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Abstract 

We introduce a unified approach to account for the problems 
people have in spatial reasoning. This approach combines two 
theories: the mental model theory which aims to explain the 
deduction process, and the relational complexity theory which 
explains the processing complexity of the spatial relations 
needed in order to conceptualize the reasoning problem. We 
propose that a combination of these two theories can account 
for some of various errors found in spatial reasoning. We 
present two experiments in which we demonstrate that 
participants use the principle of first free fit to construct 
preferred mental models. We then formally implement these 
findings in the Spatial Reasoning by Models computational 
framework.  
 
 
Keywords: Spatial reasoning; Mental Models; complexity; 
computational framework 

 

Introduction 
Everyday spatial reasoning is strongly connected to the 
extensive use of spatial relations which locate one object 
with respect to others. Examples of such relations include 
binary relations such as “to the left of”, or “in front of”, and 
even more complex relations like the ternary relation “in-
between”. A typical reasoning problem dealing with such 
spatial relations is to infer relations between objects from an 
incomplete description of a spatial configuration of objects. 
Hence, in the deductive reasoning process implicit relations 
between a series of objects are to be inferred from assertions 
describing the spatial configuration. An easy example is 
provided by the following problem: 
 
  

 The hammer is to the right of the pliers. 
 The screwdriver is to the left of the pliers. 
 The wrench is in front of the screwdriver. 
 The saw is in front of the pliers. 
  
 Which relation holds between the wrench and the saw? 
 

The first four assertions are called premises, while the 
question refers to a possible conclusion that can be drawn 
from the premises. The mental model theory (MMT), 
proposed by Johnson-Laird and Byrne (1991), suggests that 
people draw conclusions by constructing and inspecting a 
spatial array that represents the state of affairs described in 
the premises. This reasoning process consists of three 
distinct stages: comprehension, description, and validation 
(see next section for explanation). According to the MMT, 
linguistic processes are only relevant to transfer the 
information from the premises into a spatial array and back 
again, but the reasoning process itself relies only on non-
linguistic processes.  

A limitation of the MMT so far is that this theory does not 
explain the difficulty humans have with complex relations. 
The MMT explains the complexity of reasoning problems, 
but neglects the construction complexity of the models. This 
is, we believe, where the relational complexity theory (RCT) 
introduced by Halford (1993) comes into play. Different 
models representing a spatial description can be measured in 
terms of cognitive economicity (Halford, 1993; Goodwin & 
Johnson-Laird, 2005). But a weakness of the RCT is that it 
does not explain how the reasoning process itself works. In 
other words both theories, RCT and MMT are limited to 
some extent, or—more positively—can complement each 
other. 

This paper suggests an integration of RCT and MMT by 
providing a formal framework which is based on a particular 
specification of the MMT, namely the theory of preferred 
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mental model (PMMT, Knauff, Rauh, & Schlieder, 1995; 
Ragni, Knauff, & Nebel, 2005; Rauh, et al., 2005).  

In the next section we will describe the MMT and RCT in 
order to provide a base for a formal definition of RCT in the 
spatial domain. We then report empirical findings in support 
of our hypotheses about relational complexity and the 
strategies used in construction of preferred mental models. 
In the last section we present a unifying approach which is 
able to account for these results in a theoretical framework. 

  

Theoretical Approaches 
According to the MMT (Johnson-Laird & Byrne, 1991) a 
spatial reasoning process can be divided into three distinct 
phases. In the following we adopt the notation of the phases 
from Knauff, Rauh, Schlieder, & Strube (1998): In the 
construction phase, reasoners construct a mental model that 
reflects the information from the premises. If new 
information is encountered during the reading of the 
premises it is immediately used in the construction of the 
model. During the inspection phase, this model is inspected 
to find new information that is not explicitly given in the 
premises. Finally, in the variation phase alternative models 
are constructed from the premises that refute this putative 
conclusion. However, some questions remain open, for 
example how is an initial model constructed, and what 
strategies are used in construction? How can it be explained 
that reasoners ignore some models and are not able to find 
counter-examples?  

