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Abstract

Debate surrounds the value of procedural practice in learning
conceptual material in mathematical domains (Schoenfeld,
2004). We investigated whether purely procedural practice
could lead to conceptual gains and explored cognitive load
theory as a mechanism for those gains (Sweller, 1988). In a
laboratory experiment, 93 undergraduates practiced a
procedure by solving 30 problems of an algebra analog and
were given conceptual tests before, during and after practice.
The conceptual tests tapped students’ understanding of the
underlying structure of the domain. Participants’ conceptual
knowledge increased with procedural practice, particularly
between no practice and some practice. Consistent with
cognitive load theory performance on the conceptual test after
practice was significantly related to procedural performance
at the end of practice. However, this relationship between
procedural learning and conceptual learning only held if
participants had been alerted earlier in practice to the
conceptual nature of the task. These results are consistent with
the proposal by Rittle-Johnson, Siegler, & Alibali, (2001) that
there is an iterative relationship between conceptual
understanding and procedural skill.

Introduction

The role of practice in mathematics is a matter of intense
controversy in the current curriculum reform debates. The
National Council of Teachers of Mathematics’ 1989
Curriculum and Evaluation Standards for School
Mathematics launched the present debate by advocating for,
among other reforms, the de-emphasis of rote practice and
rote memorization of rules and algorithms (Schoenfeld,
2004). Consistent with this approach were the opinions of
education researchers such as Robert Davis who wrote in
1986:

If “mathematics” is seen as conformity to
memorized rituals, if it is taught without
meaning ... if meaninglessness compels a slow
pace and a vast investment in repetition, and if
routine calculation is the main goal, very little
mathematics will be included in the curriculum
(pp. 272-273).
However, this shift of emphasis did not seem warranted to
all parents and an anti-reform movement developed,

advocating for back to basics. The ‘traditionalists’ actively
sought mathematicians to support their side, having them
send letters to state decision makers (Schoenfeld, 2004).
David Ross, a mathematician at Kodak Research Labs
states: “The best way to advance students’ conceptual
thinking about mathematics is to have them master the
traditional algorithms” (2001, 913). The traditionalists
contend that practice is a necessary prerequisite without
which deep understanding of mathematical concepts is
impossible. Conversely, reformers fear that emphasizing
practice can only lead to superficial understanding of
mathematical concepts.

Clearly with such opposing perspectives, consensus may
be difficult to reach. Even before the debate reached its
current level, Schoenfeld (1994) suggested that these issues
must be settled through empirical research. He argued that a
particular question worth investigation is: “how much
mastery of some basics is required for competent, flexible
performance on more demanding tasks.” (4 19) That
phrasing of the question highlights the underlying goal of
both sides of this debate, namely, competent flexible
performance on ‘demanding’ tasks.

Competent and flexible performance requires two
different kinds of proficiency: competent performance
implies that calculations are fast and effortless; whereas,
flexible performance suggests not just solving familiar
problems but also being able to tackle novel problems built
on the same principles. These two proficiencies can be
likened to the distinction between procedural and
conceptual knowledge. According to Rittle-Johnson,
Siegler, & Alibali, (2001), procedural knowledge is “the
ability to execute action sequences to solve problems” (p.
346) and conceptual knowledge is “an implicit or explicit
understanding of the principles that govern a domain and of
the interrelations between units of knowledge in a domain”
(p. 346-7). For example, in learning multiplication, a
student could understand the concept that multiplication is
equivalent to multiple additions, and this knowledge could
be independent of knowing the procedure “add number A to
itself B times.” Thus, the debate can be reformulated as:
does procedural practice result only in procedural
improvements, or can it also lead to conceptual learning?
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If procedural practice can lead to conceptual learning,
what mechanism(s) would be at work? Evidence from the
worked example literature suggests that actually working
through sample solutions and solving problems, as opposed
to reading declarative instructions, is instrumental in
‘understanding’ a domain (Chi, & Bassok, 1989, Schworm,
& Renkl, 2002). In this view the benefit from practice
comes from being able to map the declarative instructions to
the various steps of the problems. This perspective predicts
that some practice is better than none, but doesn’t address
the effects of increasing practice, nor the quality of that
practice on conceptual learning.

