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Abstract 

Debate surrounds the value of procedural practice in learning 
conceptual material in mathematical domains (Schoenfeld, 
2004). We investigated whether purely procedural practice 
could lead to conceptual gains and explored cognitive load 
theory as a mechanism for those gains (Sweller, 1988). In a 
laboratory experiment, 93 undergraduates practiced a 
procedure by solving 30 problems of an algebra analog and 
were given conceptual tests before, during and after practice. 
The conceptual tests tapped students’ understanding of the 
underlying structure of the domain. Participants’ conceptual 
knowledge increased with procedural practice, particularly 
between no practice and some practice. Consistent with 
cognitive load theory performance on the conceptual test after 
practice was significantly related to procedural performance 
at the end of practice. However, this relationship between 
procedural learning and conceptual learning only held if 
participants had been alerted earlier in practice to the 
conceptual nature of the task. These results are consistent with 
the proposal by Rittle-Johnson, Siegler, & Alibali, (2001) that 
there is an iterative relationship between conceptual 
understanding and procedural skill.  

Introduction 
The role of practice in mathematics is a matter of intense 

controversy in the current curriculum reform debates. The 
National Council of Teachers of Mathematics’ 1989 
Curriculum and Evaluation Standards for School 
Mathematics launched the present debate by advocating for, 
among other reforms, the de-emphasis of rote practice and 
rote memorization of rules and algorithms (Schoenfeld, 
2004). Consistent with this approach were the opinions of 
education researchers such as Robert Davis who wrote in 
1986: 

If “mathematics” is seen as conformity to 
memorized rituals, if it is taught without 
meaning … if meaninglessness compels a slow 
pace and a vast investment in repetition, and if 
routine calculation is the main goal, very little 
mathematics will be included in the curriculum 
(pp. 272-273). 

However, this shift of emphasis did not seem warranted to 
all parents and an anti-reform movement developed, 

advocating for back to basics. The ‘traditionalists’ actively 
sought mathematicians to support their side, having them 
send letters to state decision makers (Schoenfeld, 2004). 
David Ross, a mathematician at Kodak Research Labs 
states: “The best way to advance students’ conceptual 
thinking about mathematics is to have them master the 
traditional algorithms” (2001, ¶13). The traditionalists 
contend that practice is a necessary prerequisite without 
which deep understanding of mathematical concepts is 
impossible. Conversely, reformers fear that emphasizing 
practice can only lead to superficial understanding of 
mathematical concepts.  

Clearly with such opposing perspectives, consensus may 
be difficult to reach. Even before the debate reached its 
current level, Schoenfeld (1994) suggested that these issues 
must be settled through empirical research. He argued that a 
particular question worth investigation is: “how much 
mastery of some basics is required for competent, flexible 
performance on more demanding tasks.” (¶ 19) That 
phrasing of the question highlights the underlying goal of 
both sides of this debate, namely, competent flexible 
performance on ‘demanding’ tasks.  

Competent and flexible performance requires two 
different kinds of proficiency: competent performance 
implies that calculations are fast and effortless; whereas, 
flexible performance suggests not just solving familiar 
problems but also being able to tackle novel problems built 
on the same principles. These two proficiencies can be 
likened to the distinction between procedural and 
conceptual knowledge. According to Rittle-Johnson, 
Siegler, & Alibali, (2001), procedural knowledge is “the 
ability to execute action sequences to solve problems” (p. 
346) and conceptual knowledge is “an implicit or explicit 
understanding of the principles that govern a domain and of 
the interrelations between units of knowledge in a domain” 
(p. 346-7).  For example, in learning multiplication, a 
student could understand the concept that multiplication is 
equivalent to multiple additions, and this knowledge could 
be independent of knowing the procedure “add number A to 
itself B times.” Thus, the debate can be reformulated as: 
does procedural practice result only in procedural 
improvements, or can it also lead to conceptual learning? 
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If procedural practice can lead to conceptual learning, 
what mechanism(s) would be at work? Evidence from the 
worked example literature suggests that actually working 
through sample solutions and solving problems, as opposed 
to reading declarative instructions, is instrumental in 
‘understanding’ a domain (Chi, & Bassok, 1989, Schworm, 
& Renkl, 2002). In this view the benefit from practice 
comes from being able to map the declarative instructions to 
the various steps of the problems. This perspective predicts 
that some practice is better than none, but doesn’t address 
the effects of increasing practice, nor the quality of that 
practice on conceptual learning.  

