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Abstract

Sensitivity to distributional characteristics of sequential
linguistic and nonlinguistic stimuli, have been shown to play a
role in learning the underlying structure of these stimuli. A
growing body of experimental and computational research
with (artificial) grammars suggests that learners are sensitive
to various distributional characteristics of their environment
(Kuhl, 2004; Onnis, Monaghan, Richmond & Chater, 2005;
Rohde & Plaut, 1999). We propose that, at a higher level,
statistical characteristics of the full sample of stimuli on
which learning is based, also affects learning. We provide a
statistical model that accounts for such an effect, and
experimental data with the Artificial Grammar Learning
(AGL) methodology, showing that learners also are sensitive
to distributional characteristics of a full sample of exemplars.

Keywords: Artificial grammar learning; statistical learning;
frequency distribution

Introduction

People seem naturally sensitive to structural characteristics
of their environment, and they are able to use this
knowledge adaptively. Such learning occasionally occurs
implicitly and without instruction. For example, learning
motor patterns like tying shoe laces and riding a bicycle,
and several aspects of social behavior involve implicit
associative learning. However, learning the rules of
language by children is probably the most striking example
of acquiring structure knowledge without apparent explicit
awareness. Though it is currently debated to what extent an
innate predisposition is responsible for this achievement or a
general inductive learning capability, a growing number of
studies suggests that humans have a powerful and adaptive
sensitivity to the statistical properties of environmental
stimuli (Kuhl, 2004; Gomez & Gerken, 2000; Redington,
Chater & Finch, 1998).

In particular, studies on implicit sequence learning have
revealed that statistical patterns can be picked up and used
in subsequent usage of the system. For example,
distributional characteristics in linguistic materials have
been suggested to support syntactical category learning
(Onnis, Monaghan, Richmond, & Chater, 2005; Mintz,
2002). Infant studies suggest that babies segment a stream
of sounds (artificial words and syllables), on the basis of

statistical associative properties of these sequences (Saffran,
Aslin & Newport, 1996). Recently, another kind of
regularity in sequential information has been proposed to
affect segmentation: i.e. differences in variability between
adjacent elements. For example, the word ‘walking’ consists
of the highly variable part: (walk) and the invariant part
‘ing’. This difference in variability has been proposed to
serve as a cue for finding the boarders of linguistic units
such as words (Gomez, 2002; Monaghan, Onnis,
Christiansen & Chater, submitted).  Finally, semantic
regularities and associations are proposed to play a role in
learning grammatical regularities (Rohde & Plaut, 1999):
some words are much more associated than others, for
semantic reasons. E.g., he walks is more frequent than ‘he
city’, suggesting permissible and impermissible word
(category) order.

Besides the statistical characteristics regarding local
transitions in a structured sequence, statistical
characteristics of the full stimulus sample of exemplars with
which a learner is trained, may be informative for grammar
induction as well (Poletiek, 2006). Consider a grammar G
producing exemplars varying in length. A random output of
such a grammar would be a sample containing short and
long exemplars exemplifying all kinds of sequential rules
specified by the grammar, but not all rules in equal number.
Indeed, such output would contain more exemplars
exemplifying typical and highly frequent rules in the
grammar, (for example, highly associated adjacent or non
adjacent elements) than exemplars with exceptional rules
(Chater & Vitanyi, submitted). Also, in a general case,
short exemplars would occur more often than long ones.
The resulting frequency distribution of this random output
sample of G, may provide information to a learner for
inducing G. Thus, in addition to the distributional features
(e.g., sounds, syllables and words in natural language)
within exemplars, the learner may benefit from
distributional characteristics between exemplars of a full
input sample (Poletiek, 2006).

In natural language, these high level distributional
characteristics of the linguistic input are obvious. Some
grammatical constructions are much more frequent than
others. For example, sentences with three (levels of) self
embedded relative clauses are rare as compared to sentences
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with no self embedding or sentences with the sequence:
noun-verb-object, which occur often in every day spoken
language. If short sentences, and sentences with typical
rules and transitions, indeed occur more often in the output
of a given language then we may expect this kind of
exemplars to be overrepresented in input samples directed at
children.

