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Abstract

We introduce a unified approach to account for the problems
people have in spatial reasoning. This approach combines two
theories: the mental model theory which aims to explain the
deduction process, and the relational complexity theory which
explains the processing complexity of the spatial relations
needed in order to conceptualize the reasoning problem. We
propose that a combination of these two theories can account
for some of various errors found in spatial reasoning. We
present two experiments in which we demonstrate that
participants use the principle of first free fit to construct
preferred mental models. We then formally implement these
findings in the Spatial Reasoning by Models computational
framework.
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Introduction

Everyday spatial reasoning is strongly connected to the
extensive use of spatial relations which locate one object
with respect to others. Examples of such relations include
binary relations such as “to the left of”, or “in front of”, and
even more complex relations like the ternary relation “in-
between”. A typical reasoning problem dealing with such
spatial relations is to infer relations between objects from an
incomplete description of a spatial configuration of objects.
Hence, in the deductive reasoning process implicit relations
between a series of objects are to be inferred from assertions
describing the spatial configuration. An easy example is
provided by the following problem:

The hammer is to the right of the pliers.
The screwdriver is to the left of the pliers.
The wrench is in front of the screwdriver.
The saw is in front of the pliers.

Which relation holds between the wrench and the saw?

The first four assertions are called premises, while the
question refers to a possible conclusion that can be drawn
from the premises. The mental model theory (MMT),
proposed by Johnson-Laird and Byrne (1991), suggests that
people draw conclusions by constructing and inspecting a
spatial array that represents the state of affairs described in
the premises. This reasoning process consists of three
distinct stages: comprehension, description, and validation
(see next section for explanation). According to the MMT,
linguistic processes are only relevant to transfer the
information from the premises into a spatial array and back
again, but the reasoning process itself relies only on non-
linguistic processes.

A limitation of the MMT so far is that this theory does not
explain the difficulty humans have with complex relations.
The MMT explains the complexity of reasoning problems,
but neglects the construction complexity of the models. This
is, we believe, where the relational complexity theory (RCT)
introduced by Halford (1993) comes into play. Different
models representing a spatial description can be measured in
terms of cognitive economicity (Halford, 1993; Goodwin &
Johnson-Laird, 2005). But a weakness of the RCT is that it
does not explain how the reasoning process itself works. In
other words both theories, RCT and MMT are limited to
some extent, o—more positively—can complement each
other.

This paper suggests an integration of RCT and MMT by
providing a formal framework which is based on a particular
specification of the MMT, namely the theory of preferred
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mental model (PMMT, Knauff, Rauh, & Schlieder, 1995;
Ragni, Knauff, & Nebel, 2005; Rauh, et al., 2005).

In the next section we will describe the MMT and RCT in
order to provide a base for a formal definition of RCT in the
spatial domain. We then report empirical findings in support
of our hypotheses about relational complexity and the
strategies used in construction of preferred mental models.
In the last section we present a unifying approach which is
able to account for these results in a theoretical framework.

Theoretical Approaches

According to the MMT (Johnson-Laird & Byrne, 1991) a
spatial reasoning process can be divided into three distinct
phases. In the following we adopt the notation of the phases
from Knauff, Rauh, Schlieder, & Strube (1998): In the
construction phase, reasoners construct a mental model that
reflects the information from the premises. If new
information is encountered during the reading of the
premises it is immediately used in the construction of the
model. During the inspection phase, this model is inspected
to find new information that is not explicitly given in the
premises. Finally, in the variation phase alternative models
are constructed from the premises that refute this putative
conclusion. However, some questions remain open, for
example how is an initial model constructed, and what
strategies are used in construction? How can it be explained
that reasoners ignore some models and are not able to find
counter-examples?

Our preferred mental model theory (PMMT) is an account
based on the mental model theory and able to explain such
findings (Knauff, et al., 1995; Ragni, et al., 2005; Rauh, et
al., 2005). The term PMM refers to a phenomenon
encountered during reasoning with multiple-model
problems. In problems in which more than one model is
consistent with the premises (so called indeterminate
problems) reasoners often construct only one single model —
the PMM. This model is easier to construct and to maintain
in working memory compared with all other possible
models (Knauff et al., 1998). In the model variation phase
this PMM is varied to find alternative interpretations of the
premises (e.g. Rauh et al., 2005). But how is a PMM
constructed, and what strategies are used? We developed a
computational model—spatial reasoning by models
(SRM)—that consists of a spatial array and a focus (spatial
working memory) and uses the PMM to explain empirical
findings from human spatial reasoning (Ragni, et al., 2005).