Cognitive load theory provides a mechanism that 
connects amount and quality of procedural practice to 
conceptual knowledge acquisition. Cognitive load theory, 
developed by Sweller, (1988) proposes that at the beginning 
of learning at task, participants will have little cognitive 
capacity for learning the conceptual aspects (schema, in his 
words) of a domain, because that capacity will be engaged 
in executing the procedure necessary to solve the problem. 
However, procedural practice results in the automatization 
of the problem-solving procedure, thus freeing up cognitive 
resources for conceptual learning. If this mechanism were at 
work, we would expect to see a connection between the 
development of automaticity and conceptual learning.  

While we are primarily concerned with the effects of 
procedural practice on conceptual learning, much research 
has examined the opposite direction, that is, conceptual 
learning on procedural performance (cf. Anderson, 1993). 
Similarly, there has been considerable debate about which 
type of knowledge is first to emerge during development. 
However, Rittle- Johnson et al., point out that the pathway 
need not be unidirectional. Instead they propose that 
learning results from the iterative effects of conceptual on 
procedural and procedural on conceptual. In this research, 
we hope to tease apart the effects of procedural practice on 
conceptual learning, but also to look at the combination of 
conceptual knowledge and procedural practice on later 
conceptual learning  

The task used to investigate these questions is a variant of 
the Blessing and Anderson (1996) task known as Symbol 
Fun. Symbol Fun is an analog of algebra where the 
operators and operands are replaced by symbols (i.e. ® for + 
and # for *). Participants are presented with a series of rules 
that can be applied to given strings, which, when applied 
correctly will result in isolating ‘x’ on the left-hand side, or 
in algebraic terms, solving for ‘x’. The procedural aspects of 
this task consist of correctly applying the rules to isolate ‘x’ 
on the left-hand side. Importantly, the rules are presented so 
that the task appears to be pure symbol manipulation. 
However, given that the rules conform to those of algebra, 
there is considerable conceptual material here: the mapping 
of the symbols to their algebraic counterparts, the goal 
structure of solving for ‘x’, the inverse relationship between 
pairs of operators, i.e., addition and subtraction and 
multiplication and division. Thus, our task has clearly 

defined conceptual content, but can be performed without 
reference to that material. This organization allows us to 
examine what, if any, of the conceptual material students 
will learn given that they are only required to produce the 
correct set of symbol-manipulation steps. That is, we can 
ask: can purely procedural practice lead to the kind of 
conceptual understanding educators seek? Moreover, by 
examining the relationships between the procedural and 
conceptual measures we can investigate possible 
mechanisms for one leading the other.  

Methods 
Participants 
Ninety-three Carnegie Mellon University undergraduates 
(mean age = 19.4, 53 female) were given course credit 
towards a research requirement for participating in this 
experiment. 
 
Procedure 
Participants in this task received an introduction to the rules 
of Symbol Fun by computer. Then they completed 30 trials 
of computerized practice on Symbol Fun, followed by a 
conceptual test. Participants also completed a demographic 
information form which included math SAT score and 
number of math courses taken at the high school and college 
level. We also collected responses to a Need For Cognition 
(Cacioppo, Petty, Feinstein, & Jarvis, 1996) questionnaire. 
We were primarily interested in the effects of different 
amounts of procedural practice on conceptual learning, so 
we divided the participants into four groups and varied the 
amount of practice they received prior to taking the 
conceptual test for the first time. Thus, Group 1 was tested 
before and after all training, whereas Group 2 was tested 
after 10 trials and again after the training was complete. 
Group 3 was tested after 20 trials of practice and again at 
the end of training. Finally, Group 4 was test after 30 trials 
of training; however, this was the end of practice, so this 
group only completed the test once. The complete 
experimental design can be found in Table 1. 
 
Materials 
Problem-Solving Training The algebra analog, Symbol 
Fun, used in this experiment was only slightly modified 
from the task described in Blessing & Anderson (1996). In 
Symbol Fun the operators and operands of algebra are 
replaced by symbols (see Table 2). For example, the 
equation:  

- x + B = D 
becomes:  

₤ ρ ® ♪ ↔ ¥ 
 

The goal of the task is to isolate the ρ on the left-hand 
side, (i.e. solve for ‘x’). There are three major operations in 
Symbol Fun which could be used to accomplish the goal: (a) 
adding an operand-operator pair to both sides, (b) canceling 
two operator-operand pairs when the operand was the same 
and the operators were inverses and (c) eliminating an 
operator from in front of the variable.  
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Table 1: Experimental Design  
 

 
These three operations correspond to the nine rules of 
Symbol Fun. Rule 1 specifies that any operator-operand pair 
can be added to both sides of the ↔ symbol. Rules 2 - 5 
govern the cancellation of operator-operand-operator-
operand sequences, two for each of the operator inverse 
pairs (addition-subtraction and division-multiplication). 
Finally rules 6 – 9 describe the elimination of each of the 
operators in front of the ρ symbol. The participants are 
introduced to the nine rules from a computer interface with 
one rule per screen. The screens are similar to one another, 
with a schematic of how the rule applies, a short test 
description of the rule, and an example of an application of 
that rule. 