Studies on child directed speech have indeed shown that
the sample of utterances a child is faced with systematically
differs from adult speech. Child directed speech (CDS)
indeed includes more short sentences and typical sentences,
and fewer complex sentences and subordinate clauses. Also,
it contains more exactly repeated sentences (Snow, 1972;
Philips, 1973; Pine, 1994). Whether these differences
between child and adult directed speech in natural language
is functional for natural language learning and in what
sense, is still under debate (Gallaway & Richards, 1994).
We propose that the frequency variations between different
kinds of exemplars in a random output sample generated by
a grammar, may not be vain but informative in the learning
process.

In the present study, we propose an account for and a test
of the learner’s sensitivity to higher order statistical
characteristic of the stimulus input. We use the Artificial
Grammar Learning paradigm to test the hypothesis that the
statistical properties of an input set are facilitative to the
learning. Specifically, we propose that when the unique
exemplars of a sample are distributed in accordance with
their probability to be generated by the grammar, learning is
facilitated.

Artificial Grammar Learning

In Reber’s (1967) now classic experimental paradigm of
Artificial Grammar Learning (AGL), implicit induction of
sequential structure knowledge has been evidenced. In the
first phase of the standard task, participants are presented
with a number of exemplars from an artificial Finite State
grammar (a Markov grammar), without being informed
about the grammatical system. Next, participants are
informed that the exemplars satisfied a rule system. In the
second phase of the task, they categorize new sequences as
correct or incorrect according to the grammar. Typically,
participants perform better than chance, though they are
unable to tell what exactly they learned. This is often
interpreted as evidence for implicit learning of the grammar;
although authors disagree about what knowledge is
precisely induced. Better than chance performance in AGL,
may either be explained by learning the rules of the
grammar, or by (e.g., Redington & Chater, 1996), mere
encoding of local statistical patterns in the sequences.
Statistical learning approaches of grammar induction in
AGL propose that participants learn multiple kinds of
regularities within the exemplars, and that they endorse new
strings that exhibit those regularities at test. Participants
might learn the frequencies of bigrams in a training set and
endorse new strings that exhibit those bigrams (Perruchet &

Gallego, 1997; Perruchet & Pacteau, 1990), but local
transitional probabilities (Poletick & Wolters, submitted)
and variability transitions have also been shown to be
involved in AGL (Onnis et al., 2004).

We hypothesize that the statistical properties of the whole
input set of stimuli contribute to performance in AGL. In
particular, the differential occurrences are a useful cue to the
learner of the grammar. In the following, this effect is
accounted for. We first present the formal model specifying
the probabilities of each unique exemplar to be generated by
the grammar. This model allows deriving the frequency
distribution of a random output of a typical Finite State
grammar used in AGL. Second, experimental data are
presented that compare an AGL learning condition with
equally distributed exemplars, to a learning condition with
exemplars unequally distributed according to their
probabilities to be generated by the grammar.

The Probability Distribution of Exemplars of G

The probability of an exemplar to be generated by a
grammar can be calculated as the product of the path
probabilities it ‘follows’ through the grammar. In Figure 1,
the scheme of grammar G (Meulemans & van der Linden,
1997) is displayed, with the path probabilities added (see
also Poletiek, 2006).

V0.34

OuUT >0.34
—

% OUT >0.34

R0.34

Figure 1: Finite State Grammar G used in previous
(Meulemans & van der Linden, 1997) and the present AGL
study.

