these did not differ significantly betweernravo First, the empirical clarity of a computational model de-
boundary and word-internal syllables (although the graphpends in part on knowing and stating as precisely as possible
suggests that the activation after the first syllable of adwor which aspects of the model are essential to its success in sim
may be very slightly less). These results are seen to validatulating human behavior and which are accidental. A second

To show this point, two artificial “mini-languages” were con

Results

the points discussed above. and more practical reason is simple efficiency: if MLPs make
just as good predictions, and are easier to work with andifast
| ssues of network structure to train, then this allows for a greater number of exploradio

. - . - with less effort.
While the findings in Allen and Christiansen (1996) may

seem of minor importance, their significance may be found Revisiting Allen and Christiansen (1996)
in the basis of this same architecture in a number of stud-
ies involving actual language (Christiansen & Allen, 1997;Simulation 1. Simple Recurrent Networks

Christiansen et al., 1998; Christiansen, Conway, & Curtin,,:irst a replicati e

) X . s - , plication of part of Allen and Christiansen (1996
2005; Curtin, Mintz, & Christiansen, 2005). Before buildin 55 herformed using the SRN package available within the
on these works, it is useful to re-examine the initial assUmp 41« neural network toolkit (Blank, Kumar, Meeden, &

tions made and methods used to distinguish the essential chazanco, 20031 The training parameters were matched to that
acteristics from the accidental. , work as nearly as possible. The network consists of an input
For example, the notion of hints is essential to Allen a”dlayer and an output layer of eight units each (one for each

Christiansen’s (1996) argument, and is an innovation ovegympol in the mini-language, including the utterance beund
earlier studies such as Elman (1990); Cairns et al. (1997),

Aslin et al. (1996). Where one might suppose that a net- 2ayailable as part of the Python Robotics toolkit at pyro-
work would find dealing with multiple prediction tasks more robotics.org
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ary marker), along with thirty units each in the hidden and A useful summary statistic for an ROC is the area under
context layers. “One-hot” encoding was used: each symthe curve (AUC), which corresponds to the probability a ran-
bol was associated with a single input, for which the acti-domly chosen pair of one positive item and one negative item
vation was 1 if the input was that symbol, and 0 otherwisewill be correctly ranked (Hanley & McNeil, 1982). In this do-
As in the original study, a learning rate of 0.1 and momen-main, this provides the probability, given a word-final syohb
tum of 0.95 was used, and weights were initialized with ran-and a non-word-final symbol (both randomly selected), that
dom values from a flat distribution ranging between -0.25 andhe activation of the utterance-boundary unit at the wandfi
0.25. The activation function used was a logistic sigmoidsymbol will be higher than the activation at the the non-word
o(x) = 1/(1+eX). Standard backpropagation was used; erfinal symbol.
ror was measured with a squared error loss function. An AUC of 0.5 is no better than chance; perfect discrimi-

The artificial languages used for the training and testinghation would have an AUC of 1. For each of the conditions
data were not available and had to be recreated accordirigere, an ROC curve was calculated using only the syllable
to the specifications in the text. These recreated languagegundary positions, rather than for every phone (since the
are available from the author’'s web-siteSeparate training  syllable-internal positions are trivial to learn). As shoin
and test corpora are used: the training corpus for each larFigure 1, the SRN in the vtp condition achieves a mean AUC
guage is marked with utterance boundaries; the test cospus f 0.85 (min 0.81, max 0.90), meaning that it performs bet-
not. The level of activation of the utterance-boundary atitp ter than chance at distinguishing word boundaries fromrothe
node is predicted to be higher at word boundaries than at nomyllable boundaries. In the flat condition the SRN output has
boundary positions. Since a certain amount of variation is t a mean AUC of 0.50 (min 0.43, max 0.54), showing it does
be expected from the random initial weights, the results oho better than a syllable-boundary detector.
sixteen iterations, each with different starting weightsye
averaged together for each condition tested. Simulation 2: Multi-layer Perceptrons

The results from this replication were qualitatively sianil
to those reported in (Allen & Christiansen, 1996), although!n the second experiment, the same simulation was replicate
the difference in activation levels in the vtp condition was ~ Substituting an MLP for the SRN with a context of 1, 2, and
so large. As predicted, activation levels in the vtp cooditi 3 preceding phones. For the MLP with 1 phone context, the
are higher at word boundaries (mean value of 0.136 across ttitetwork topology was identical (8 input, 30 hidden, and 8
sixteen runs, min 0.103, max 0.179) than at non-word boundoutput units) except for the removal of the 30 context units.
aries (mean 0.018, min 0.014, max 0.023). There is also a diffhe 2- and 3-phone context MLPs had 16 and 24 input units.
ference between syllable boundaries and syllable-intema  All were fully connected with the hidden layer. The training
sitions (0.076 vs. 0.0018). Crucially, word-internal aplle-  procedure was the same.

