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Abstract 

Sensitivity to distributional characteristics of sequential 
linguistic and nonlinguistic stimuli, have been shown to play a 
role in learning the underlying structure of these stimuli. A 
growing body of experimental and computational research 
with (artificial) grammars suggests that learners are sensitive 
to  various distributional characteristics of their environment 
(Kuhl, 2004; Onnis, Monaghan, Richmond & Chater, 2005; 
Rohde & Plaut, 1999). We propose that, at a higher level, 
statistical characteristics of the full sample of stimuli on 
which learning is based, also affects learning. We provide a 
statistical model that accounts for such an effect, and 
experimental data with the Artificial Grammar Learning 
(AGL) methodology, showing that learners also are sensitive 
to distributional characteristics of a full sample of exemplars. 
 
Keywords: Artificial grammar learning; statistical learning; 
frequency distribution 

Introduction 
People seem naturally sensitive to structural characteristics 
of their environment, and they are able to use this 
knowledge adaptively. Such learning occasionally occurs 
implicitly and without instruction. For example, learning 
motor patterns like tying shoe laces and riding a bicycle, 
and several aspects of social behavior involve implicit 
associative learning. However, learning the rules of 
language by children is probably the most striking example 
of acquiring structure knowledge without apparent explicit 
awareness. Though it is currently debated to what extent an 
innate predisposition is responsible for this achievement or a 
general inductive learning capability, a growing number of 
studies suggests that humans have a powerful and adaptive 
sensitivity to the statistical properties of environmental 
stimuli (Kuhl, 2004; Gomez & Gerken, 2000; Redington, 
Chater & Finch, 1998).  

In particular, studies on implicit sequence learning have 
revealed that statistical patterns can be picked up and used 
in subsequent usage of the system. For example, 
distributional characteristics in linguistic materials have 
been suggested to support syntactical category learning 
(Onnis, Monaghan, Richmond, & Chater, 2005; Mintz, 
2002). Infant studies suggest that babies segment a stream 
of sounds (artificial words and syllables), on the basis of 

statistical associative properties of these sequences (Saffran, 
Aslin & Newport, 1996).  Recently, another kind of 
regularity in sequential information has been proposed to 
affect segmentation: i.e. differences in variability between 
adjacent elements. For example, the word ‘walking’ consists 
of the highly variable part: (walk) and the invariant part 
‘ing’. This difference in variability has been proposed to 
serve as a cue for finding the boarders of linguistic units 
such as words (Gomez, 2002; Monaghan, Onnis, 
Christiansen & Chater, submitted).  Finally, semantic 
regularities and associations are proposed to play a role in 
learning grammatical regularities (Rohde & Plaut, 1999): 
some words are much more associated than others, for 
semantic reasons. E.g., he walks is more frequent than  ‘he 
city’, suggesting permissible and impermissible word 
(category) order.  

Besides the statistical characteristics regarding local 
transitions in a structured sequence,  statistical 
characteristics of the full stimulus sample of exemplars with 
which a learner is trained, may be informative for grammar 
induction as well (Poletiek, 2006). Consider a grammar G 
producing exemplars varying in length. A random output of 
such a grammar would be a sample containing short and 
long exemplars exemplifying all kinds of sequential rules 
specified by the grammar, but not all rules in equal number. 
Indeed, such output would contain more exemplars 
exemplifying typical and highly frequent rules in the 
grammar, (for example, highly associated adjacent or non 
adjacent elements) than exemplars with exceptional rules 
(Chater & Vitányi, submitted).  Also, in a general case, 
short exemplars would occur more often than long ones. 
The resulting frequency distribution of this random output 
sample of G, may provide information to a learner for 
inducing G. Thus, in addition to the distributional features 
(e.g., sounds, syllables and words in natural language) 
within exemplars, the learner may benefit from 
distributional characteristics between exemplars of a full 
input sample (Poletiek, 2006).     

In natural language, these high level distributional 
characteristics of the linguistic input are obvious. Some 
grammatical constructions are much more frequent than 
others. For example, sentences with three (levels of) self 
embedded relative clauses are rare as compared to sentences 
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with no self embedding or sentences with the sequence: 
noun-verb-object, which occur often in every day spoken 
language.  If short sentences, and sentences with typical 
rules and transitions, indeed occur more often in the output 
of a given language then we may expect this kind of 
exemplars to be overrepresented in input samples directed at 
children.  