The values represent the probabilities that a path is ‘taken’
when starting from the state it issues from. In Figure 1,
these probabilities are unbiased. That is, all paths issuing
from the same state are equally probable. The probability of
an exemplar to be produced by G, is the product of these
path probabilities. For example, the exemplar MVRM’s
probability to be generated by G is p(MVRMIG) =
5x.5x.5x.34 = .0416

Notice that the value p(exemplarlG) varies according to
two dimensions: the average probabilities of the paths it
takes and the length of the exemplars. Indeed, as a string is
shorter, and therefore the product of the path probabilities
contains less probabilities to be multiplied, the product
increases. The probabilities of the unique exemplars of G
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represent their frequency distribution in a random output of
G: high p-value exemplars will be generated proportionally
more often than low p-value (rare) exemplars (Chater &
Vitanyi, submitted).

Notice that the p’s nicely model the characteristics of
child directed speech. Child directed speech is characterized
by short utterances and simple typical grammatical rules
(high probability transitions), corresponding in our model to
high p exemplars.

In the following study, we test whether presenting
exemplars in accordance with their frequency distribution in
a random output of the grammar, helps to induce this
grammar.

Experiment

One group of participants in an artificial grammar learning
task was exposed to a learning set of exemplars of G (Figure
1) distributed in accordance with their probabilities to be
generated by the grammar. Another group was exposed to
the same unique exemplars, all presented an equal number
of times: ie. in a ‘flat’ frequency distribution. We
hypothesize that the distributional information in the
stimulus set of the first group is used by the learner as a cue
for making sense of the underlying rules. Presumably, it
allows the learner to separate ‘basic’ rules or most typical
rules in G from rare, exceptional complex paths. This
variability, we suggest, supports the inductive learning
process by suggesting priorities in rules learning. Hence,
higher performance is expected in the unequal frequencies
than in the equal frequencies group.

Method

Participants 24 students of Leiden University participated
in the experiment on a voluntary basis.

Materials A sample of 34 unique exemplars from G was
generated. These 34 exemplars were presented about 100
times in total during training. In one condition, each unique
exemplar was presented 3 times (the equal frequencies
condition), in the other condition, each exemplar was
presented one or more times (varying from one to seven
times) depending on its p-value. The appendix displays the
training items, their p-value in G (p(exemplarlG)), and their
frequency of occurrence in the training set under both
conditions. In the equal frequencies condition, the total
number of stimuli at training sums up to 102, being a plural
of 3 (see Appendix).

The test set was made of 32 strings, half of which were
grammatical and half (16) ungrammatical.

Procedure Participants were run in groups of four to six.
The stimuli were displayed on a video screen. Participants
were randomly assigned to the learning conditions (12 to
the Equal frequencies condition; 12 to the Unequal
frequencies condition). The instructions were in line with
the implicit learning instructions in a standard AGL
procedure (Reber, 1976). Participants were told they were
participating in a memory experiment and would see letter

strings. Their task was to remember them as well as
possible. The order of presentations of the hundred strings
was randomized. A group of four strings was shown for
ten seconds. Afterwards, the participants were encouraged
to write down the strings, from memory, to help
memorizing. The strings were shown again for three
seconds and after a blank of two seconds a new set of
strings appeared.

At the beginning of the test phase, the participants were
told that there were rules determining the sequence of
letters in the strings they just tried to memorize.
Participants were further told that they would see new
strings, some of which followed these rules, while others
did not. These strings would appear one by one, during a
period of four seconds, followed by a blank of three
seconds. Their task was to classify each string as correct or
incorrect according to the rules of the learning phase. A
response form was provided, which they could use to
indicate their answers. All groups received the same test
items and the same test instructions.

Results

The mean number of correct categorizations was 15.3
(48%) (N=12; sd=3.8) for the participants trained with an
equal distribution. Participants trained with an unequally
distributed learning set of exemplars was 20.1(63%)
(N=12; sd=1.2). A t-test for independent samples (equal
variances not assumed) was significant in the expected
direction (t= -4.1;df=13.3; p=.001).