Cognitive load theory provides a mechanism that
connects amount and quality of procedural practice to
conceptual knowledge acquisition. Cognitive load theory,
developed by Sweller, (1988) proposes that at the beginning
of learning at task, participants will have little cognitive
capacity for learning the conceptual aspects (schema, in his
words) of a domain, because that capacity will be engaged
in executing the procedure necessary to solve the problem.
However, procedural practice results in the automatization
of the problem-solving procedure, thus freeing up cognitive
resources for conceptual learning. If this mechanism were at
work, we would expect to see a connection between the
development of automaticity and conceptual learning.

While we are primarily concerned with the effects of
procedural practice on conceptual learning, much research
has examined the opposite direction, that is, conceptual
learning on procedural performance (cf. Anderson, 1993).
Similarly, there has been considerable debate about which
type of knowledge is first to emerge during development.
However, Rittle- Johnson et al., point out that the pathway
need not be unidirectional. Instead they propose that
learning results from the iterative effects of conceptual on
procedural and procedural on conceptual. In this research,
we hope to tease apart the effects of procedural practice on
conceptual learning, but also to look at the combination of
conceptual knowledge and procedural practice on later
conceptual learning

The task used to investigate these questions is a variant of
the Blessing and Anderson (1996) task known as Symbol
Fun. Symbol Fun is an analog of algebra where the
operators and operands are replaced by symbols (i.e. ® for +
and # for *). Participants are presented with a series of rules
that can be applied to given strings, which, when applied
correctly will result in isolating ‘x” on the left-hand side, or
in algebraic terms, solving for ‘x’. The procedural aspects of
this task consist of correctly applying the rules to isolate ‘x’
on the left-hand side. Importantly, the rules are presented so
that the task appears to be pure symbol manipulation.
However, given that the rules conform to those of algebra,
there is considerable conceptual material here: the mapping
of the symbols to their algebraic counterparts, the goal
structure of solving for ‘x’, the inverse relationship between
pairs of operators, i.e., addition and subtraction and
multiplication and division. Thus, our task has clearly

defined conceptual content, but can be performed without
reference to that material. This organization allows us to
examine what, if any, of the conceptual material students
will learn given that they are only required to produce the
correct set of symbol-manipulation steps. That is, we can
ask: can purely procedural practice lead to the kind of
conceptual understanding educators seek? Moreover, by
examining the relationships between the procedural and
conceptual measures we can investigate possible
mechanisms for one leading the other.

Methods

Participants

Ninety-three Carnegie Mellon University undergraduates
(mean age = 19.4, 53 female) were given course credit
towards a research requirement for participating in this
experiment.

Procedure

Participants in this task received an introduction to the rules
of Symbol Fun by computer. Then they completed 30 trials
of computerized practice on Symbol Fun, followed by a
conceptual test. Participants also completed a demographic
information form which included math SAT score and
number of math courses taken at the high school and college
level. We also collected responses to a Need For Cognition
(Cacioppo, Petty, Feinstein, & Jarvis, 1996) questionnaire.
We were primarily interested in the effects of different
amounts of procedural practice on conceptual learning, so
we divided the participants into four groups and varied the
amount of practice they received prior to taking the
conceptual test for the first time. Thus, Group 1 was tested
before and after all training, whereas Group 2 was tested
after 10 trials and again after the training was complete.
Group 3 was tested after 20 trials of practice and again at
the end of training. Finally, Group 4 was test after 30 trials
of training; however, this was the end of practice, so this
group only completed the test once. The complete
experimental design can be found in Table 1.

Materials
Problem-Solving Training The algebra analog, Symbol
Fun, used in this experiment was only slightly modified
from the task described in Blessing & Anderson (1996). In
Symbol Fun the operators and operands of algebra are
replaced by symbols (see Table 2). For example, the
equation:

-x+B=D
becomes:

£Ep®S ¥

The goal of the task is to isolate the p on the left-hand
side, (i.e. solve for ‘x’). There are three major operations in
Symbol Fun which could be used to accomplish the goal: (a)
adding an operand-operator pair to both sides, (b) canceling
two operator-operand pairs when the operand was the same
and the operators were inverses and (c) eliminating an
operator from in front of the variable.
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Table 1: Experimental Design

Test 1 Test2  Demographics/NFC
Groupl 0 Trials 30 Trials After Test 2
Group2 10 Trials 30 Trials After Test 2
Group3 20 Trials 30 Trials After Test 2
Group4 30 Trials - After Test 1

These three operations correspond to the nine rules of
Symbol Fun. Rule 1 specifies that any operator-operand pair
can be added to both sides of the «» symbol. Rules 2 - 5
govern the cancellation of operator-operand-operator-
operand sequences, two for each of the operator inverse
pairs (addition-subtraction and division-multiplication).
Finally rules 6 — 9 describe the elimination of each of the
operators in front of the p symbol. The participants are
introduced to the nine rules from a computer interface with
one rule per screen. The screens are similar to one another,
with a schematic of how the rule applies, a short test
description of the rule, and an example of an application of
that rule.