Studies on child directed speech have indeed shown that 
the sample of utterances a child is faced with systematically 
differs from adult speech. Child directed speech (CDS) 
indeed includes more short sentences and typical sentences, 
and fewer complex sentences and subordinate clauses. Also, 
it contains more exactly repeated sentences (Snow, 1972; 
Philips, 1973; Pine, 1994). Whether these differences 
between child and adult directed speech in natural language 
is functional for natural language learning and in what 
sense, is still under debate (Gallaway & Richards, 1994). 
We propose that the frequency variations between different 
kinds of exemplars in a random output sample generated by 
a grammar, may not be vain but informative in the learning 
process.      

In the present study, we propose an account for and a test 
of the learner’s sensitivity to higher order statistical 
characteristic of the stimulus input. We use the Artificial 
Grammar Learning paradigm to test the hypothesis that the 
statistical properties of an input set are facilitative to the 
learning. Specifically, we propose that when the unique 
exemplars of a sample are distributed in accordance with 
their probability to be generated by the grammar, learning is 
facilitated. 

 

Artificial Grammar Learning 
In Reber’s (1967) now classic experimental paradigm of 
Artificial Grammar Learning (AGL), implicit induction of 
sequential structure knowledge has been evidenced. In the 
first phase of the standard task, participants are presented 
with a number of exemplars from an artificial Finite State 
grammar (a Markov grammar), without being informed 
about the grammatical system. Next, participants are 
informed that the exemplars satisfied a rule system. In the 
second phase of the task, they categorize new sequences as 
correct or incorrect according to the grammar. Typically, 
participants perform better than chance, though they are 
unable to tell what exactly they learned. This is often 
interpreted as evidence for implicit learning of the grammar; 
although authors disagree about what knowledge is 
precisely induced. Better than chance performance in AGL, 
may either be explained by learning the rules of the 
grammar, or by  (e.g., Redington & Chater, 1996), mere 
encoding of local statistical patterns in the sequences.  

Statistical learning approaches of grammar induction in 
AGL propose that participants learn multiple kinds of 
regularities within the exemplars, and that they endorse new 
strings that exhibit those regularities at test. Participants 
might learn the frequencies of bigrams in a training set and 
endorse new strings that exhibit those bigrams (Perruchet & 

Gallego, 1997; Perruchet & Pacteau, 1990), but local 
transitional probabilities (Poletiek & Wolters, submitted) 
and variability transitions have also been shown to be 
involved in AGL (Onnis et al., 2004).   

We hypothesize that the statistical properties of the whole 
input set of stimuli contribute to performance in AGL. In 
particular, the differential occurrences are a useful cue to the 
learner of the grammar. In the following, this effect is 
accounted for. We first present the formal model specifying 
the probabilities of each unique exemplar to be generated by 
the grammar. This model allows deriving the frequency 
distribution of a random output of a typical Finite State 
grammar used in AGL. Second, experimental data are 
presented that compare an AGL learning condition with 
equally distributed exemplars, to a learning condition with 
exemplars unequally distributed according to their 
probabilities to be generated by the grammar. 

 

The Probability Distribution of Exemplars of G 
The probability of an exemplar to be generated by a 
grammar can be calculated as the product of the path 
probabilities it  ‘follows’ through the grammar. In Figure 1, 
the scheme of  grammar G (Meulemans & van der Linden, 
1997) is displayed, with the path probabilities added (see 
also Poletiek, 2006).  

 
 

Figure 1:  Finite State Grammar G used in previous 
(Meulemans & van der Linden, 1997) and the present AGL 

study. 
 