Symbol Fun is not a perfect match to algebra; for 
example, the division-multiplication operator pair acts more 
like the addition-subtraction operator pair than in standard 
algebra, thus you could have an equation like: /x = *A + B. 
And there is an order of operations so that one can’t remove 
a symbol before ‘x’ until all the constants have been 
removed from the left-hand side. However, unlike the 
Blessing and Anderson (1996) version, more than one rule 
can apply at a time.  

In the computer display the current problem appeared in 
the upper left-hand corner. In the lower left-hand side each 
of the nine rules were displayed and the corresponding “Go” 
and “See Full Rule” buttons were on the lower right-hand 
side of the screen. Pull down menus within the rules 
allowed participants to insert symbols into their chosen rule 
or to specify operations to the right-hand side of the symbol 
strings. If participants selected an applicable rule, using the 
correct pull down(s), the computer provided a green “Good” 
for feedback and output the result of their rule. If they 
selected either the wrong rule or the right rule but the wrong 
pull down(s) they received a red “Try again”. If they got the 
step wrong a second time the computer instructed them on 
an applicable rule they could have used and provided the 
result of that rule. A correct selection for the last step was 
signaled by a green “Excellent”.  

Procedural practice consisted of 30 trials of Symbol Fun 
grouped in three blocks of ten trials. Within each block, 
there were two 1-step problems and 4 each of 2- and 3-step 
problems. The problems were randomized within each 
block, and the constants used in each problem were 
randomly generated.  
 
Conceptual Testing A major difference from the Blessing 
and Anderson (1996) procedure and the one used here is the 
addition of an assessment of learners' conceptual knowledge 
about the domain. The extent of this knowledge was 
operationalized by a four item test. The categorization 

question asked participants to group the symbols and label 
the groups. This question measured their understanding of 
the functional differences between operands and operators. 
The valid expressions question asked whether a novel string 
of symbols was admissible in the domain: two were 
admissible, but were ordered in an unusual way, the other 
two directly violated the role of operators or operands. The 
order of operations question asked participants to identify 
legal starting moves; one move was not legal because it 
could only be completed after the others had been 
completed. The inverse operators question asked 
participants to generalize the function of novel operators. 
The question demonstrate how the novel operators could be 
cancelled in one order; to solve the problem the operators 
had to be added and cancelled in the opposite order.  

Two isomorphic versions of the test were used, and the 
order in which participants received them was 
counterbalanced. Whenever participants saw the test for the 
second time, the experimenter pointed out the similarity and 
assured them that same or different responses were 
acceptable. Participants had ten minutes to work on the 
conceptual test and were warned when they had a minute 
left.  

 
Table 2: Mappings of Algebra to Symbol Fun 

Results and Discussion 
Procedural Performance 
Not surprisingly, with practice, participants get faster and 
more accurate at Symbol Fun. Figure 1 displays reaction 
time data for the first step of each trial. First steps were used 
to ensure a homogenous sample, as trials differed in the 
number of steps, and participants received them in a random 
order. Decreases in reaction times are consistent with the 
Power Law of Practice (Newell & Rosenbloom, 1981) in 
that the data is better fit by a power function (R2 = .905) 
than a linear function (R2 = .360) or an exponential function 
(R2 = 0.697). Recall that the experiment is organized into 
blocks of 10 trials with a subset of the participants stopping 
between blocks to complete the conceptual test. Participants 
tended to be much slower on their first trial back from the 
tests, so those trials were removed from the sample (see 
Figure 1, Trials 11 and 21). To further ensure a 
homogeneous sample, only correct trials were used for the 

 Test 1 Test 2 Demographics/NFC 
Group1 0 Trials 30 Trials After Test 2 
Group2 10 Trials 30 Trials After Test 2 
Group3 20 Trials 30 Trials After Test 2 
Group4 30 Trials - After Test 1 

Algebraic Symbol Task Symbol 
+ ®  
- ₤ 
* # 
/ © 
= ↔ 

Constant @ 
Constant ♪ 
Constant ♥ 
Constant ¥ 
Variable ρ 
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remaining analyses. A repeated measures general linear 
model analysis revealed that using this sample there was a 
significant speed up in performance (F(2, 83) = 36.694, p 
<.001), but there were no differences between the groups 
(F(3, 83) = .974, p = .409) nor an interaction between group 
and trial in practice (F(6, 83) = .310, p = .931). 
 
