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Abstract

Several influential connectionist models of the word segmenta-
tion task (e.g. Cairns, Shillcock, Chater, & Levy, 1997; Chris-
tiansen, Allen, & Seidenberg, 1998) follow Elman (1990) in
using simple recurrent networks (SRNs). The use of SRNs in
this context appears to be traditional rather than independently
motivated.

This paper investigates whether alternatives to SRNs can
achieve similar performance. Specifically, it reports a repli-
cation of part of Allen and Christiansen (1996), and a compar-
ison with multi-layer perceptrons (MLPs). The major results
are confirmed; however, the SRN topology is shown not to be
necessary for the task addressed. MLPs perform equally well,
even when they have access to less context.

Introduction
Word segmentation is the task of recovering word boundaries
from an initially unsegmented stream of linguistic input. En-
glish writing marks these boundaries, making the task trivial,
but Chinese writing does not, neither does any variety of nat-
ural speech.

If a language learner is to make any headway in acquir-
ing the words in a language, that learner must learn how to
pull these words out of running speech and hear them as sep-
arate words. By learning the indirect cues that signal word
boundaries for a given language, the word learner solves the
word segmentation task. This begins early in the language
acquisition process: studies show that babies begin to learn
word segmentation strategies around 7-9 months after birth
(see e.g. Jusczyk, Houston, & Newsome, 1999, for a review).

Many of the initial experimental studies of word segmen-
tation focused on individual cues: prosody (Jusczyk, Cut-
ler, & Redanz, 1993), allophonic variations (Jusczyk, Hohne,
& Bauman, 1999), distributional regularities (Saffran, Aslin,
& Newport, 1996), and phonotactics (Friederici & Wessels,
1993). Similarly, early computational simulations of the
word segmentation task focused on single cues. Brent and
Cartwright (1996) used distributional regularities as a cue,
combined with minimum description length as a language-
independent heuristic. Cairns et al. (1997) also modeled the
use of distributional regularities, but as a precursor to a later
stage using stress (which was not explicitly modeled). Aslin
et al. (1996) modeled the generalization of segmental cues at
the ends of utterances to the ends of words.

Christiansen, Allen, and Seidenberg (1998) explicitly ad-
dresses the interaction among several cues: distributional reg-
ularities, stress, and utterance-boundary information. Their
model reflects a particular conception of the word segmen-
tation task within the larger context of language acquisition.
The infant’s primary task is the comprehension of the speech
around it (as well as producing comprehensible speech in

turn). As the child attends to the speech input to which it is
exposed, it notices patterns in the signal (Saffran et al., 1996).
Christiansen et al. (1998) conceive of a second, immediate
task in language acquisition: namely, to continually update a
statistical representation of these salient patterns.

This process is exemplified in a simple model presented in
Allen and Christiansen (1996). In this scenario, a network
receives input one phone at a time. Its immediate task is learn
to predict the identity of the next phone.1 The immediate task
is “self-supervised” in that the next input provides immediate
feedback as to what the preceding output should have been.

To model the contribution of distributional regularities at
the phone level to the discovery of word boundaries, a neural
network with an input unit and an output unit for each phone
may be constructed, and the likelihood of a word boundary
approximated by measuring points at which the error in pre-
dicting the next phone is high (see Cairns et al., 1997, for a
model based on this idea). In order to model the interaction of
utterance-boundary info and distributional regularity, an ad-
ditional unit, symbolizing an utterance boundary or pause in
speech, is added to the input layer, and corresponding unit to
the output layer. The idea of having multiple output nodes
learning multiple problems simultaneously is referred to as
“hints” or “catalyst” nodes (see Suddarth & Kergosien, 1991).
The intuition (following Aslin et al., 1996) is that since utter-
ance boundaries are a subset of word boundaries with more
or less representative properties, the utterance boundaryout-
put unit should be activated not only at utterance boundaries,
but (to a lesser degree) at all word boundaries. Hence, above-
average activation of the utterance boundary output unit is
used to measure the network’s performance on the derived
task: identifying word boundaries. The other output units,
corresponding to phones, can be thought of as catalyst units
to the utterance boundary unit.