The values represent the probabilities that a path is ‘taken’ 
when starting from the state it issues from. In Figure 1, 
these probabilities are unbiased. That is, all paths issuing 
from the same state are equally probable. The probability of 
an exemplar to be produced by G, is the product of these 
path probabilities. For example, the exemplar MVRM’s 
probability to be generated by G is p(MVRM|G) = 
.5x.5x.5x.34 = .0416   

Notice that the value p(exemplar|G) varies according to 
two dimensions: the average probabilities of the paths it 
takes and the length of the exemplars. Indeed, as a string is 
shorter, and therefore the product of the path probabilities 
contains less probabilities to be multiplied, the product 
increases. The probabilities of the unique exemplars of G 
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represent their frequency distribution in a random output of 
G: high p-value exemplars will be generated proportionally 
more often than low p-value  (rare) exemplars (Chater & 
Vitányi, submitted).  

Notice that the p’s  nicely model the characteristics of 
child directed speech. Child directed speech is characterized 
by short utterances and simple typical grammatical rules 
(high probability transitions), corresponding in our model to 
high p exemplars.  

In the following study, we test whether presenting 
exemplars in accordance with their frequency distribution in 
a random output of the grammar, helps to induce this 
grammar.  

Experiment 
One group of participants in an artificial grammar learning 
task was exposed to a learning set of exemplars of G (Figure 
1) distributed in accordance with their probabilities to be 
generated by the grammar. Another group was exposed to 
the same unique exemplars, all presented an equal number 
of times: i.e. in a ‘flat’ frequency distribution.  We 
hypothesize that the distributional information in the 
stimulus set of the  first group is used by the learner as a cue 
for making sense of the underlying rules. Presumably, it 
allows the learner to separate ‘basic’ rules or most typical 
rules in G from rare, exceptional complex paths. This 
variability, we suggest, supports the inductive learning 
process by suggesting priorities in rules learning.  Hence, 
higher performance is expected in the unequal frequencies 
than in the equal frequencies group.   

Method 
 
Participants 24 students of Leiden University participated 
in the experiment on a voluntary basis.  
  
Materials A sample of 34 unique exemplars from G was 
generated. These 34 exemplars were presented about 100 
times in total during training. In one condition, each unique 
exemplar was presented 3 times (the equal frequencies 
condition), in the other condition, each exemplar was 
presented one or more times (varying from one to seven 
times) depending on its p-value. The appendix displays the 
training items, their p-value in G (p(exemplar|G)), and their 
frequency of occurrence in the training set under both 
conditions.  In the equal frequencies condition, the total 
number of stimuli at training sums up to 102, being a plural 
of 3 (see Appendix).  

The test set was made of 32 strings, half of which were 
grammatical and half (16) ungrammatical.  

 
Procedure Participants were run in groups of four to six. 
The stimuli were displayed on a video screen. Participants 
were randomly assigned to the learning conditions (12 to 
the Equal frequencies condition; 12 to the Unequal 
frequencies condition). The instructions were in line with 
the implicit learning instructions in a standard AGL 
procedure (Reber, 1976). Participants were told they were 
participating in a memory experiment and would see letter 

strings. Their task was to remember them as well as 
possible. The order of presentations of the hundred strings 
was randomized. A group of four strings was shown for 
ten seconds. Afterwards, the participants were encouraged 
to write down the strings, from memory, to help 
memorizing. The strings were shown again for three 
seconds and after a blank of two seconds a new set of 
strings appeared.  

At the beginning of the test phase, the participants were 
told that there were rules determining the sequence of 
letters in the strings they just tried to memorize. 
Participants were further told that they would see new 
strings, some of which followed these rules, while others 
did not. These strings would appear one by one, during a 
period of four seconds, followed by a blank of three 
seconds. Their task was to classify each string as correct or 
incorrect according to the rules of the learning phase. A 
response form was provided, which they could use to 
indicate their answers. All groups received the same test  
items and the same test instructions. 

 
Results 

 
The mean number of correct categorizations was 15.3 
(48%) (N=12; sd=3.8) for the participants trained with an 
equal distribution. Participants trained with an unequally 
distributed learning set of exemplars was 20.1(63%) 
(N=12; sd=1.2).  A t-test for independent samples (equal 
variances not assumed) was significant in the expected 
direction (t= -4.1;df=13.3; p=.001).  
 