Conceptual Performance 
Practice also leads to improvements in conceptual 
knowledge; however, the pattern of results is somewhat 
more complicated than for the procedural data. Figure 2 
represents participants’ performance on the first and second 
conceptual test, divided up by group. Recall that the groups 
differed in when they received the conceptual test for the 
first time (see Table 1). The Test 1 line (solid) represents the 
score on the conceptual test with increasing practice. 
Qualitatively, we see that conceptual performance increases 
with practice, but with diminishing returns. An ANOVA 
confirms this observation, in that the groups are 
significantly different (F(89,2) = 17.002, p <0.001); 
however, this difference is driven by Group 1 in that the 
remaining groups are not significantly different from each 
other (F(2,69) = 2.212, p = .117). 

The dashed line in Figure 2 represents performance by 
groups 1, 2 & 3 on Test 2. These groups of participants all 
had thirty trials of practice before they saw this second test, 
but they differ in when they saw the conceptual test for the 
first time. Seeing Test 1 at different points doesn’t appear to 
affect performance on Test 2 (F(68,2) = 1.25, p =.303).   

Participants clearly improve from Test 1 to Test 2 (paired-
t(68) = -5.300, p<0.001). However, again this effect is 
driven by performance of Group 1 (paired-t(22) = -7.443 
p<0.001) and  to a lesser extent Group2 (paired-t(22) = -
2.117, p = 0.046), but not Group 3 (paired-t(22) = -.703, p = 
.490). This may seem somewhat contradictory to the result 
mentioned above, that performance on Test 2 does not 
depend on group. However, we are looking at the change in 
performance between tests. Since the groups are starting at 
different levels of test performance, but ending at the same 
level we would expect some difference in their 
improvement. Indeed, combining all these variables in a 
repeated measures general linear model, we see that there is 
a significant effect of Test 1 vs Test 2 (F(68, 1) = 42.565, 
p<0.001), and of group (i.e., how much practice they had 
when they took their first test) (F(68, 2) = 4.062, p=0.022). 
Most importantly, the interaction between group and test 
number is also significant, (F(68,2) = 18.527, p < .001) 
confirming that practice before Test 1 matters for Test 1, but 
not for Test 2.  

Interestingly, performance on Test 1 and Test 2 are not 
correlated (r(69) = .168, p = .167) suggesting that these two 
scores represent different measures of conceptual 
performance. However, there does seem to be an increasing 
relationship between the tests as they are taken closer 
together. Thus for Group 1, when the tests are taken 30 
trials apart, their correlation is not significant(r(23) = .08, p 

= .716). For Group 2.where the tests are 20 trials apart, the 
correlation is higher but still not significant r(23) = 0.343 p 
= .109). Finally for group 3, where the tests are only 10 
trials apart, the two tests are significantly correlated (r(23) = 
.522, p = .006).  
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Figure 1: First step Reaction times for all participants 
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Figure 2: Conceptual performance by group 

 
Connecting Procedural and Conceptual  
We have seen that practice leads to improvements in both 
conceptual and procedural performance, but what is the 
relationship between these two forms of learning? In order 
to assess this question we performed regression analyses on 
the two dependent/outcome measures of conceptual learning 
(Tests 1 and 2) to determine which measures of procedural 
performance best account for these outcome measures. The 
six procedural measures used as independent/predictor 
variables included accuracy and reaction times for the three 
blocks. Accuracy and reaction times do not correlate within 
blocks, suggesting they measure different aspects of 
procedural proficiency (Block 1, r(87) = -.180, p =.091, 
Block 2, r(89) = -.109, p = .304m, Block 3, r(90) = -.093, p 
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= .376). We also included two between-subject factors that 
represent the effects of practice. The first factor coded 
practice incrementally, namely, the time participants saw 
Test 1 (i.e. 0, 10, 20, 30 trials of practice). The second factor 
coded practice dichotomously, that is, whether the 
participant had had no or some procedural practice before 
taking the first conceptual test (i.e. Group 1 vs. the 
remaining groups). Finally we had three demographic 
variables: math SAT score, Need For Cognition (NFC) 
score, and number of math courses at the high school and 
university level. Need For Cognition is a measure of an 
individual’s desire to makes sense of situations. 
Unfortunately we did not have SAT information for seven 
participants, either because they hadn’t taken the test, or 
couldn’t remember their score. These participants were 
excluded from these analyses. Nevertheless, results from 
analyses of all participants’ data excluding the math SAT 
variable are consistent with the results presented here. 

