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Abstract

The investigation of variability in reasoning tasks can provide
valuable insights into key issues in the study of cognitive
development. These include mechanisms that underlie
developmental transitions, individual differences and
developmental disorders. We explored potential sources of
variability in the development of knowledge of conservation —
a classic Piagetian task. Taking the task structure and problem
encoding of Shultz (1998) as the normative case, we
examined the computational parameters, problem encodings,
and training environments that contribute to variability in
development, both across groups and within individual cases.

Introduction

Conservation refers to the understanding or belief in the
continued equivalence of two physical sets, following a
transformation that appears to alter one and not the other. A
given transformation may alter a quantity, by adding or
subtracting, or preserve it through elongation or
compression. The acquisition of conservation knowledge
involves learning to distinguish between transformations
that preserve and those that alter quantity. For example, in a
typical number conservation task, as shown in Figure 1, a
child is initially presented with two rows of counters (pre-
transformation). The child is then asked whether these rows
have the same number of counters or whether one has more
than the other. A transformation is then applied to one row,
and the child is asked again whether the two rows are the
same, or whether one now has more counters than the other
(post-transformation).

Piaget (1965) found that young children below 6-7 years
are non-conservers, in that when presented with a
transformation that preserves number (such as elongation or
compression) they answer that one row has more counters
than the other. In contrast children older than 6-7 years are
conservers, having learnt that transformations of this type
do not alter number. This finding has been corroborated
across a range of conservation tasks, such as mass (using
modeling clay), liquid quantity (using beakers), and number
(using counters) (Brainerd & Brainerd, 1972; Halford &
Boyle, 1985; Klah, 1984; Miller & Heldmeyer, 1975;
Siegler, 1995; Siegler & Robinson, 1982; Wallach, Wall &
Anderson, 1967; Winer, 1974). The rich literature on
conservation has also established a series of biases that

occur as young children learn to conserve, relating to
problem size, length, and mode of presentation. These
effects are summarized in Figure 1.
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cannot see the the result of the

transformation.

Figure 1: The number conservation task using counters

A range of classic Piagetian tasks such as conservation,
seriation and the balance scale, have been subject to
computational investigation. Models have sought to specify
the mechanisms that generate the behavioral profile of
development (Mareschal & Shultz, 1999; McClelland, 1989,
1995; Shultz, 1998; Schultz, Mareschal & Schmidt, 1994).
Recent connectionist implementations use an algorithm
called cascade-correlation (Falham & Lebiere, 1990).
During training, network connections are altered but if
learning stagnates, the size of the hidden layer is increased.
The success of this generative connectionist approach has
been attributed to the change in the network architecture
(Mareschal & Shultz, 1999; Shultz, 1998; Schultz,
Mareschal & Schmidt, 1994). Thus Shultz (1998) ascribes
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the ability of his model to capture the abrupt shift from non-
conservation (NC) to conservation (C) to the addition of
hidden units and an attendant increase in representational
power. However, it is possible that other computational
parameters have a similar impact upon a model’s behavioral
profile over the course of development. The influence of
diverse learning parameters on development and their
relation to cognitive variability is a question under active
exploration (Richardson, Baughman, Forrester & Thomas,
2006).

The study of variability is important for three reasons.
First, it permits us to explore the conditions under which
certain behavioral transitions in development may or may
not occur. Second, variability across individuals of the same
age gives a window onto general or specific intelligence.
Third, variations in development from the normal pathway
are found in disorders, sometimes exhibiting delay, failure
to reach more complex levels of reasoning, or qualitatively
atypical patterns. Implemented models have generally
focused on the normative (average) pathway, yet each type
of variability must ultimately be explained at a mechanistic
level (Thomas & Karmiloff-Smith, 2003).

In the following sections, we report an initial series of
simulations that investigated potential sources of variability
in the conservation task. First we introduce our normal
model of development based on Shultz (1998). Second, we
explore how manipulating the model’s computational
parameters, input encoding, and training environment alter
its developmental behavioral profile. Third, we examine
within-individual variability by carrying out a case study
comparison, contrasting two individual model runs.