A major point of Allen and Christiansen (1996) is that word
boundaries can be learned in this way only for languages with
particular statistical properties. It is straightforwardto con-
struct artificial languages that lack these properties. Specifi-
cally, for a language where each syllable is equally likely to
follow any other (or to end a word or an utterance), the net-
work can learn at best only syllable boundaries. But if certain
segments or groups of segments (such as syllables) are more

1The assumption that the identity of the phone is unambiguously
observable is itself an idealization. In real life, the intended segment
is not observable with perfect accuracy, particularly for infants who
may be presumed to be still learning the language’s inventory of
sounds. The automatic speech recognition community rightly treats
phone identity as part of the hidden structure, not the observable.
Fully addressing this problem would unduly complicate the model
under discussion, although Christiansen and Allen (1997) addresses
it in part.
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likely to appear at the ends of words than others (as seems to
be the case with most human languages), and a sufficiently
large sample of the language is available to the learner, then
the network can learn.

A summary of the Allen and Christiansen
(1996) simulations

Method

To show this point, two artificial “mini-languages” were con-
structed to train the net: a “variable transition probability”
(vtp) language, and a language with “flat” transitional proba-
bilities between syllables. Each of these languages used the
same twelve syllable types: ‘b’, ‘d’, ‘p’, or ‘t’ followed by‘a’,
‘i’, or ‘u’. Each language consisted only of three-syllable,
six-segment (CVCVCV) words. The “flat” language con-
tained 12 such words constructed to maintain a word-internal
transitional probability of 0.667 from one syllable to another;
the “vtp” language used 15 words following different restric-
tions: for example, no word begins in ‘b’ or ends in ‘u’.

Both languages were trained using a simple recurrent net
(SRN) with 8 units each in the input and output layers and
30 each in the hidden and context layers. Word boundaries
were not explicitly marked, but utterance boundaries (corre-
sponding to the last input unit) were placed at intervals rang-
ing from 2 to 6 words long. Training was done for seven it-
erations over a corpus with 120 instances of each word in the
mini-language; testing was done on a corpus without marked
utterance boundaries.

Results

For all experiments, the dependent measure was activation of
the utterance boundary output unit. On the vtp language, the
network predicts a significantly higher activation for word-
boundary positions (0.204 on average) than for word in-
ternal positions (0.04 on average), including other syllable-
boundary positions. The network trained and tested on the
flat language showed higher activation at syllable- boundary
positions, but these did not differ significantly between word-
boundary and word-internal syllables (although the graph
suggests that the activation after the first syllable of a word
may be very slightly less). These results are seen to validate
the points discussed above.

Issues of network structure
While the findings in Allen and Christiansen (1996) may
seem of minor importance, their significance may be found
in the basis of this same architecture in a number of stud-
ies involving actual language (Christiansen & Allen, 1997;
Christiansen et al., 1998; Christiansen, Conway, & Curtin,
2005; Curtin, Mintz, & Christiansen, 2005). Before building
on these works, it is useful to re-examine the initial assump-
tions made and methods used to distinguish the essential char-
acteristics from the accidental.

For example, the notion of hints is essential to Allen and
Christiansen’s (1996) argument, and is an innovation over
earlier studies such as Elman (1990); Cairns et al. (1997);
Aslin et al. (1996). Where one might suppose that a net-
work would find dealing with multiple prediction tasks more

challenging, these results show that the additional tasks ac-
tually help the net learn the derived task of interest. Hence,
it provides a plausible way of combining multiple cues in a
computational model.

On the other hand, the specific type of network used (SRN
versus time-windowed MLP) seems to be inherited from ear-
lier studies such as Elman (1990). Elman (1990) developed
his SRN topology to deal with sequential problems such as
language, and SRNs have been used for modeling a num-
ber of language tasks where memory of indefinite length is
needed. However, the usefulness of SRNs for modeling mem-
ory of longer time sequences has been shown to be some-
what limited, a weakness sometimes known as the “latch-
ing” problem (Hochreiter, Bengio, Frasconi, & Schmidhuber,
2001; Tino, Cernansky, & Benuskova, 2004). Some have at-
tempted to develop alternative ways of modeling memory, to
overcome some of these limitations (Hochreiter & Schmid-
huber, 1997). But for some language processing tasks, par-
ticularly those dealing with speech processing (rather than
longer-range or syntactically complex tasks), arguably sim-
pler and easier-to-train models such as time-windowed multi-
layer perceptrons (MLPs) are still used (e.g. Zhu, Chen, Mor-
gan, & Stolcke, 2004; Morgan, Chen, Zhu, & Stolcke, 2004).

MLPs have also been used to model word segmenta-
tion. Aslin et al. (1996) decided to use a time-windowed
MLPs rather than SRNs, explicitly stating their preference
on grounds of simplicity. An additional complexity result-
ing from this choice is the need to explicitly vary the length
of the time window, but this too had an upside, in that one
knows explicitly what contribution each time step in the prior
history is making.