Our preferred mental model theory (PMMT) is an account 
based on the mental model theory and able to explain such 
findings (Knauff, et al., 1995; Ragni, et al., 2005; Rauh, et 
al., 2005). The term PMM refers to a phenomenon 
encountered during reasoning with multiple-model 
problems. In problems in which more than one model is 
consistent with the premises (so called indeterminate 
problems) reasoners often construct only one single model – 
the PMM. This model is easier to construct and to maintain 
in working memory compared with all other possible 
models (Knauff et al., 1998). In the model variation phase 
this PMM is varied to find alternative interpretations of the 
premises (e.g. Rauh et al., 2005). But how is a PMM 
constructed, and what strategies are used? We developed a 
computational model—spatial reasoning by models 
(SRM)—that consists of a spatial array and a focus (spatial 
working memory) and uses the PMM to explain empirical 
findings from human spatial reasoning (Ragni, et al., 2005).   

One of the main results of the computational theory is the 
distinction of two insertion principles.  Let us consider the 
following example:   

 
B is to the right of A 
C is to the right of A 
 
Here the focus can insert in a spatial array the first object 

A, then move to the right of A and insert the object B, move 
back to A and then moves to the right to insert object C, it 
finds the cell occupied (by object B) so it moves to the right 
of B inserts object C, and makes an annotation on C to 

indicate indeterminacy. This gives us the first model, and 
this model is constructed according to a hypothetical 
principle we call first free fit (fff). This means that an object 
is inserted at the first free position. Alternatively, object C 
could be placed into the cell on the right of A. If this cell is 
occupied by another object (object B), this is then shifted to 
the next cell. This we call the first fit (ff) principle, and it 
gives us the second possible model. In other words the ff 
principle always inserts the object at the next position that 
fulfills the spatial relation specified in the premise. This 
sometimes means that other objects already in the model 
must be moved.  In the following we report two experiments 
with human participants in which we tested the first fit and 
the free first fit principles against each other and then 
present a detailed theory of Relational Complexity and 
formalize it for spatial reasoning.  

 

Empirical Data 
In this section we report two experiments with humans to 
examine (i) which of the possible principles (ff versus fff) is 
more likely to be used, and (ii) how the level of complexity 
affects the PMM, and the corresponding accuracy and 
reaction times during verification.  

We assume that participants construct models according 
to the fff-principal. Furthermore, we assume that the higher 
the complexity is the more difficult it is to validate the 
conclusion. This may result in longer latencies and more 
errors due to the higher number of operations that are 
required. In addition, we assume that the participant has 
only the hypothesized PPM in mind. If this is the case, then 
they should generate the PMM more often than the ¬PMM 
(Experiment 1), furthermore, relations (conclusions) that 
only hold in a ¬PMM should be rejected more often than 
relations that only hold in the PMM (Experiment 2). Note, 
that from a logical point of view a logically valid conclusion 
is only given if the relations hold in all possible models. The 
conclusion is logically invalid if it only holds in one but not 
in all possible models.  

 
 
Experiment 1 – The fff Principle 
In this experiment we investigate if participants adopt an fff- 
strategy when constructing a PMM. 
 
Participants, Materials, Procedure, and Design. Twenty 
participants from the University of Princeton were shown 
eight different indeterminate problems with four premises. 
In order to avoid artefacts for a certain problem form we 
also used the horizontal mirror of each two-dimensional 
problem. The five terms (indicated in Table 1) were 
randomly replaced with the name of a fruit (lemon, orange, 
kiwi, peach, mango, and apple). We also included two 
determinate problems (one for each dimension) to avoid any 
preference for indeterminate problems. 

Table 1 shows the different problems and the possible 
models for each. For the two-dimensional problems exist 
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two possible models and for the one-dimensional problems 
three or five possible models. The PMM (assuming that the 
fff-principal is the one participants use) is always the first 
model in the table and is written in bold letters.  

The premises were presented to the participants on a 
computer screen. Each premise was presented sequentially 
(in a self-paced manner), and remained on the screen until 
the presentation of the fourth (and final) premise. After the 
final button press all the premises were removed and the 
participants were then asked to draw the model on a sheet of 
paper. They were free to draw more than one model if they 
noticed that this was a possibility. However, they were 
neither instructed to draw more than one model, nor told 
that in some problems more than one model was possible.  