The Normal Model

The normal model was defined as a 3-layer feedforward
connectionist network consisting of an input layer of 13
units, a hidden layer of 4 units, and an output layer of 2
units. The problem encoding used by this network was
based on Shultz (1998) and is shown in Figure 2. Each row
of counters was represented over 2 units, encoding row
length (ranging from 2 to 6.33) and density (ranging from 2
to 6) respectively, as real numbers. Both rows are shown
represented in their pre- and post-transformation states. The
row transformed (either row 1 or row 2) was indicated by
the activation (-1 or +1) of a single unit. The transformation
type was encoded arbitrarily over 4 units, with the activation
of a single unit indicating the type as follows: addition (1 -1
-1 -1), subtraction (-1 1 -1 -1), elongation (-1 -1 1 -1), or
compression (-1 -1 -1 1). The three possible response
options were encoded over 2 binary output units as follows:
(1) row 1 longer (1 0), (ii) row 2 longer (0 1), (iii) both rows
equal (0 0). We differed from Shultz in using a more
standard feedforward architecture with a sigmoid rather than
hyper-tangent activation function.

Our model was trained using back-propagation for 1500
epochs, with a learning rate of 0.025. Ten network runs
were conducted per manipulation, with initial weights
randomized between +0.5. The standard error across runs is
depicted in all figures. The composition of the training and

test sets was again based on that of Shultz, with patterns
having five levels of row length and five levels of density. A
total of 400 training patterns were selected from a full set of
600 possible conservation problems (based upon 25 initial
rows, 3 possible start states, and 4 possible transformations
for each of the 2 rows). Performance was assessed using 100
novel test patterns at 5, 25, 50, 100, and 200 epochs, and
then at every subsequent 100-epoch interval until the end of
training at 1500 epochs.

Pre-transformation Post-transformation Row ID Transformation type

———

COO0000Q00000

Row 1 Row 2 Row 1 Row 2

Figure 2: The input encoding

In order to assess the behavior of the model, the test set
was used in conjunction with 4 metrics, each reflecting a
target behavioral phenomenon described in Figure 1: (i)
Acquisition, (ii) the Problem Size Effect, (iii) Length Bias
Effect, and the (iv) Screening Effect. Metric 1 plotted the
development of knowledge of conservation, and calculated
the percentage of test patterns correct. Metric 2 calculated
the proportion of small vs. large problem types correct. In
this case, the test set consisted of 40 patterns, 20 small
problem types (<12 items), and 20 large (>24 items). Metric
3 used elongation and compression problems from the test
set (a total of 18 patterns, 8 and 10 of each type
respectively) to calculate the proportion of patterns where
the longer row was selected as having more items than the
shorter row. Metric 4 calculated the proportion of
unscreened vs. screened problems correct for the complete
test set. Test patterns presented to the network were
represented as “screened” by replacing post-transformation
activation values with zeros.

The normal network learned the training set to an accuracy
of 99.5% (SE 0.4%). Training performance exhibited an
early shift from NC=>C between 100 and 200 epochs (from
44.58 to 70.35% training patterns correct). This shift was
preceded by an initial decline in training performance over
the first 50 epochs and followed by small incremental
improvements in performance as training progressed. The
behavioral profile of the model can be seen in Figure 3,
where the shift from NC=>C (Acquisition) on novel patterns
occurs between 100-200 epochs and performance leaps from
36.2% (SE 1.75%) to 61.7% (SE 4.75%). Normality is
defined as the non-linear shift to conserving. The model also
exhibited a minor performance advantage for small problem
sizes (problem size effect) between 100-700 epochs, the time
during which the model was doing the bulk of its learning.
Normality is defined as an advantage for small problems
(+ve values on the chart) during earlier phases of training.
The model’s bias for selecting longer rows as having more
items (length bias effect) was also found to reduce after this
point in learning. Normality is defined as an early positive
spike on the length bias chart, which shows proportional
advantage of long problems over short. Unlike Shultz
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(1998), our model did not show any preference for
“screened” problems early in learning (screening-effect),
which would appear as an early negative spike on the chart.
This shortcoming may relate to our use of sigmoid
processing units.
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Figure 3: Developmental phases of the normal model. The
arrow shows shift from NC=>C for the acquisition metric

Exploring Variability
With our base model in hand, we then sought to assess the
influence of several factors on development. Variability was
explored by systematic changes to (1) the base model’s
computational parameters, (2) its problem encoding, or (3)
the training environment.