Symbol Fun is not a perfect match to algebra; for
example, the division-multiplication operator pair acts more
like the addition-subtraction operator pair than in standard
algebra, thus you could have an equation like: /x = *A + B.
And there is an order of operations so that one can’t remove
a symbol before ‘x’ until all the constants have been
removed from the left-hand side. However, unlike the
Blessing and Anderson (1996) version, more than one rule
can apply at a time.

In the computer display the current problem appeared in
the upper left-hand corner. In the lower left-hand side each
of the nine rules were displayed and the corresponding “Go”
and “See Full Rule” buttons were on the lower right-hand
side of the screen. Pull down menus within the rules
allowed participants to insert symbols into their chosen rule
or to specify operations to the right-hand side of the symbol
strings. If participants selected an applicable rule, using the
correct pull down(s), the computer provided a green “Good”
for feedback and output the result of their rule. If they
selected either the wrong rule or the right rule but the wrong
pull down(s) they received a red “Try again”. If they got the
step wrong a second time the computer instructed them on
an applicable rule they could have used and provided the
result of that rule. A correct selection for the last step was
signaled by a green “Excellent”.

Procedural practice consisted of 30 trials of Symbol Fun
grouped in three blocks of ten trials. Within each block,
there were two 1-step problems and 4 each of 2- and 3-step
problems. The problems were randomized within each
block, and the constants used in each problem were
randomly generated.

Conceptual Testing A major difference from the Blessing
and Anderson (1996) procedure and the one used here is the
addition of an assessment of learners' conceptual knowledge
about the domain. The extent of this knowledge was
operationalized by a four item test. The categorization

question asked participants to group the symbols and label
the groups. This question measured their understanding of
the functional differences between operands and operators.
The valid expressions question asked whether a novel string
of symbols was admissible in the domain: two were
admissible, but were ordered in an unusual way, the other
two directly violated the role of operators or operands. The
order of operations question asked participants to identify
legal starting moves; one move was not legal because it
could only be completed after the others had been
completed. The inverse operators question asked
participants to generalize the function of novel operators.
The question demonstrate how the novel operators could be
cancelled in one order; to solve the problem the operators
had to be added and cancelled in the opposite order.

Two isomorphic versions of the test were used, and the
order in which participants received them was
counterbalanced. Whenever participants saw the test for the
second time, the experimenter pointed out the similarity and
assured them that same or different responses were
acceptable. Participants had ten minutes to work on the
conceptual test and were warned when they had a minute
left.

Table 2: Mappings of Algebra to Symbol Fun

Algebraic Symbol Task Symbol
+ ®
- £
* #
/ ©
= A d
Constant @
Constant )
Constant v
Constant ¥
Variable p

Results and Discussion

Procedural Performance

Not surprisingly, with practice, participants get faster and
more accurate at Symbol Fun. Figure 1 displays reaction
time data for the first step of each trial. First steps were used
to ensure a homogenous sample, as trials differed in the
number of steps, and participants received them in a random
order. Decreases in reaction times are consistent with the
Power Law of Practice (Newell & Rosenbloom, 1981) in
that the data is better fit by a power function (R* = .905)
than a linear function (R*= .360) or an exponential function
(R* = 0.697). Recall that the experiment is organized into
blocks of 10 trials with a subset of the participants stopping
between blocks to complete the conceptual test. Participants
tended to be much slower on their first trial back from the
tests, so those trials were removed from the sample (see
Figure 1, Trials 11 and 21). To further ensure a
homogeneous sample, only correct trials were used for the
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remaining analyses. A repeated measures general linear
model analysis revealed that using this sample there was a
significant speed up in performance (F(2, 83) = 36.694, p
<.001), but there were no differences between the groups
(F(3, 83) =.974, p = .409) nor an interaction between group
and trial in practice (F(6, 83) =.310, p =.931).