 

Table 1: Premises and possible models for each problem: In 
Experiment 1 all depicted problems were used, in 
Experiment 2 just problems (a) and (b). The problems (a) 
and (b) were indeterminate 2-dimensional, (c) and (d) were 
1-dimension, (e) and (f) were determinate 1- and 2-
dimensional. The models indicated in bold letters are the 
hypothesized PMM for each problem. The mirrored 2-
dimensional problems are not shown. 

Problem Possible models 
(1) E  D 
 A B C 

(a) A is to the left of B. 
 C is to the right of A. 
 D is behind C.   
 E is behind A. 

(2) E D 
 A C B 

(1) E 
 A B C 
   D 

(b) A is to the left of B. 
 C is to the right of A. 
 D is behind C.   
 E is behind A. (2) E 

 A C B 
  D 

(1) A B C D E 

(2) A B D C E 
(c) B is to the right of A. 
 C is to the right of B. 
 D is to the right of B. 
 E is to the right of C. 

(3) A B C E D 

(1) A B C D E 

(2) A B C E D 

(3) A B D E C 

(4) A B D C E 

(d) B is to the right of A. 
 C is to the right of B. 
 D is to the right of B. 
 E is to the right of B. 

(5) A B  E D C 

(e) A is to the left of B. 
 C is to the right of B. 
 D is behind C.   
 E is behind A. 

(1) E  D 
 A B C 

(f) B is to the right of A. 
 C is to the right of B. 
 D is to the right of C. 
 E is to the right of D. 

 (1)  A B C D E 

Results and Discussion. Only two participants (10%) 
produced more than one model. Each separate problem 
(problems: U or Z shape, inverse shape, 2- and 1-
dimensional, 2, 3, or 5 possible models, indeterminate or 
determinate) was drawn correct and above chance (Binomial 
test: ≥ 75% correct, p ≤ 0.002). Altogether, 83% of the 
drawn problems were correct (p ≤ 0.001). In addition, we 
found that 78% of all drawings were of the PMM, while 
only 22% of all drawings represented a ¬PMM (Binomial 
test: 78%, p = ≤ 0.001).  

As we hypothesized participants showed a preference for 
PMM. In the majority of cases participants’ inserted new 
terms in the manner described by the fff-principle. Even 
though there are more than two models possible, 
participants mostly drew only one model, and in the 
majority of cases this was the PMM. 

 

Experiment 2 – RC and PMM  

In this experiment we test if relations that only hold in a 
¬PMM are rejected more often than relations that only hold 
in the PMM. We also examine the effect of relational 
complexity on the variation process. 
 
Participants, Materials, Procedure, and Design. Twenty-
one participants from the University of Princeton were 
shown 18 two-dimensional indeterminate problems, each 
with two possible models (see Table 1). The procedure for 
the presentation of the premises followed the same format as 
Experiment 1. After deletion of the premises a set of 
relations was presented on the screen and the participants 
were asked if these relations were valid. We varied the 
complexity and the validity of the relations. 

The complexity of the relations was counterbalanced 
across the problems: one third contained binary relations: 
“Is C near to B and B near to C?” the second third ternary: 
“Is C as near to B as B is near to D?”, and the last third 
quaternary relations: “Is A as near to D as C is near to E?” 
For the purpose of this experiment, the relation "near to" 
means if the term is in direct contact with the other term, 
regardless of the dimension (horizontal, vertical, diagonal). 
If one imagines a grid with the term in the center then this 
means the term that is “near to” it can be in one of eight 
possible positions.  

We use three different types of relations that differed with 
respect to validity (see Table 2). One of the offered relations 
was the logically correct solution, because it holds in all 
models. The other two offered relations could either hold 
only in the PMM or only in the ¬PMM, but not in both.  

For every complexity level there were two problems with 
the same premises but with relations that were only valid in 
the PMM (YN) or the ¬PMM (NY).  

We were interested in the answers for the offered 
logically correct relations (conclusions in the strong logical 
sense, YY) and in the proportions of acceptance and 
rejection of relations that were only correct in one of the 
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possible models (PMM or  ¬PMM). If the participants have 
only the PMM in mind then they should answer “yes” to the 
relation which is correct only in the preferred model (YN) 
and “no” for the one which correct only in the non-preferred 
model (NY). We expected the opposite for participants who 
have only the ¬PMM (NY) in mind. Premise reading times, 
the accuracy and reaction time during the verification of the 
offered models were recorded. 