Discussion

The participants trained with exemplars, unequally
distributed in frequencies according to their probabilities to
be produced in a random generation of the grammar, learned
better than participants trained with the same unique
exemplars of G distributed equally. The effect was large.
This result is in line with our hypothesis that learners exploit
the distributional characteristics of unique exemplars in the
learning input to induce the underlying structure. The
frequency distribution of occurrence of exemplars they are
faced with, serves as a facilitative cue to make sense of the
system producing the exemplars, as we predicted. What
cognitive mechanism may underlie this effect of high order
statistical properties? In what sense is the frequency
distribution facilitative? Two links with previous findings
are explored.

Possibly, the G-representative distribution helps the
participant to learn fragments, i.e. bigrams. In other words,
higher order statistical characteristics may be helpful to
learn lower order characteristics. Indeed, if participants
proceed by learning distributional information about
bigrams during training, then a distribution of exemplars
that is valid for the full language that is naturally generated
by the grammar, will also give more valid distributional
information about the occurrence of the fragments in the full
output of the grammar. This was shown in a simulation
study (Poletiek, 2006) in which the fragment knowledge of
two learners were compared; one trained with a flat and
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another with a grammar-representative distribution of
exemplars. Hence, if the learning strategy is fragment based,
then the unequal frequency distribution of the learning set
provides the learner with more valid information about the
occurrence of fragments in the grammar, which in turn can
be expected to help for recognizing new stimuli satisfying
the structure (Poletick & Wolters, submitted).

Another possible perspective on the present frequency
distribution effect, relates to the recent proposal stressing
the importance of variability within the structured stimuli on
learning regularities (Onnis et al., 2004). In this proposal,
differences in variability of both adjacent and non-adjacent
elements in exemplars of the language have been shown to
help the learner to associate elements, and segment streams
of elements, into new unities. It seems that the differences in
frequencies and variance of consecutive elements in a
stimulus input play an important role in structure induction.

Our results suggest that variability may play a role at a
higher level as well: Differences in frequencies of
occurrence between stimuli make it possible to differentially
strengthen sequential rules, rather than learn all rules
equally well without any priorities. Variability in
frequencies of occurrence of stimuli may tune the learner to
hierarchical learning. Indeed, if the frequently occurring
exemplars of the structure are simple and more typical for
the system than low frequent ones, then the basic
grammatical constructions may be very thoroughly acquired
due to their frequent presentation. Oppositely, more
exceptional rules exemplified in less frequently seen stimuli,
may be mastered more superficially and acquired in a later
stage of exposure. Variability, thus, may play a rather
fundamental role at several levels of processing the input of
structured sequential materials.

Though we could verify the predicted main effect of
frequency distribution in the present AGL study, a
surprising observation was the poor performance by the
participants in the condition with a flat frequency
distribution. We explore a number of explanations. First, the
low performance in the condition in which participants saw
each exemplars repeated equally often may reflect a
possible negative effect of the lack of variability. In other
words, not only may variability in input have a positive
effect on learning, lack of variability may hamper the
inductive learning process. Recent data from our lab
suggest that lack of variability may be more detrimental for
a learner than one may intuitively expect: participants
presented with a sample of exemplars of a grammar
(potentially generating strings from differing lengths) all
having the same length, unexpectedly showed no learning.

A second tentative explanation is that the instruction to
memorize the exemplars, though facilitating the recognition
of common rules and patterns of the grammar between
exemplars in the unequal frequencies condition, has focused
attention on the unique characteristics of individual
exemplars equal frequencies condition, deviating attention
from what the exemplars have in common. Thus, perhaps
these participants actually memorized very well individual
items, but this might have interfered with picking up
implicitly the structure common to all of them. Since the
participants were tested on completely new items and a

grammaticality judgments task, the memory of every
individual item was of no advantage.