Variability and Computational Parameters

The computational parameters that were varied included: (i)
the number of hidden layers, (ii) the number of hidden units
in a single layer, (iii) the learning rate, and (iv) the slope of
the sigmoid transfer function for hidden layer units.
Increasing the number of hidden layers

The performance of the model was tested over learning with
2 and 3 hidden layers (HL), with 4 units per layer.
Additional hidden layers tend to increase the computational
complexity of the mappings that can be learned by a
network while slowing down learning, since the error signal
must filter back through more levels. Learning rate (Ir) was
held constant (at 0.025) in this condition (this was the case
for all subsequent architectures unless stated otherwise).
These networks achieved mean accuracy levels on the
training set of 99.5, 99.7, and 92.9% (SE 0.4, 0.02, and
6.64%), respectively. The developmental trajectories of the
networks are shown in Figure 4. The profiles of networks
with 1HL and 2HL were very similar. Both 1HL and 2HL
networks showed a shift from NC => C between 100-300
epochs, which was slightly larger for networks with 2HL
than those with 1HL (25.5 and 39.2% respectively).
Networks with 3HL showed an incremental improvement in
performance with no obvious shift, attaining knowledge of
conservation at 700 epochs. There was a sustained negative
bias for problem size in networks with 3HL, as well as an
increase in variability. The variability for the length bias

% correct

effect was very high, particularly for 2HL and 3HL
networks. As for screening, there was no bias in early
learning for screened problems. However, the developing
bias for “unscreened” problems increased over learning.
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Figure 4: Profile for models with 1 (normal), 2 and 3 HL.
Arrows show shifts from NC=>C

Increasing the number of hidden units in a single layer
Adding extra units to a given hidden layer allows a network
to learn more patterns of a given complexity, and to solve a
given problem with smaller weight values, thereby requiring
less training. We assessed networks with 4, 10, and 20 units
in the hidden layer (HU) for the normal 1HL model. At the
end of training networks with 4HU had a mean accuracy of
99.48%; 10HU and 20HU networks had reached 100%.
10HU and 20HU networks showed earlier acquisition of
conservation knowledge (between 50 and 100 epochs). This
shift was also larger than networks with 4HU (30-30.3% in
comparison to 25.5%). The behavioral profile across metrics
can be seen in Figure 5. All networks showed a similar
profile across testing metrics, with variability being
uniformly low. Interestingly, networks with 4HU did show
a slightly larger length bias effect of an extended duration,
in comparison to 10HU and 20HU networks. It is likely that
this is related to the initial learning of the 4HU network
being lower than that of 10HU and 20 HU networks.
Therefore, increasing the number of hidden units improved
training performance, resulting in an earlier shift for those
networks with more hidden units, but showed a similar
trajectory in comparison to the normal case. Extending this
manipulation to 2HL and 3HL networks yielded the same
results. Thus, expanding the capacity of the system in terms
of parallel processing resources alters the onset of learning,
but not the overall developmental profile. In conjunction
with the findings from the hidden layer condition, this result
suggests that the structure of any additional processing
resources can have a marked impact upon developmental
process.