Allen and Christiansen (1996) do not explicitly defend
SRNs as an essential design choice, although they seem to
prefer it implicitly to feed-forward networks (given that they
incorporate the cue from Aslin et al. (1996) within their re-
current framework). Whether their use of SRNs rather than
MLPs is crucial to their model is an open question. While
this question is perhaps secondary to other considerations, it
is nevertheless worth considering for two reasons:

First, the empirical clarity of a computational model de-
pends in part on knowing and stating as precisely as possible
which aspects of the model are essential to its success in sim-
ulating human behavior and which are accidental. A second
and more practical reason is simple efficiency: if MLPs make
just as good predictions, and are easier to work with and faster
to train, then this allows for a greater number of explorations
with less effort.

Revisiting Allen and Christiansen (1996)
Simulation 1: Simple Recurrent Networks
First, a replication of part of Allen and Christiansen (1996)
was performed using the SRN package available within the
conx neural network toolkit (Blank, Kumar, Meeden, &
Yanco, 2003).2 The training parameters were matched to that
work as nearly as possible. The network consists of an input
layer and an output layer of eight units each (one for each
symbol in the mini-language, including the utterance bound-

2available as part of the Python Robotics toolkit at pyro-
robotics.org
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ary marker), along with thirty units each in the hidden and
context layers. “One-hot” encoding was used: each sym-
bol was associated with a single input, for which the acti-
vation was 1 if the input was that symbol, and 0 otherwise.
As in the original study, a learning rate of 0.1 and momen-
tum of 0.95 was used, and weights were initialized with ran-
dom values from a flat distribution ranging between -0.25 and
0.25. The activation function used was a logistic sigmoid
σ(x) = 1/(1+e−x). Standard backpropagation was used; er-
ror was measured with a squared error loss function.

The artificial languages used for the training and testing
data were not available and had to be recreated according
to the specifications in the text. These recreated languages
are available from the author’s web-site.3 Separate training
and test corpora are used: the training corpus for each lan-
guage is marked with utterance boundaries; the test corpus is
not. The level of activation of the utterance-boundary output
node is predicted to be higher at word boundaries than at non-
boundary positions. Since a certain amount of variation is to
be expected from the random initial weights, the results of
sixteen iterations, each with different starting weights,were
averaged together for each condition tested.

The results from this replication were qualitatively similar
to those reported in (Allen & Christiansen, 1996), although
the difference in activation levels in the vtp condition wasnot
so large. As predicted, activation levels in the vtp condition
are higher at word boundaries (mean value of 0.136 across the
sixteen runs, min 0.103, max 0.179) than at non-word bound-
aries (mean 0.018, min 0.014, max 0.023). There is also a dif-
ference between syllable boundaries and syllable-internal po-
sitions (0.076 vs. 0.0018). Crucially, word-internal syllable-
boundaries show an average activation of 0.046—less than
half that of the word boundaries. This shows that the network
is learning word boundaries, not just syllable boundaries.

For the flat condition, activation is also higher at word
boundaries (mean 0.069) than at non-word boundaries
(0.025). However, this difference is fully accounted for indif-
ferent activation levels between syllable boundary positions
(0.069) and syllable-internal positions (0.0024). There is
no appreciable difference between word boundary positions
and word-internal syllable-boundary positions (both 0.069).
Hence, the flat condition is only able to learn syllable bound-
aries, not word boundaries, just as Allen and Christiansen
(1996) observed.

What is more important than the raw differences in aver-
age activation, however, is the degree of discriminabilitybe-
tween true word boundaries and non-boundarypositions from
this activation level. This depends not only on the activa-
tion difference, but also on the variations between activation
levels, which are not directly reported. A better measure of
the overall discriminability is a receiver operating character-
istic (ROC) curve. This measure plots the true positive rate
(the probability of correctly detecting a word boundary) over
the false positive rate (the probability of incorrectly positing
a word boundary). Since any point along the curve corre-
sponds to the performance at a given threshold of activation,
the curve as a whole summarizes the performance of a binary
decision procedure at any relevant threshold.

3http://www.ling.ohio-state.edu/
∼ rytting/cogsci2006/AC96MiniLangs.txt

A useful summary statistic for an ROC is the area under
the curve (AUC), which corresponds to the probability a ran-
domly chosen pair of one positive item and one negative item
will be correctly ranked (Hanley & McNeil, 1982). In this do-
main, this provides the probability, given a word-final symbol
and a non-word-final symbol (both randomly selected), that
the activation of the utterance-boundary unit at the word-final
symbol will be higher than the activation at the the non-word-
final symbol.