 
 

Table 2: Example for the validity of the offered relations 
with a ternary complexity (holds for both models: YY, only 
hold for PMM: YN, or only holds for ¬PMM: NY). 

Possible 
models Offered relations Valid for 

PMM/ ¬PMM 
Is C near to B as  

B near to D? 
Yes/Yes (YY) 

Is E near to B as  
B near to C? 

Yes/No (YN) 

PMM 
E  D 
A B C 

¬PMM 
E D 
A C B 

Is E near to C as  
C near to B? 

No/Yes (NY) 

 
 
Results and Discussion. As expected we found higher 
reading times for the second premise due to the introduction 
of the indeterminacy (t test: premise 2 > premise 1, t(303) = 
4.45, p ≤ 0.001 and premise 2 > premise 3, t(303) = 5.40, p 
≤ 0.001, premise 1 vs. premise 3, not significant). This is in 
line with previous results in the literature (cf. Carreiras & 
Santamaria, 1997). 

Overall we found that 69% of all responses were correct 
(Binomial Test: 69% correct answers, p ≤ 0.001), which is 
more than one would expect by chance. 

As the level of complexity increased so did the errors 
(ternary > binary: Z = -3.0, p = 0.003, quaternary > binary: 
Z = -2.413, p = 0.016), as did the corresponding reaction 
times ([ternary + quaternary] > binary: t(20) = 2.45, p = 
0.024). 

The most important finding, however, is that it was  more 
difficult to accept relations that only hold in the ¬PMM as 
compared to those that hold in the PMM (Binomial Test: 
46% acceptance, p = 0.371; Binomial Test: 79% rejection, p 
≤ 0.001). This pattern of acceptance/rejection rates was 
evident across all three of the complexity levels (binary: 
74%, p = 0.003; ternary: 79%, p = ≤ 0.001; quaternary: 
86%, p = ≤ 0.001).  

In the final analysis we are only interested in the answer 
pairs in which the participants gave a YN or NY answer.  
These answers are logically speaking invalid, however, they 
provide insight into which of the two models (PMM or 
¬PMM) the reasoner had in mind (see Table 2). Here we 
found 77% of the responses were consistant with the PMM 
and only 23% of the responses with consistant with the 
¬PMM (Binomial Test p ≤ 0.001). The reaction times for 
the preferred and non-preferred relations do not differ 

(PMM: mean 14427 ms, SD 10276; ¬PMM: M 14193 ms, 
SD 9313; t test: t(56) = 0.135, p = 0.893). 

Furthermore, we found significant differences between 
the answer combinations in the binary and the quaternary 
poblems (Binomial Test binary: 81% YN, p = 0.007; 
quaternary: 76% YN, p = 0.049) and a trend toward 
significance in the ternary problems (Binomial Test: 74% 
YN, p = 0.064).  

Several outcomes resulted from this experiment. First, the 
complexity led to higher processing efforts with the ternary 
and quaternary relations in comparison to the binary 
relations. Second, it seems to be easier to reject an offered 
relation which holds in the ¬PMM than to reject one that 
holds in the PMM. This was the case for each complexity 
level. Third, in order to verify the consistency of the models 
that the participants had in mind only the answer 
combinations YN and NY are relevant. The comparison 
between these combinations showed a clear preference for 
the PMM. 

 

A Unifying Approach 
We claim that complexity in spatial reasoning stems from 
two different sources, namely the complexity to construct or 
to investigate a model (model complexity), and the 
complexity to deduce from a given set of premises a 
conclusion (deduction complexity). In the following we 
show that RCT provides an explanation for model 
complexity since it links the fff principle to the principle of 
economicity. For example consider the following problem: 

 
                                A is to the left of B. 

C is to the right of A. 
 