Conceptual Performance

Practice also leads to improvements in conceptual
knowledge; however, the pattern of results is somewhat
more complicated than for the procedural data. Figure 2
represents participants’ performance on the first and second
conceptual test, divided up by group. Recall that the groups
differed in when they received the conceptual test for the
first time (see Table 1). The Test 1 line (solid) represents the
score on the conceptual test with increasing practice.
Qualitatively, we see that conceptual performance increases
with practice, but with diminishing returns. An ANOVA
confirms this observation, in that the groups are
significantly different (F(89,2) = 17.002, p <0.001);
however, this difference is driven by Group 1 in that the
remaining groups are not significantly different from each
other (F(2,69)=2.212,p=.117).

The dashed line in Figure 2 represents performance by
groups 1, 2 & 3 on Test 2. These groups of participants all
had thirty trials of practice before they saw this second test,
but they differ in when they saw the conceptual test for the
first time. Seeing Test 1 at different points doesn’t appear to
affect performance on Test 2 (F(68,2) = 1.25, p =.303).

Participants clearly improve from Test 1 to Test 2 (paired-
t(68) = -5.300, p<0.001). However, again this effect is
driven by performance of Group 1 (paired-t(22) = -7.443
p<0.001) and to a lesser extent Group2 (paired-t(22) = -
2.117, p = 0.046), but not Group 3 (paired-t(22) =-.703, p =
.490). This may seem somewhat contradictory to the result
mentioned above, that performance on Test 2 does not
depend on group. However, we are looking at the change in
performance between tests. Since the groups are starting at
different levels of test performance, but ending at the same
level we would expect some difference in their
improvement. Indeed, combining all these variables in a
repeated measures general linear model, we see that there is
a significant effect of Test 1 vs Test 2 (F(68, 1) = 42.565,
p<0.001), and of group (i.e., how much practice they had
when they took their first test) (F(68, 2) = 4.062, p=0.022).
Most importantly, the interaction between group and test
number is also significant, (F(68,2) = 18.527, p < .001)
confirming that practice before Test 1 matters for Test 1, but
not for Test 2.

Interestingly, performance on Test 1 and Test 2 are not
correlated (r(69) = .168, p = .167) suggesting that these two
scores represent different measures of conceptual
performance. However, there does seem to be an increasing
relationship between the tests as they are taken closer
together. Thus for Group 1, when the tests are taken 30
trials apart, their correlation is not significant(r(23) = .08, p

= .716). For Group 2.where the tests are 20 trials apart, the
correlation is higher but still not significant r(23) = 0.343 p
= .109). Finally for group 3, where the tests are only 10
trials apart, the two tests are significantly correlated (r(23) =
522, p =.006).
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Figure 1: First step Reaction times for all participants
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Figure 2: Conceptual performance by group

Connecting Procedural and Conceptual

We have seen that practice leads to improvements in both
conceptual and procedural performance, but what is the
relationship between these two forms of learning? In order
to assess this question we performed regression analyses on
the two dependent/outcome measures of conceptual learning
(Tests 1 and 2) to determine which measures of procedural
performance best account for these outcome measures. The
six procedural measures used as independent/predictor
variables included accuracy and reaction times for the three
blocks. Accuracy and reaction times do not correlate within
blocks, suggesting they measure different aspects of
procedural proficiency (Block 1, r(87) = -.180, p =.091,
Block 2, r(89) = -.109, p = .304m, Block 3, r(90) = -.093, p
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= .376). We also included two between-subject factors that
represent the effects of practice. The first factor coded
practice incrementally, namely, the time participants saw
Test 1 (i.e. 0, 10, 20, 30 trials of practice). The second factor
coded practice dichotomously, that is, whether the
participant had had no or some procedural practice before
taking the first conceptual test (i.e. Group 1 vs. the
remaining groups). Finally we had three demographic
variables: math SAT score, Need For Cognition (NFC)
score, and number of math courses at the high school and
university level. Need For Cognition is a measure of an
individual’s desire to makes sense of situations.
Unfortunately we did not have SAT information for seven
participants, either because they hadn’t taken the test, or
couldn’t remember their score. These participants were
excluded from these analyses. Nevertheless, results from
analyses of all participants’ data excluding the math SAT
variable are consistent with the results presented here.