One of the main results of the computational theory is the
distinction of two insertion principles. Let us consider the
following example:

B is to the right of A
C is to the right of A

Here the focus can insert in a spatial array the first object
A, then move to the right of A and insert the object B, move
back to A and then moves to the right to insert object C, it
finds the cell occupied (by object B) so it moves to the right
of B inserts object C, and makes an annotation on C to

indicate indeterminacy. This gives us the first model, and
this model is constructed according to a hypothetical
principle we call first free fit (fff). This means that an object
is inserted at the first free position. Alternatively, object C
could be placed into the cell on the right of A. If this cell is
occupied by another object (object B), this is then shifted to
the next cell. This we call the first fit (ff) principle, and it
gives us the second possible model. In other words the ff
principle always inserts the object at the next position that
fulfills the spatial relation specified in the premise. This
sometimes means that other objects already in the model
must be moved. In the following we report two experiments
with human participants in which we tested the first fit and
the free first fit principles against each other and then
present a detailed theory of Relational Complexity and
formalize it for spatial reasoning.

Empirical Data

In this section we report two experiments with humans to
examine (i) which of the possible principles (ff versus fff) is
more likely to be used, and (ii) how the level of complexity
affects the PMM, and the corresponding accuracy and
reaction times during verification.

We assume that participants construct models according
to the fff-principal. Furthermore, we assume that the higher
the complexity is the more difficult it is to validate the
conclusion. This may result in longer latencies and more
errors due to the higher number of operations that are
required. In addition, we assume that the participant has
only the hypothesized PPM in mind. If this is the case, then
they should generate the PMM more often than the ~PMM
(Experiment 1), furthermore, relations (conclusions) that
only hold in a "PMM should be rejected more often than
relations that only hold in the PMM (Experiment 2). Note,
that from a logical point of view a logically valid conclusion
is only given if the relations hold in all possible models. The
conclusion is logically invalid if it only holds in one but not
in all possible models.

Experiment 1 — The fff Principle

In this experiment we investigate if participants adopt an fff-
strategy when constructing a PMM.

Participants, Materials, Procedure, and Design. Twenty
participants from the University of Princeton were shown
eight different indeterminate problems with four premises.
In order to avoid artefacts for a certain problem form we
also used the horizontal mirror of each two-dimensional
problem. The five terms (indicated in Table 1) were
randomly replaced with the name of a fruit (lemon, orange,
kiwi, peach, mango, and apple). We also included two
determinate problems (one for each dimension) to avoid any
preference for indeterminate problems.

Table 1 shows the different problems and the possible
models for each. For the two-dimensional problems exist
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two possible models and for the one-dimensional problems
three or five possible models. The PMM (assuming that the
[if-principal is the one participants use) is always the first
model in the table and is written in bold letters.

The premises were presented to the participants on a
computer screen. Each premise was presented sequentially
(in a self-paced manner), and remained on the screen until
the presentation of the fourth (and final) premise. After the
final button press all the premises were removed and the
participants were then asked to draw the model on a sheet of
paper. They were free to draw more than one model if they
noticed that this was a possibility. However, they were
neither instructed to draw more than one model, nor told
that in some problems more than one model was possible.

Table 1: Premises and possible models for each problem: In
Experiment 1 all depicted problems were used, in
Experiment 2 just problems (a) and (b). The problems (a)
and (b) were indeterminate 2-dimensional, (c) and (d) were
1-dimension, (e) and (f) were determinate 1- and 2-
dimensional. The models indicated in bold letters are the
hypothesized PMM for each problem. The mirrored 2-
dimensional problems are not shown.

Problem Possible models
(a) A is to the left of B. 1 E D
C is to the right of A. A B C
D is behind C. @ E D
E is behind A. A C B
(b) A is to the left of B. 1 E
C is to the right of A. A B g
D is behind C.
E is behind A. @ E
A C B
D
(c) B is to the right of A. M A B C D
C is to the right of B. 2 A B E
D is to the right of B.
3 A B C E D
E is to the right of C. @)
(d) B is to the right of A. M A B C D E
C is to the right of B. 2 A B C E D
D is to the right of B.
E is to the right of B. ¢ A B D EC
49 A B D C E
) A B E D C
(e) A is to the left of B. 1 E D
C is to the right of B. A B C
D is behind C.
E is behind A.

(f) B is to the right of A.
C is to the right of B.
D is to the right of C.
E is to the right of D.

Results and Discussion. Only two participants (10%)
produced more than one model. Each separate problem
(problems: U or Z shape, inverse shape, 2- and 1-
dimensional, 2, 3, or 5 possible models, indeterminate or
determinate) was drawn correct and above chance (Binomial
test: > 75% correct, p < 0.002). Altogether, 83% of the
drawn problems were correct (p < 0.001). In addition, we
found that 78% of all drawings were of the PMM, while
only 22% of all drawings represented a ~PMM (Binomial
test: 78%, p =< 0.001).