Pushing this line of reasoning a bit further, a relation may
be sketched between the memorize task at training, the
grammaticality judgments task at test, and the stimulus
distribution. Unequal frequencies (rather than equal
frequencies) conditions may specifically facilitate rule
induction, if the unequal distribution models the grammar’s
output, but not necessarily affect memorization (recall or
recognition) performance. Suppose that the learner learns to
discriminate between grammatical and ungrammatical items
by building an approximate probabilistic model of the
underlying distribution. We do not need to make any
particular  assumptions about the nature of this
approximation -- it might be that the model is based on
induced rules, or bigrams, or transitional probabilities or
information of any other type. This probabilistic model will
be likely to be a good approximation to the true distribution,
if the frequencies of the stimuli correspond to their relative
probabilities according to the underlying generating process
(the Markov grammar). By contrast, to the extent that the
items are atypical, the underlying probability distribution
should be difficult to learn (for relevant formal analysis of
typicality and learnability, see Vitdnyi & Li, 2000). In
particular, then, if items are repeated evenly rather than
according to the generating Markov distribution, we might
expect learning of the probability distribution to be
impaired.

A different pattern of predictions arises, however, if we
assume that learning is purely determined by memory for
the individual items seen during training. Indeed, mere
repetition of stimulus items during memorization, has been
shown to facilitate recollection in early memory research
(Ebbinghaus, 1913), or as suggested by studies about
presentation time effects (Roberts, 1972; Waugh, 1967).
Hence, assuming rote memory during training, we may
expect either equal performance in both distribution
conditions (if we assume the process to be linear) or better
performance in the equal distribution condition (if we
assume the process to be convex) on a pure recollection or
recognition task. Of course, the implicit grammar learning
paradigm is interested in structure learning rather than
memory performance. Therefore, learners are tested on their
knowledge of the grammar by means of a categorization
task, yet after having been instructed to memorize the items
at training (Reber, 1976).

In sum, the poor performance on the grammaticality
judgments task in the equal frequencies condition may be
related to interference between the task carried out at
training and the task carried out at test. A stimulus
distribution that is helpful for memorization may not be for
expressing grammar knowledge. Our research currently
investigates this idea further.

In conclusion, distributional sample characteristics of
structured input, seems to affect structure learning in a
positive way. This is in line with learners’ sensitivity to
lower order statistical regularities, which have been amply
documented in the literature. Also, it catches the observation
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in natural language acquisition, that young language
learners are exposed more often to very typical and short
linguistic input in the period in which they learn the
language. In addition, the present study points at the
relevancy of simple experimentation with artificial stimulus
materials starting from parsimonious assumptions, to
understand our sensitivity to sample characteristics of
environmental stimuli, and how we exploit it to extract
useful structure knowledge.
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Appendix

Training stimuli with p-values and frequencies (f(ex.)) of
presentation in the unequally distributed learning set
condition, and the equally distributed

learning set

condition.
Exemplar p(ex.IG) f (ex.) f (ex.)
(uneq.)  (eq.)

MVR 0.04166 7 3
MVRM 0.04166 7 3
MVRV 0.01388 3 3
MVXRVM 0.00462 2 3
MVXRVVV 0.00051 1 3
MVXTX 0.01388 3 3
MXR 0.02777 5 3
MXRM 0.02777 5 3
MXRMXRVMM 0.00051 1 3
MXRTMXRVXTX 0.00004 1 3
MXRV 0.00925 3 3
MXT 0.02777 5 3
MXTR 0.00925 3 3
MXTRX 0.00925 2 2
VMR 0.02777 5 3
VMRMVRV 0.00077 1 3
VMRV 0.00925 2 3
VMRVM 0.00925 3 3
VMT 0.02777 4 3
VMTRR 0.00308 2 3
VMTRRR 0.00102 1 3
VMTX 0.02777 5 3
VXT 0.04166 7 3
VXTR 0.01388 3 3
VXTRR 0.00462 2 3
VXTRRX 0.00462 2 3
VXTRX 0.01388 3 3
VXTX 0.04166 2 3
VXVR 0.01388 3 3
VXVRM 0.01388 3 3
VXVRTMXRV 0.00008 1 3
VXVRTTVXVRVXVTR  0.000007 1 3
VXVRVMRMXRMVR 0.000003 1 3
VXVTRR 0.001543 1 3
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