An AUC of 0.5 is no better than chance; perfect discrimi-
nation would have an AUC of 1. For each of the conditions
here, an ROC curve was calculated using only the syllable
boundary positions, rather than for every phone (since the
syllable-internal positions are trivial to learn). As shown in
Figure 1, the SRN in the vtp condition achieves a mean AUC
of 0.85 (min 0.81, max 0.90), meaning that it performs bet-
ter than chance at distinguishing word boundaries from other
syllable boundaries. In the flat condition the SRN output has
a mean AUC of 0.50 (min 0.43, max 0.54), showing it does
no better than a syllable-boundary detector.

Simulation 2: Multi-layer Perceptrons

In the second experiment, the same simulation was replicated,
substituting an MLP for the SRN with a context of 1, 2, and
3 preceding phones. For the MLP with 1 phone context, the
network topology was identical (8 input, 30 hidden, and 8
output units) except for the removal of the 30 context units.
The 2- and 3-phone context MLPs had 16 and 24 input units.
All were fully connected with the hidden layer. The training
procedure was the same.

1-phone context MLPs The average activations from the
1-phone condition were very similar to those reported above
for the SRNs. Activation levels in the vtp condition are
once again higher at word boundaries (0.12) than at non-
word boundaries (0.024), syllable boundaries have higher ac-
tivations than syllable-internal positions (0.079 vs. 0.00036),
and activations at word-internal syllable-boundaries areagain
about half as strong actual word boundaries (0.060 vs. 0.12).
This suggests that the MLP is more sensitive to word bound-
aries than to other syllable boundaries, even with only one
phone of prior context. The discriminability of this network
is not quite as good as the SRN: the area under the corre-
sponding ROC curve (not shown) is 0.81. Since the MLP
with only one phone of context converged to the same solu-
tion in all sixteen trials, the standard error is practically zero.
This is worse than the SRN (F(1,30) = 22.58, p<0.001), but
clearly better than chance.

For the flat condition, in contrast, the average activation
is equal for each of the syllable boundaries (0.0644) Just as
in the SRN case, the network essentially fails to learn any-
thing other than syllable boundaries (mean AUC = 0.515, min
0.501, max 0.517).

2-phone context MLPs The results for the 2-phone con-
text MLP in the vtp condition are (unsurprisingly) better than
the 1-phone context: The average activation for word bound-
aries (0.133) is once again higher than for word-internal sylla-
ble boundaries (0.659) and for syllable boundaries generally
(0.71) The mean area under the ROC curve for the sixteen
trials is 0.86 (min 0.845, max 0.869)—overlapping with the
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Figure 1: Receiver operating characteristic (ROC) curves for 16 runs of the SRN in Simulation 1. Area under the curve (AUC)
shows the SRN’s discrimination between word boundaries andother syllable boundaries. Syllable-internal positions are not
included.

range of scores seen for the SRN, though with less variation
between trials. The difference between the 2-phone MLP and
the SRN is not significantly significant (F(1,30) = 0.69, p =
0.41).

For the flat condition, syllable boundaries are once again
higher than non-syllable boundaries (0.065 vs. 0.0008).
However, word boundaries are no higher than other syllable
boundaries, just as in the 1-phone case. The mean AUC is
0.472, slightly below chance (min 0.471, max 0.476).

3-phone context MLPs The average activations in the vtp
condition follow the same pattern as the other MLPs for this
condition, but with somewhat greater differences between
the word boundary activations (mean 0.148, min 0.121, max
0.170) and the word internal averages (0.015). As with the
other conditions, there is a large, consistent difference be-
tween word boundaries and syllable boundaries generally
(mean 0.073, min 0.064, max 0.083). However, the differ-
ence between the 3-phone MLP and the other nets is most
clearly seen in the areas under the ROC curves. As shown in
Figure 2, the AUC for distinguishing word boundaries from
other syllable boundaries is 0.92 (min 0.893, max 0.932). The
performance as measured by the AUC is significantly better
than that on the SRN condition (F(1,30) = 48.21, p<0.0001).

For the flat condition, syllable boundaries are once again
higher than non-syllable boundaries (0.067 vs. 0.0004).
However, this time word boundaries are higher than other
syllable boundaries (0.074 vs. 0.062). This is not because
word boundaries themselves are being learned directly, but
rather because the net is learning that the first syllable bound-
ary cannot be a word boundary: the average activation for
the end of the first syllable is 0.049, markedly lower than the
second (0.077) or the third (0.074). This effect also may be

seen in the ROC curve, which is no longer merely at chance
(AUC = 0.596, min 0.553, max 0.646). Although there are
no cues in the syllabic transitional probabilities, by looking
at more than one syllable of context, the net observes longer-
range regularities that arise in the data. This effect may need
further study to be completely understood, however.