As we hypothesized participants showed a preference for
PMM. In the majority of cases participants’ inserted new
terms in the manner described by the fff-principle. Even
though there are more than two models possible,
participants mostly drew only one model, and in the
majority of cases this was the PMM.

Experiment 2 — RC and PMM

In this experiment we test if relations that only hold in a
—PMM are rejected more often than relations that only hold
in the PMM. We also examine the effect of relational
complexity on the variation process.

Participants, Materials, Procedure, and Design. Twenty-
one participants from the University of Princeton were
shown 18 two-dimensional indeterminate problems, each
with two possible models (see Table 1). The procedure for
the presentation of the premises followed the same format as
Experiment 1. After deletion of the premises a set of
relations was presented on the screen and the participants
were asked if these relations were valid. We varied the
complexity and the validity of the relations.

The complexity of the relations was counterbalanced
across the problems: one third contained binary relations:
“Is C near to B and B near to C?” the second third ternary:
“Is C as near to B as B is near to D?”, and the last third
quaternary relations: “Is A as near to D as C is near to E?”
For the purpose of this experiment, the relation "near to"
means if the term is in direct contact with the other term,
regardless of the dimension (horizontal, vertical, diagonal).
If one imagines a grid with the term in the center then this
means the term that is “near to” it can be in one of eight
possible positions.

We use three different types of relations that differed with
respect to validity (see Table 2). One of the offered relations
was the logically correct solution, because it holds in all
models. The other two offered relations could either hold
only in the PMM or only in the "PMM, but not in both.

For every complexity level there were two problems with
the same premises but with relations that were only valid in
the PMM (YN) or the "PMM (NY).

We were interested in the answers for the offered
logically correct relations (conclusions in the strong logical
sense, YY) and in the proportions of acceptance and
rejection of relations that were only correct in one of the
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possible models (PMM or —PMM). If the participants have
only the PMM in mind then they should answer “yes” to the
relation which is correct only in the preferred model (YN)
and “no” for the one which correct only in the non-preferred
model (NY). We expected the opposite for participants who
have only the "PMM (NY) in mind. Premise reading times,
the accuracy and reaction time during the verification of the
offered models were recorded.

Table 2: Example for the validity of the offered relations
with a ternary complexity (holds for both models: YY, only
hold for PMM: YN, or only holds for ~PMM: NY).

Possible , Valid for
wodels Offered relations PMM/ -PMM
PMM Is C near to B as Yes/Yes (YY)
E D B near to D?
ABC Is E near to B as Yes/No (YN)
2
_PMM B near to C?
E D Is E near to C as No/Yes (NY)
A C B C near to B?

Results and Discussion. As expected we found higher
reading times for the second premise due to the introduction
of the indeterminacy ( test: premise 2 > premise 1, #303) =
4.45, p £0.001 and premise 2 > premise 3, #(303) = 5.40, p
<0.001, premise 1 vs. premise 3, not significant). This is in
line with previous results in the literature (cf. Carreiras &
Santamaria, 1997).

Overall we found that 69% of all responses were correct
(Binomial Test: 69% correct answers, p < 0.001), which is
more than one would expect by chance.

As the level of complexity increased so did the errors
(ternary > binary: Z = -3.0, p = 0.003, quaternary > binary:
Z = -2.413, p = 0.016), as did the corresponding reaction
times ([ternary + quaternary] > binary: #20) = 2.45, p =
0.024).

The most important finding, however, is that it was more
difficult to accept relations that only hold in the "PMM as
compared to those that hold in the PMM (Binomial Test:
46% acceptance, p = 0.371; Binomial Test: 79% rejection, p
< 0.001). This pattern of acceptance/rejection rates was
evident across all three of the complexity levels (binary:
74%, p = 0.003; ternary: 79%, p = < 0.001; quaternary:
86%, p =<0.001).

In the final analysis we are only interested in the answer
pairs in which the participants gave a YN or NY answer.
These answers are logically speaking invalid, however, they
provide insight into which of the two models (PMM or
—PMM) the reasoner had in mind (see Table 2). Here we
found 77% of the responses were consistant with the PMM
and only 23% of the responses with consistant with the
—PMM (Binomial Test p < 0.001). The reaction times for
the preferred and non-preferred relations do not differ

(PMM: mean 14427 ms, SD 10276; “=PMM: M 14193 ms,
SD 9313; t test: #(56) = 0.135, p = 0.893).

Furthermore, we found significant differences between
the answer combinations in the binary and the quaternary
poblems (Binomial Test binary: 81% YN, p = 0.007;
quaternary: 76% YN, p = 0.049) and a trend toward
significance in the ternary problems (Binomial Test: 74%
YN, p=0.064).