boundaries show an average activation of 0.046—less thafiphone context MLPs The average activations from the
half that of the word boundaries. This shows that the network _phone condition were very similar to those reported above
is learning word boundaries, not just syllable boundaries.  for the SRNs. Activation levels in the vtp condition are
For the flat condition, activation is also hlgher at word once again h|gher at word boundaries (012) than at non-
boundaries (mean 0.069) than at non-word boundariegord boundaries (0.024), syllable boundaries have higher a
(0.025). However, this difference is fully accounted fodift  tjvations than syllable-internal positions (0.079 vs.GD86),
ferent activation levels between syllable boundary posgi and activations at word-internal syllable-boundarie sayain
(0.069) and syllable-internal positions (0.0024). These i ahout half as strong actual word boundaries (0.060 vs. 0.12)
no appreciable difference between word boundary positionghis suggests that the MLP is more sensitive to word bound-
and word-internal syllable-boundary positions (both 8)06 aries than to other syllable boundaries, even with only one
Hence, the flat condition is only able to learn syllable bound phone of prior context. The discriminability of this netkor
aries, not word boundaries, just as Allen and Christiansefs not quite as good as the SRN: the area under the corre-
(1996) observed. sponding ROC curve (not shown) is 0.81. Since the MLP
What is more important than the raw differences in averith only one phone of context converged to the same solu-
age activation, however, is the degree of discriminabblty  tjon in all sixteen trials, the standard error is practigatro.
tween true word boundaries and non-boundary positions fronrhis is worse than the SRN (F(1,30) = 22.58:0.001), but
this activation level. This depends not only on the activa-clearly better than chance.
tion difference, but also on the variations between adtwat o the flat condition, in contrast, the average activation

levels, which are not directly reported. A better measure ofs gqual for each of the syllable boundaries (0.0644) Just as
the overall discriminability is a receiver operating cldes-  j the SRN case, the network essentially fails to learn any-

istic (ROC) curve. This measure_plots the true positive rateihing other than syllable boundaries (mean AUC = 0.515, min
(the probability of correctly detecting a word boundarygov 0.501, max 0.517).

the false positive rate (the probability of incorrectly jliog)

a word boundary). Since any point along the curve corre2-Phone context MLPs The results for the 2-phone con-
sponds to the performance at a given threshold of activatior}ext MLP in the vtp condition are (unsurprisingly) betteath
the curve as a whole summarizes the performance of a bina#j€ 1-phone context: The average activation for word bound-

decision procedure at any relevant threshold. aries (0.133) is once again higher than for word-internitdsy
ble boundaries (0.659) and for syllable boundaries gelyeral
Shttp://www.ling.ohio-state.edu/ (0.71) The mean area under the ROC curve for the sixteen
~ rytting/cogsci2006/AC96MiniLangs.txt trials is 0.86 (min 0.845, max 0.869)—overlapping with the
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ROC curve for "flat" transitional probability dataset
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Figure 1: Receiver operating characteristic (ROC) curged 6 runs of the SRN in Simulation 1. Area under the curve (AUC
shows the SRN'’s discrimination between word boundariesadher syllable boundaries. Syllable-internal positiors ot
included.

range of scores seen for the SRN, though with less variatioeeen in the ROC curve, which is no longer merely at chance

between trials. The difference between the 2-phone MLP an@AUC = 0.596, min 0.553, max 0.646). Although there are

the SRN is not significantly significanf(1,30) = 0.69,p= no cues in the syllabic transitional probabilities, by lowk

0.41). at more than one syllable of context, the net observes lenger
For the flat condition, syllable boundaries are once agaifiange regularities that arise in the data. This effect mayine

higher than non-syllable boundaries (0.065 vs. 0.0008)further study to be completely understood, however.

However, word boundaries are no higher than other syllable . .

boundaries, just as in the 1-phone case. The mean AUC is Discussion

0.472, slightly below chance (min 0.471, max 0.476). We may see in the results above that MLPs also account as

3-phone context MLPs The average activations in the vtp well as SRNs for the effects of multiple-cue integration in a
condition follow the same pattern as the other MLPs for thisréstricted domain. Generally speaking, the more conteet, t
condition, but with somewhat greater differences betweefnore successful the net is at differentiating word bourekari
the word boundary activations (mean 0.148, min 0.121, maf’om other syllable boundaries, though even a single phéne o
0.170) and the word internal averages (0.015). As with th€ONntext, without recurrence of any sort, is sufficient fotee
other conditions, there is a large, consistent differense b than-chance performance. This is due largely to the design o
tween word boundaries and syllable boundaries general{f?® artificial language used. One of the most obvious cues to
(mean 0.073, min 0.064, max 0.083). However, the differ-a upcoming word boundary in the vtp language: ‘a’ or i
ence between the 3-phone MLP and the other nets is mo¥pWel (s opposed an ‘u’) was of course just as visible to the
clearly seen in the areas under the ROC curves. As shown iPhone MLP as to any other net. With two phones of context,
Figure 2, the AUC for distinguishing word boundaries from It was possible to pick up also on a second major cue in the
other syllable boundaries is 0.92 (min 0.893, max 0.932% Thlanguage: ‘b’ (not being allowed at the beginning of a word)
performance as measured by the AUC is significantly betteis Slightly more likely to start a word-final syllable thareth
than that on the SRN condition (F(1,30) = 48.2%(.0001). other three consonants. This may explain why the two-phone