Table 3 lists the model summaries of these analyses. 
Consistent with the results above, there was a strong effect 
for having had any practice before taking Test 1; however, 
in addition to that, both Block 1 accuracy and NFC 
cognition were key predictors of Test 1 performance. In 

 
Table 3: Regression Summaries 

 
Variable St. Beta t Sig 

Test 1    
Practice 
(dichotomous) 

.627 7.760 <.001 

Block 1 Accuracy .311 3.668 <.001 
NFC -.196 -2.319 .023 

Test 2    
Block 3 Reaction 
Times 

-.429 -3.602 .001 

Block 3 Accuracy .295 2.576 .013 
Practice 
(dichotomous) 

-.305 -2.563 .013 

 
contrast, the main predictor of Test 2 performance was 
reaction time during Block 3, followed by Block 3 accuracy, 
and finally, having had practice before seeing Test 1. That 
is, performance on the first test, when the task had seemed 
purely procedural, depended primarily on having had some 
exposure to the task, then on how well (i.e. accurately) 
participants performed the task, and finally on an individual 
difference variable, namely, one’s desire to make sense of 
the task. Yet for Test 2 performance, after participants had 
been oriented by Test 1 to the fact that the task has a 
conceptual structure, the most important factor in their 
performance was reaction times at the end of practice, just 
before they took Test 2. That is, participants’ later 
procedural fluency (not just their task accuracy) is a 
predictor of their later conceptual performance. We can 
relate these results to cognitive load theory which suggests 
that practice leads to automaticity and the freeing of 

cognitive resources which can then be used for conceptual 
learning. Although we do not have a direct measure of 
cognitive load, we can regard Block 3 reaction times as a 
proxy for automaticity. Thus, consistent with cognitive load 
theory we find that participants who are more automatic 
procedurally do better conceptually at Test 2. 

We have seen that Test 1 and Test 2 performance seem to 
be related to different factors. However Test 1 and Test 2 
differ in two ways: the presence of the earlier test (which 
could orient participants to the conceptual structure of the 
task) and, on average, the amount of procedural practice at 
test time. To address which of these is more responsible for 
the Test 1 vs. Test 2 differences in predictors of conceptual 
learning, we compare Group 1 at Test 2 and Group 4 at Test 
1. These are the two groups that performed all the practice 
trials without interruption. They differ only in that Group 1 
has already seen the conceptual test and Group 4 has not. 
Moreover, there are no differences between these two 
groups’ scores on their conceptual test after practice (t(45) = 
.155, p = .878). Procedurally, there are no differences 
between these two groups on their accuracy throughout the 
task. Generally, Group 4 tends to be faster than Group 1 
although the difference is only significant on the last block 
(t(45) = 2.564, p = .014).  

We performed regression analyses on these two 
conceptual test scores with our six procedural measures as 
independent variables. For Group 1 (Test 2), the only factor 
selected was Block 3 reaction times, (R2 = .451), whereas 
for Group 4 the only factor selected was Block 1 accuracy 
(R2 = .661). Thus, for these two groups, the key difference 
of having seen a prior conceptual test (or not) is enough to 
produce different predictors of the conceptual test scores at 
the end of training. That is, for Group 1 participants who 
have seen the test before, performance is related to 
procedural proficiency at the end of practice, whereas for 
Group 4 participants, taking the test for the first time, their 
conceptual score are only related to initial accuracy. This 
suggests that the first conceptual test may be a conceptual 
intervention of sorts and that it provides conceptual 
knowledge that changes the relationship between procedural 
skill and conceptual learning. This is akin to Rittle-Johnson 
et al.’s (2001) view that there is an iterative relationship 
between procedural skill and conceptual learning. Here, we 
have evidence of some (very minor) conceptual training 
(i.e., simply taking the first test) changing the conceptual 
impact of additional procedural practice. 

These results suggest that cognitive load can explain gains 
in conceptual learning from procedural performance, but 
that this relationship requires some awareness of the 
conceptual nature of the task. However, we have not 
manipulated this relationship directly. Particularly, we have 
assumed that faster reaction times imply reduced cognitive 
load. A dual task paradigm where improvements in Symbol 
Fun were offset by increased cognitive load from the other 
task would demonstrate whether reducing cognitive load is 
integral to this type of learning. Interestingly, while we have 
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seen that there is a differential relationship between 
procedural practice and conceptual learning with a small 
conceptual intervention, there was no difference in 
conceptual performance. An outstanding question is 
whether this shift in role for procedural performance has any 
educational benefits. 
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