Discussion 
The participants trained with exemplars, unequally 
distributed in frequencies according to their probabilities to 
be produced in a random generation of the grammar, learned 
better than participants trained with the same unique 
exemplars of G distributed equally. The effect was large. 
This result is in line with our hypothesis that learners exploit 
the distributional characteristics of unique exemplars in the 
learning input to induce the underlying structure. The 
frequency distribution of occurrence of exemplars they are 
faced with, serves as a facilitative cue to make sense of the 
system producing the exemplars, as we predicted. What 
cognitive mechanism may underlie this effect of high order 
statistical properties? In what sense is the frequency 
distribution facilitative? Two links with previous findings 
are explored.  

Possibly, the G-representative distribution helps the 
participant to learn fragments, i.e. bigrams. In other words,  
higher order statistical characteristics may be helpful to 
learn lower order characteristics. Indeed, if participants 
proceed by learning distributional information about 
bigrams during training, then a distribution of exemplars 
that is valid for the full language that is naturally generated 
by  the grammar, will also give more valid distributional 
information about the occurrence of the fragments in the full 
output of the grammar. This was shown in a simulation 
study (Poletiek, 2006) in which the fragment knowledge of 
two learners were compared; one trained with a flat and 
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another with a grammar-representative distribution of 
exemplars. Hence, if the learning strategy is fragment based, 
then the unequal frequency distribution of the learning set 
provides the learner with more valid information about the 
occurrence of fragments in the grammar, which in turn can 
be expected to help for recognizing new stimuli satisfying 
the structure (Poletiek & Wolters, submitted).  

Another possible perspective on the present frequency 
distribution effect, relates to the recent proposal stressing 
the importance of variability within the structured stimuli on 
learning regularities (Onnis et al., 2004). In this proposal, 
differences in variability of both adjacent and non-adjacent 
elements in exemplars of the language have been shown to 
help the learner to associate elements, and segment streams 
of elements, into new unities. It seems that the differences in 
frequencies and variance of consecutive elements in a 
stimulus input play an important role in structure induction.    

Our results suggest that variability may play a role at a 
higher level as well:  Differences in frequencies of 
occurrence between stimuli make it possible to differentially 
strengthen sequential rules, rather than learn all rules 
equally well without any priorities. Variability in 
frequencies of occurrence of stimuli may tune the learner to 
hierarchical learning. Indeed, if the frequently occurring 
exemplars of the structure are simple and more typical for 
the system than low frequent ones, then the basic 
grammatical constructions may be very thoroughly acquired 
due to their frequent presentation. Oppositely, more 
exceptional rules exemplified in less frequently seen stimuli, 
may be mastered more superficially and acquired in a later 
stage of exposure. Variability, thus, may play a rather 
fundamental role at several levels of processing the input of 
structured sequential materials.  

Though we could verify the predicted main effect of 
frequency distribution in the present AGL study, a 
surprising observation was the poor performance by the 
participants in the condition with a flat frequency 
distribution. We explore a number of explanations. First, the 
low performance in the condition in which participants saw 
each exemplars repeated equally often may reflect a 
possible negative effect of the lack of variability. In other 
words, not only may variability in input have a positive 
effect on learning, lack of variability may hamper the 
inductive learning process.  Recent data from our lab 
suggest that lack of variability may be more detrimental for 
a learner than one may intuitively expect: participants 
presented with a sample of exemplars of a grammar 
(potentially generating strings from differing lengths) all 
having the same length, unexpectedly showed no learning.   

A second tentative explanation is that the instruction to 
memorize the exemplars, though facilitating the recognition 
of common rules and patterns of the grammar between 
exemplars in the unequal frequencies condition, has focused 
attention on the unique characteristics of individual 
exemplars equal frequencies condition, deviating attention 
from what the exemplars have in common.  Thus, perhaps 
these participants actually memorized very well individual 
items, but this might have interfered with picking up 
implicitly the structure common to all of them. Since the 
participants were tested on completely new items and a 

grammaticality judgments task, the memory of every 
individual item was of no advantage. 