Several outcomes resulted from this experiment. First, the
complexity led to higher processing efforts with the ternary
and quaternary relations in comparison to the binary
relations. Second, it seems to be easier to reject an offered
relation which holds in the "PMM than to reject one that
holds in the PMM. This was the case for each complexity
level. Third, in order to verify the consistency of the models
that the participants had in mind only the answer
combinations YN and NY are relevant. The comparison
between these combinations showed a clear preference for
the PMM.

A Unifying Approach

We claim that complexity in spatial reasoning stems from
two different sources, namely the complexity to construct or
to investigate a model (model complexity), and the
complexity to deduce from a given set of premises a
conclusion (deduction complexity). In the following we
show that RCT provides an explanation for model
complexity since it links the fff principle to the principle of
economicity. For example consider the following problem:

A is to the left of B.
C is to the right of A.

Obviously, there exist two possible models satisfying these
premises, namely
A B C (PMM) A C B (“PMM)

In terms of the PMMT, the second model is the result of the
ff strategy, while the fff strategy yields the first model. The
fact that the first model is the preferred one (see empirical
findings in the previous section) can be explained by the
RCT, since the first model is computationally cheaper than
the second one, that means, the generation process of the
PMM A B C must be computationally cheaper than the
construction of the "PMM A C B. This is because for the
[ff-strategy only the binary relation “C is to the right of B”
has to be processed, whereas for the ff-strategy a ternary
relation like “C is in-between A and B” or “C is to the right
of A and to the left of B” is needed. In other words, during
the construction of the PMM, the indeterminate premise “C
is to the right of A”, can be replaced by the binary relation
“C is to the right of B”, while for the other model the
premise have to be replaced by a ternary or two binary
relations. In this sense the RCT theory predicts the fff-
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strategy, which is empirically confirmed in the first
experiment.

The RCT theory is not only sufficient to explain the
model construction phase as conceived in the MMT, but
also contributes to the explanation of the complexity in the
model inspection phase. According to the RCT, complexity
in this phase arises from the arity and segmentation of the
considered relations. If we consider the RCT approach in
terms of the SRM framework (Ragni, et al.,, 2005): the
model is constructed as a spatial array, in which the objects
are inserted. The focus is the central device for manipulating
objects in the array. These focus operations (scanning a cell,
inserting objects into a cell, moving objects in the array,
etc.) all have the same cost.

The relational complexity is reflected through the
different problems the focus has to perform, for example the
binary relation “C is near B?” the focus has to test the
conclusion by scanning the adjacent cells around B (or C).
Ternary relations such as “Is C as near to B as B is near to
D” are more difficult since in this case the operations the
focus has to perform consists of three sub-processes: the
focus has to figure out the distance between C to B as well
as the distance between B and D, and finally has to compare
these distances. Our empirical findings are well reflected in
this computational model. Moreover, through this
computational model we are also able to explain how
complex relations are decomposed into binary relations like
“right”, “left”, “front”, “behind”, and how the focus builds
the array.

General Discussion

In this paper we propose that by combining MMT and RCT
we can account for phenomena found in the spatial
reasoning literature, empirically and computationally. Our
aim was to investigate the influence of RC on the MMT. We
demonstrated how the construction principles for the PMM
can be explained by a combination of RCT and MMT, and
how this influences the model inspection phase. In addition
these findings fit into our formal framework (the SRM).

There are a number of approaches analyzing relational
complexity in relation to capacity limitations. Halford et al.,
(1994; 1998) devised a method for representing relational
structure within a connectionist framework, although we
have adopted the same principles we have presented a more
symbolic implementation. An implication of this
formalization was the possibility to distinguish between
relations by the number of models they imply: determinate
relations such as “to the right of” which leads to one model,
compared with a relation such as “next to” which implies
multiple models. Using this approach we can interpret and
simulate findings in the literature on how people process
indeterminate relations and preference of relations (cf. Jahn,
Knauff, & Johnson-Laird, 2005).

The main aim of the experiments was to identify the
strategies humans use when reasoning about spatial
relations. In Experiment 1 we corroborated the fff-principle,

for both one and two dimensional problems. Participants
tended to draw the PMM based on this principle.

Experiment 2 revealed a number of results: First, for the
model inspection phase, our findings suggest that ternary
and quaternary relations are more difficult: both resulted in
more errors and longer latencies. This result extends the
findings of Goodwin and Johnson-Laird, (2005) who found
people had difficulty in constructing a mental model when
the premises consisted of more complex relations. Their
findings can also be modeled in the SRM framework.
Second, if the participant has the PMM in mind then it is
easier to reject a putative conclusion which was only valid
for the "PMM, than it is to accept the conclusion which was
only valid for the PMM. This is a strong support for the
PMMT and its computational model. The SRM framework,
a computational model based on the PMMT has been
presented, analyzed, and compared to other computational
models in (Ragni et al., 2005). An implementation of the
SRM in ACT-R had been presented in (Boeddinghaus,
Ragni, Knauff, & Nebel, 2006).
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