Reducing the learning rate

The term delay is sometimes used to describe individual
differences, as well as the trajectories of developmental
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disorders. An obvious means of slowing learning would be
to decrease the learning rate. Though this method would not
provide an explanation of why different cognitive abilities
are often differentially delayed in disorders it does
nevertheless

allow us to explore how learning rate affects the transitions
the system exhibits during learning. Learning rate was
reduced in the normal network in four decrements from
0.025 to 0.02, 0.015, 0.01, and 0.005. After 1500 epochs,
these networks achieved mean accuracies 99.8, 98.5, 96.6,
and 86.3% respectively. Figure 6 depicts their
developmental phases, with the four steps labeled from LR4
to LR1 as the learning rate decreases.
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Figure 5: Profile for models with 4 (normal), 10 and 20 HU
in a single layer. Arrow shows shift from NC=>C
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Figure 6: The 1HL model with reducing learning rates.
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Predictably learning rates slowed development down. As a
result, improvements in performance behavior were more
incremental. Extending this manipulation to networks with
2HL and 3HL, displayed a similar pattern of results. Though
networks with a lower learning rate had a lower level of
performance at end of training (at 1500 epochs), the overall
performance was high, but could have improved further
through extended training time. In contrast, for
developmental disorders, performance typically asymptotes
at a less complex level in comparison to the normal case. In

terms of individual differences, it is also doubtful whether
everyone eventually ‘catches up’ to a fixed final cognitive
level. From this perspective, a reduced learning rate does
not seem a good (sole) candidate to explain the type of
developmental delay found in disorders.

Decreasing the sigmoid slope

Changing the slope of a transfer function has the effect of
altering the type of category distinctions a model can make.
For example, a steep sigmoid slope results in sharp category
boundaries and is good for tasks where the model is
required to make rule-like distinctions. Whereas a shallow
slope is better suited to fine-grained distinctions and tasks
with broad category boundaries. Altering the level of
processing unit discriminability has been shown to produce
patterns of deficits consistent with those seen in
developmental disorders (Thomas & Karmiloff-Smith,
2003). This condition explores the impact of changing the
general properties of processing resources of hidden units,
through decreasing the slope of the sigmoid transfer
function for the entire hidden layer. The slope of the
sigmoid was reduced (from a value of 1) in the normal
model, by four levels of decreasing discriminability as
follows: 0.8, 0.6, and 0.25, to 0.125.

The profiles across metrics are shown in Figure 7, where
sigmoid slope is labeled as four steps from S4 to S1 as the
sigmoid slope decreases. Changing the slope of the sigmoid
produced a profile that at the surface level appears similar to
that found for the learning rate condition, with development
slowing down as the slope decreases. However, in contrast,
with the exception of the problem size metric, there appears
to be more convergence across the different slope levels in
the later stages of learning. This difference on this metric
appears to be for the shallowest two slope decrements, and
may be related to the later and more incremental trajectory
shown during task acquisition. Overall, this result shows
how two different parameters may produce a similar
developmental trajectory, but also subtle differences, as in
the persisting problem size bias for the shallowest slope.
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Variability and the Problem Encoding

We explored a variation in problem encoding where the
salience of transition type was increased. The number of
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units encoding transition information (as shown in Figure 2)
was doubled from 4 to 8, resulting in an input layer
consisting of 17 units, with 8 units encoding pre- and post-
transformation information, and 8 units encoding
transformation type. This manipulation was carried out for
networks with 1HL, 2HL and 3HL. The final performance
of the models was found to be similar to that shown for
equivalent models trained without increased transition
information. The overall profile of development and
Acquisition of conservation knowledge was also the same as
the equivalent models. Therefore, for these simulations,
changing the salience of a dimension of information did not
have any notable impact upon the developmental trajectory
of the model.

Variability and the Engaged Environment

Since development in the conservation task corresponds to
the child’s active exploration of the domain, we refer to the
training set as the engaged environment. We created a
training set with a limited coverage of the problem space. It
consisted of 400 problems with a small quantity of items
only (<12 items). The normal architecture and problem
encoding was used. Networks with 1HL, 2HL and 3HL
were trained on this environment to explore any interaction
between representational power and the engaged
environment. Interestingly, this environment did not appear
to have notable impact upon the overall performance,
irrespective of the number of hidden layers in the model. At
the end of training 1HL, 2HL and 3HL networks reached the
mean accuracies of 99.75, 99.78, and 91.53%, respectively.
The profile of 1HL and 2HL networks over metrics was
similar to that shown for equivalent models trained on a
normal engaged environment. Limiting the engaged
environment to problems with a small number of items did
not impact upon the developmental trajectory of the model.