Pushing this line of reasoning a bit further, a relation may 
be sketched between the memorize task at training, the 
grammaticality judgments task at test, and the stimulus 
distribution. Unequal frequencies (rather than equal 
frequencies) conditions may specifically facilitate rule 
induction, if the unequal distribution models the grammar’s 
output, but not necessarily affect memorization (recall or 
recognition) performance. Suppose that the learner learns to 
discriminate between grammatical and ungrammatical items 
by building an approximate probabilistic model of the 
underlying distribution. We do not need to make any 
particular assumptions about the nature of this 
approximation -- it might be that the model is based on 
induced rules, or bigrams, or transitional probabilities or 
information of any other type. This probabilistic model will 
be likely to be a good approximation to the true distribution, 
if the frequencies of the stimuli correspond to their relative 
probabilities according to the underlying generating process 
(the Markov grammar). By contrast, to the extent that the 
items are atypical, the underlying probability distribution 
should be difficult to learn (for relevant formal analysis of 
typicality and learnability, see Vitányi & Li, 2000). In 
particular, then, if items are repeated evenly rather than 
according to the generating Markov distribution, we might 
expect learning of the probability distribution to be 
impaired.  

A different pattern of predictions arises, however, if we 
assume that learning is purely determined by memory for 
the individual items seen during training. Indeed, mere 
repetition of stimulus items during memorization, has been 
shown to facilitate recollection in early memory research 
(Ebbinghaus, 1913), or as suggested by studies about 
presentation time effects (Roberts, 1972; Waugh, 1967). 
Hence, assuming rote memory during training, we may 
expect either equal performance in both distribution 
conditions (if we assume the process to be linear) or better 
performance in the equal distribution condition (if we 
assume the process to be convex) on a pure recollection or 
recognition task. Of course, the implicit grammar learning 
paradigm is interested in structure learning rather than 
memory performance. Therefore, learners are tested on their 
knowledge of the grammar by means of a categorization 
task, yet after having been instructed to memorize the items 
at training (Reber, 1976).  

In sum, the poor performance on the grammaticality 
judgments task in the equal frequencies condition may be 
related to interference between the task carried out at 
training and the task carried out at test.  A stimulus 
distribution that is helpful for memorization may not be for 
expressing grammar knowledge. Our research currently 
investigates this idea further.  

In conclusion, distributional sample characteristics of 
structured input, seems to affect structure learning in a 
positive way. This is in line with learners’ sensitivity to 
lower order statistical regularities, which have been amply 
documented in the literature. Also, it catches the observation 
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in natural language acquisition, that young language 
learners are exposed more often to very typical and short 
linguistic input in the period in which they learn the 
language. In addition, the present study points at the 
relevancy of simple experimentation with artificial stimulus 
materials starting from parsimonious assumptions, to 
understand our sensitivity to sample characteristics of 
environmental stimuli, and how we exploit it to extract 
useful structure knowledge.   
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Appendix 
 

 Training stimuli with p-values and frequencies (f(ex.)) of 
presentation in the unequally distributed learning set  
condition, and the equally distributed  learning set 
condition. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Exemplar p(ex.|G)  f (ex.) 
(uneq.) 

f (ex.) 
(eq.) 

MVR 0.04166 7 3 
MVRM 0.04166 7 3 
MVRV 0.01388 3 3 
MVXRVM 0.00462 2 3 
MVXRVVV 0.00051 1 3 
MVXTX 0.01388 3 3 
MXR 0.02777 5 3 
MXRM 0.02777 5 3 
MXRMXRVMM 0.00051 1 3 
MXRTMXRVXTX 0.00004 1 3 
MXRV 0.00925 3 3 
MXT 0.02777 5 3 
MXTR 0.00925 3 3 
MXTRX 0.00925 2 2 
VMR 0.02777 5 3 
VMRMVRV 0.00077 1 3 
VMRV 0.00925 2 3 
VMRVM 0.00925 3 3 
VMT 0.02777 4 3 
VMTRR 0.00308 2 3 
VMTRRR 0.00102 1 3 
VMTX 0.02777 5 3 
VXT 0.04166 7 3 
VXTR 0.01388 3 3 
VXTRR 0.00462 2 3 
VXTRRX 0.00462 2 3 
VXTRX 0.01388 3 3 
VXTX 0.04166 2 3 
VXVR 0.01388 3 3 
VXVRM 0.01388 3 3 
VXVRTMXRV 0.00008 1 3 
VXVRTTVXVRVXVTR 0.000007 1 3 
VXVRVMRMXRMVR 0.000003 1 3 
VXVTRR 0.001543 1 3 
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