For the flat condition, syllable boundaries are once agairllr\‘/alIl‘elflﬁ?r'](éj éﬂztselﬁ mi”le?r? tl:]ae iFé,(\Zl(::ubr?g(?l:ﬁSet ttr\:\?omgcs);:l:‘fgsﬁ
higher than non-syllable boundaries (0.067 vs. 0.0004) guag ’ P

However, this time word boundaries are higher than otheFhe end of the word.
syllable boundaries (0.074 vs. 0.062). This is not because “Tino et al. (2004) and others mention another potentiakdiff
word boundaries themselves are being learned directly, buince between SRNs and MLPs: namelyaachitectural biasthat

rather because the net is learning that the first syllabletou May result from the net's structure combined with its ititendom
eights before training. To test for this bias, pretestsewen on

ary cannot be a word bour_1dary: the average activation fo'me testing data before any training took place. No eviderficeich
the end of the first syllable is 0.049, markedly lower than theg hias, or any appreciable difference between the MLP an8Rte
second (0.077) or the third (0.074). This effect also may beprior to training, was found for this task as described above
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ROC curve for "flat" transitional probability dataset
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Figure 2: Receiver operating characteristic (ROC) cureed.6 runs of the MLP with three phones of context in Simulatio
2. Area under the curve (AUC) shows the MLP’s discriminatimiween word boundaries and other syllable boundaries.
Syllable-internal positions are not included.

While the toy language may in hindsight look like a ridicu- itively attractive topology for modeling the prediction sé-
lously easy problem for the net, it is worth noting that suchquential data (including unsupervised discovery of setjaken
patterns are not unheard of in human languages. Many larstructures), particularly when the exact extent of theviaaié
guages (e.g., Spanish, ltalian, Modern Greek) have a resontextis unknown, there may be situations when other mod-
stricted set of phonemes word finally, compared with othelels are preferable: e.g., allowing for the use of more efiicie
positions in the word (even the final position of word-intgrn  training techniques and faster simulation of larger-sizbp
syllables), and a great many languages have certain phanemlems.

(particularly those commonly found in word-final inflectin Finally, keeping in mind what parts of the model are essen-
like English /-s/) that are extremely frequent at the end oftial, and which are incidental, may be helpful in relatingsh
words compared with other positions. Thus, word segmenand future models to issues of biological plausibility. i¥at
tation may not be a problem for which recurrence is particurally, all ANNs are to some degree biologically implausijble
larly necessary, although more context does of course trelp. and there is much that is still unknown about the design of
contrast, no such claim is made about problems of languag#e neural system actually used in language processing. If i
acquisition involving higher-level structures, such astay,  should someday be shown that recurrent models of the Elman
where unbounded dependencies pose problems that connegpe are incompatible with the actual mechanism for speech
tionist models quite likely need some recourse to recugencprocessing, the multiple cues model need not be rejected au-
in order to solve. tomatically, inasmuch as it has been shown not to depend cru-
cially on recurrence. By abstracting away from non-esaénti
Conclusion elements such as recurrence, the model not only gains some
flexibility, but may better highlight its essential elemettte

The notion of hints and multiple tasks within neural-net .
hints themselves.

frameworks is a useful paradigm for modeling and investi-
gating the exploration of multiple cue interaction in prexols . .
of language acquisition, such as the word segmentation task Future directions
However, the use of hints is not dependent on any particThis work is a preliminary step toward extending connec-
ular topology of neural network; these results suggest thationist models of the word segmentation task to other types
the procedure works equally well for two different network of input, including automatically pre-processed (noisy) a
topologies, SRNs and time-windowed MLPs, at least for adio data, and input from languages besides English. Future
constrained task on artificial data. Furthermore, the esiaet  steps include the replication of larger-scale studiesgitsan-
of the time-window is not always crucial. scriptions of both adult- and child-directed English (Ghri
This finding is useful in that it frees the researcher to contiansen & Allen, 1997; Christiansen et al., 1998). Latepste
sider the best design for the problem at hand, independent @ficlude moving away from human transcriptions to acoustic
the cue interaction issues. While SRNs are certainly an intuinput from speech recordings and finally to exploring the in-
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