Obviously, there exist two possible models satisfying these 
premises, namely 
 

A B C (PMM)    A C B (¬PMM) 
 
In terms of the PMMT, the second model is the result of the 
ff strategy, while the fff strategy yields the first model. The 
fact that the first model is the preferred one (see empirical 
findings in the previous section) can be explained by the 
RCT, since the first model is computationally cheaper than 
the second one, that means, the generation process of the 
PMM A B C must be computationally cheaper than the 
construction of the ¬PMM A C B. This is because for the 
fff-strategy only the binary relation “C is to the right of B” 
has to be processed, whereas for the ff-strategy a ternary 
relation like “C is in-between A and B” or “C is to the right 
of A and to the left of B” is needed. In other words, during 
the construction of the PMM, the indeterminate premise “C 
is to the right of A”, can be replaced by the binary relation 
“C is to the right of B”, while for the other model the 
premise have to be replaced by a ternary or two binary 
relations. In this sense the RCT theory predicts the fff-
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strategy, which is empirically confirmed in the first 
experiment.  

The RCT theory is not only sufficient to explain the 
model construction phase as conceived in the MMT, but 
also contributes to the explanation of the complexity in the 
model inspection phase. According to the RCT, complexity 
in this phase arises from the arity and segmentation of the 
considered relations. If we consider the RCT approach in 
terms of the SRM framework (Ragni, et al., 2005): the 
model is constructed as a spatial array, in which the objects 
are inserted. The focus is the central device for manipulating 
objects in the array. These focus operations (scanning a cell, 
inserting objects into a cell, moving objects in the array, 
etc.) all have the same cost.  

The relational complexity is reflected through the 
different problems the focus has to perform, for example the 
binary relation “C is near B?” the focus has to test the 
conclusion by scanning the adjacent cells around B (or C). 
Ternary relations such as “Is C as near to B as B is near to 
D” are more difficult since in this case the operations the 
focus has to perform consists of three sub-processes: the 
focus has to figure out the distance between C to B as well 
as the distance between B and D, and finally has to compare 
these distances. Our empirical findings are well reflected in 
this computational model. Moreover, through this 
computational model we are also able to explain how 
complex relations are decomposed into binary relations like 
“right”, “left”, “front”, “behind”, and how the focus builds 
the array. 
 

General Discussion 
In this paper we propose that by combining MMT and RCT 
we can account for phenomena found in the spatial 
reasoning literature, empirically and computationally. Our 
aim was to investigate the influence of RC on the MMT. We 
demonstrated how the construction principles for the PMM 
can be explained by a combination of RCT and MMT, and 
how this influences the model inspection phase. In addition 
these findings fit into our formal framework (the SRM). 

There are a number of approaches analyzing relational 
complexity in relation to capacity limitations. Halford et al., 
(1994; 1998) devised a method for representing relational 
structure within a connectionist framework, although we 
have adopted the same principles we have presented a more 
symbolic implementation. An implication of this 
formalization was the possibility to distinguish between 
relations by the number of models they imply: determinate 
relations such as “to the right of” which leads to one model, 
compared with a relation such as “next to” which implies 
multiple models. Using this approach we can interpret and 
simulate findings in the literature on how people process 
indeterminate relations and preference of relations (cf. Jahn, 
Knauff, & Johnson-Laird, 2005). 

The main aim of the experiments was to identify the 
strategies humans use when reasoning about spatial 
relations. In Experiment 1 we corroborated the fff-principle, 

for both one and two dimensional problems. Participants 
tended to draw the PMM based on this principle. 

Experiment 2 revealed a number of results: First, for the 
model inspection phase, our findings suggest that ternary 
and quaternary relations are more difficult: both resulted in 
more errors and longer latencies. This result extends the 
findings of Goodwin and Johnson-Laird, (2005) who found 
people had difficulty in constructing a mental model when 
the premises consisted of more complex relations. Their 
findings can also be modeled in the SRM framework. 
Second, if the participant has the PMM in mind then it is 
easier to reject a putative conclusion which was only valid 
for the ¬PMM, than it is to accept the conclusion which was 
only valid for the PMM. This is a strong support for the 
PMMT and its computational model. The SRM framework, 
a computational model based on the PMMT has been 
presented, analyzed, and compared to other computational 
models in (Ragni et al., 2005). An implementation of the 
SRM in ACT-R had been presented in (Boeddinghaus, 
Ragni, Knauff, & Nebel, 2006). 
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