Discussion
We may see in the results above that MLPs also account as
well as SRNs for the effects of multiple-cue integration in a
restricted domain. Generally speaking, the more context, the
more successful the net is at differentiating word boundaries
from other syllable boundaries, though even a single phone of
context, without recurrence of any sort, is sufficient for better-
than-chance performance. This is due largely to the design of
the artificial language used. One of the most obvious cues to
an upcoming word boundary in the vtp language: ‘a’ or ‘i’
vowel (as opposed an ‘u’) was of course just as visible to the
1-phone MLP as to any other net. With two phones of context,
it was possible to pick up also on a second major cue in the
language: ‘b’ (not being allowed at the beginning of a word)
is slightly more likely to start a word-final syllable than the
other three consonants. This may explain why the two-phone
MLP did just as well as the SRN: because the most salient,
relevant cues in the language occurred just two phones from
the end of the word.4

4Tino et al. (2004) and others mention another potential differ-
ence between SRNs and MLPs: namely, anarchitectural biasthat
may result from the net’s structure combined with its initial random
weights before training. To test for this bias, pretests were run on
the testing data before any training took place. No evidenceof such
a bias, or any appreciable difference between the MLP and theSRN
prior to training, was found for this task as described above.
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Figure 2: Receiver operating characteristic (ROC) curves for 16 runs of the MLP with three phones of context in Simulation
2. Area under the curve (AUC) shows the MLP’s discriminationbetween word boundaries and other syllable boundaries.
Syllable-internal positions are not included.

While the toy language may in hindsight look like a ridicu-
lously easy problem for the net, it is worth noting that such
patterns are not unheard of in human languages. Many lan-
guages (e.g., Spanish, Italian, Modern Greek) have a re-
stricted set of phonemes word finally, compared with other
positions in the word (even the final position of word-internal
syllables), and a great many languages have certain phonemes
(particularly those commonly found in word-final inflections,
like English /-s/) that are extremely frequent at the end of
words compared with other positions. Thus, word segmen-
tation may not be a problem for which recurrence is particu-
larly necessary, although more context does of course help.In
contrast, no such claim is made about problems of language
acquisition involving higher-level structures, such as syntax,
where unbounded dependencies pose problems that connec-
tionist models quite likely need some recourse to recurrence
in order to solve.

Conclusion
The notion of hints and multiple tasks within neural-net
frameworks is a useful paradigm for modeling and investi-
gating the exploration of multiple cue interaction in problems
of language acquisition, such as the word segmentation task.
However, the use of hints is not dependent on any partic-
ular topology of neural network; these results suggest that
the procedure works equally well for two different network
topologies, SRNs and time-windowed MLPs, at least for a
constrained task on artificial data. Furthermore, the exactsize
of the time-window is not always crucial.

This finding is useful in that it frees the researcher to con-
sider the best design for the problem at hand, independent of
the cue interaction issues. While SRNs are certainly an intu-

itively attractive topology for modeling the prediction ofse-
quential data (including unsupervised discovery of sequential
structures), particularly when the exact extent of the relevant
context is unknown, there may be situations when other mod-
els are preferable: e.g., allowing for the use of more efficient
training techniques and faster simulation of larger-size prob-
lems.

Finally, keeping in mind what parts of the model are essen-
tial, and which are incidental, may be helpful in relating these
and future models to issues of biological plausibility. Natu-
rally, all ANNs are to some degree biologically implausible,
and there is much that is still unknown about the design of
the neural system actually used in language processing. If it
should someday be shown that recurrent models of the Elman
type are incompatible with the actual mechanism for speech
processing, the multiple cues model need not be rejected au-
tomatically, inasmuch as it has been shown not to depend cru-
cially on recurrence. By abstracting away from non-essential
elements such as recurrence, the model not only gains some
flexibility, but may better highlight its essential element: the
hints themselves.

Future directions
This work is a preliminary step toward extending connec-
tionist models of the word segmentation task to other types
of input, including automatically pre-processed (noisy) au-
dio data, and input from languages besides English. Future
steps include the replication of larger-scale studies using tran-
scriptions of both adult- and child-directed English (Chris-
tiansen & Allen, 1997; Christiansen et al., 1998). Later steps
include moving away from human transcriptions to acoustic
input from speech recordings and finally to exploring the in-
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tegration of automatic, concurrent, unsupervised acquisition
of a phonemic inventory with the word segmentation task.
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