Individual Variability: A Case Comparison

Variability also occurs during the development of individual
children. The risk of averaging across individuals is that the
resulting trajectory may not actually be found in any one,
and this possibility also exists for simulation data. In this
section we conduct an in-depth comparison of two
individual cases: (i) a single normal model with 1HL
(henceforth normal case), and (ii) a 1HL model with a
reduced learning rate (Ir=0.005, henceforth /r case). Both
models were trained using the normal input encoding and
engaged environment using the same randomly initialized
starting weights. The behavioral profile of each model was
assessed using our 4 metrics. In addition, a detailed analysis
of the development of conservation according to (i)
transformation type, and (ii) problem size was conducted for
test items. The training performance of both models can be
seen in Figure 8, where the Ir case shows a slower
developing, more incremental trajectory, in comparison to
the normal case. The shift from NC=>C is also clearly later
(by approximately 500 epochs) than that of the normal case,
and subsequent improvements in training performance are
also smaller. This pattern in training performance can also
be seen in the behavioral profile for metric acquisition

% correct

(calculated on novel test items) shown in Figure 9. For
problem size and length bias metrics, the [r case shows an
extended problem size and length bias effect. These effects
are in parallel with the protracted learning window of this
model. For the screening metric, the trajectory of the /r case
deviates from that of the normal case, showing a minor
preference for “screened” problems at the onset of
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Figure 8: Training performance for the normal and reduced
learning rate models. Arrows show the shift from NC=>C
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Figure 9: Profile for the normal and reduced learning rate
models. Arrows show the shift from NC=>C

Exploring the development of conservation knowledge in
the normal case across problem types (as shown in Figure
10) revealed a difference in the initial profile for problems
that alter number (addition and subtraction), in comparison
to those that preserve number (elongation and compression).
Addition and subtraction problems showed a static level of
performance early in learning, whereas elongation and
compression problems showed an initial dip in performance.
As a consequence, performance over learning on
transformations that preserve number was poorer than those
that alter it. This dip was seen on all problem types in the /r
case.
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Figure 10: Profile of performance across problem types
during learning for reduced /r and normal cases
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An initial dip in performance can also be seen for
problems of differing sizes (as shown in Figure 11). In the
normal case, this dip was exaggerated for large problem
sizes, resulting in poorer performance on large problems
during learning. For the /r case, the converse pattern is seen,
where the performance for larger problem types is better.

Small Medium Large

[—— Normal —=— Reduced Ir |

Figure 11: Profile of performance across problem types
during learning for reduced /r and normal cases

Discussion

These simulations fall within a wider program of
considering the effects of computational parameters on
cognitive and language development. The exploration of
mechanisms underlying variability in cognitive development
may enhance our understanding of the origins of individual
differences and developmental disorders, as well as
transitions in the normal development of individual
children. In this case simulations of the conservation task
indicated that changes to the internal computational
parameters of the model had a marked impact upon the
acquisition of conservation knowledge. Notably, changes to
the internal discriminability of processing units through
reducing the slope of the sigmoid transfer function, as well
as decreasing the learning rate delayed acquisition of
conservation knowledge. The profile of performance from
these two manipulations illustrates how different parameters
can have a similar impact upon the trajectory of
development. By contrast, changes to the problem encoding
at input or the engaged environment had little impact on the
model’s developmental trajectory. These results contrast
with a similar series of computational simulations of
variability on the balance scale task, where changes to the
model’s engaged environment produced marked alterations
in the developmental profile (Richardson et al, 2006). In
tandem, these results paint a picture where the effect of
alterations to the constraints that shape development
depends on the nature of the cognitive task. The same
parameter may not exert a uniform influence across
cognitive domains.
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