Table 3 lists the model summaries of these analyses.
Consistent with the results above, there was a strong effect
for having had any practice before taking Test 1; however,
in addition to that, both Block 1 accuracy and NFC
cognition were key predictors of Test 1 performance. In

Table 3: Regression Summaries

Variable St. Beta t Sig

Test 1

Practice .627 7.760 <.001

(dichotomous)

Block 1 Accuracy 311 3.668  <.001

NFC -.196 -2.319 .023
Test 2

Block 3 Reaction -.429 -3.602 .001

Times

Block 3 Accuracy .295 2.576 .013

Practice -.305 -2.563 .013

(dichotomous)

contrast, the main predictor of Test 2 performance was
reaction time during Block 3, followed by Block 3 accuracy,
and finally, having had practice before seeing Test 1. That
is, performance on the first test, when the task had seemed
purely procedural, depended primarily on having had some
exposure to the task, then on how well (i.e. accurately)
participants performed the task, and finally on an individual
difference variable, namely, one’s desire to make sense of
the task. Yet for Test 2 performance, after participants had
been oriented by Test 1 to the fact that the task has a
conceptual structure, the most important factor in their
performance was reaction times at the end of practice, just
before they took Test 2. That is, participants’ later
procedural fluency (not just their task accuracy) is a
predictor of their later conceptual performance. We can
relate these results to cognitive load theory which suggests
that practice leads to automaticity and the freeing of

cognitive resources which can then be used for conceptual
learning. Although we do not have a direct measure of
cognitive load, we can regard Block 3 reaction times as a
proxy for automaticity. Thus, consistent with cognitive load
theory we find that participants who are more automatic
procedurally do better conceptually at Test 2.

We have seen that Test 1 and Test 2 performance seem to
be related to different factors. However Test 1 and Test 2
differ in two ways: the presence of the earlier test (which
could orient participants to the conceptual structure of the
task) and, on average, the amount of procedural practice at
test time. To address which of these is more responsible for
the Test 1 vs. Test 2 differences in predictors of conceptual
learning, we compare Group 1 at Test 2 and Group 4 at Test
1. These are the two groups that performed all the practice
trials without interruption. They differ only in that Group 1
has already seen the conceptual test and Group 4 has not.
Moreover, there are no differences between these two
groups’ scores on their conceptual test after practice (t(45) =
155, p = .878). Procedurally, there are no differences
between these two groups on their accuracy throughout the
task. Generally, Group 4 tends to be faster than Group 1
although the difference is only significant on the last block
(t(45) =2.564, p = .014).

We performed regression analyses on these two
conceptual test scores with our six procedural measures as
independent variables. For Group 1 (Test 2), the only factor
selected was Block 3 reaction times, (R? = .451), whereas
for Group 4 the only factor selected was Block 1 accuracy
(R? = .661). Thus, for these two groups, the key difference
of having seen a prior conceptual test (or not) is enough to
produce different predictors of the conceptual test scores at
the end of training. That is, for Group 1 participants who
have seen the test before, performance is related to
procedural proficiency at the end of practice, whereas for
Group 4 participants, taking the test for the first time, their
conceptual score are only related to initial accuracy. This
suggests that the first conceptual test may be a conceptual
intervention of sorts and that it provides conceptual
knowledge that changes the relationship between procedural
skill and conceptual learning. This is akin to Rittle-Johnson
et al.’s (2001) view that there is an iterative relationship
between procedural skill and conceptual learning. Here, we
have evidence of some (very minor) conceptual training
(i.e., simply taking the first test) changing the conceptual
impact of additional procedural practice.

These results suggest that cognitive load can explain gains
in conceptual learning from procedural performance, but
that this relationship requires some awareness of the
conceptual nature of the task. However, we have not
manipulated this relationship directly. Particularly, we have
assumed that faster reaction times imply reduced cognitive
load. A dual task paradigm where improvements in Symbol
Fun were offset by increased cognitive load from the other
task would demonstrate whether reducing cognitive load is
integral to this type of learning. Interestingly, while we have
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seen that there is a differential relationship between
procedural practice and conceptual learning with a small
conceptual intervention, there was no difference in
conceptual performance. An outstanding question is
whether this shift in role for procedural performance has any
educational benefits.
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