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Abstract

Humans possess the remarkable ability to give and
follow natural language route instructions through large-
scale spaces. In this process, a director describes
the actions and observations along the route, recalling
the environment’s topology, metrical layout, and visual
features. A follower interprets these descriptions,
navigating by applying the instructions to the possibly
unfamiliar environment. Furthermore, followers must
account for mistakes, ambiguities, and omissions in
the route description. To study how instructions are
written and followed, we collected 756 free-form route
instructions from six participants for 126 routes in three
virtual environments. A second group of participants
and a computational model (Marco) followed these
instructions. Humans successfully reached the destina-
tion on 68% of the instructions and Marco followed
61% of the instructions. Marco’s performance was a
strong predictor of human performance and ratings of
individual instructions.

Keywords Artificial Intelligence; Spatial Cognition;
Natural Language Understanding; Cognitive architec-
tures; Human experimentation; Symbolic computational
modeling Knowledge representation

Introduction
Imagine while walking across a campus, a stranger
approaches you to ask how to get to another location.
The destination is not within sight, so you cannot simply
point at the goal. Instead, you must reference your
memory of routes between you and the goal. Once a
route is selected, you need to access your knowledge of
specific landmarks and distances to provide references
for the follower . You translate this knowledge into a
verbal description of the route. Remarkably, a short
verbal description is often sufficient to guide a follower
through an unfamiliar large-scale space.

Despite directors ’ best efforts, not all instructions are
perfectly clear and reliable for reaching the goal. Often
instructions contain ambiguous information (e.g. which
tree is “the oak tree”), qualitative mistakes within
the instruction (e.g. “turn right” where no right turn
is possible) or metrical mistakes (e.g. “go forward 3
blocks” when the distance is 4 blocks). Because of
these failings, the follower must treat the instructions
as guidance, not as strict commands.

With all the potential for miscommunication arising
from the complexity of giving and understanding route
instructions, the human ability to provide instructions

that can typically be followed is remarkable. The current
paper investigates how people give route instructions
about indoor environments they have learned through
navigation. We present a computational model of route
instruction following called Marco and investigate the
following three questions:
1. How do quality and style vary in route instructions?
2. How well does Marco follow route instructions and

how closely does the model’s behavior correlate with
human behavior?

3. Can Marco differentiate good versus bad instruc-
tions, by both human performance and ratings?

Why are some route instructions reliable?

Though a large literature examines route instructions,
there is no consensus about what differentiates good
instructions from bad. Vanetti and Allen (1988) found
spatial ability had a larger effect in the accuracy of sub-
jects’ described routes than verbal ability. Daniel et al.
(2003) found “good”, “poor”, and “skeletal” instructions
were differentiated by whether the proper action was
associated with the proper landmark. Allen (2000)
suggests descriptives clauses and action delimiters should
be inserted at choice points and near the destination,
instead of en-route. Lovelace et al. (1999) found good
route instructions mentioned many landmarks along the
paths, off the route, and at the choice points.

Some of these studies rate route instructions sub-
jectively (Vanetti and Allen, 1988; Lovelace et al., 1999;
Tversky and Lee, 1999), but do not test if navigation
success is affected. Others have participants follow a
small number of participant- and experimenter-written
instructions (Daniel et al., 2003; Allen, 2000). Our
work implements a study suggested by Lovelace et al.
(1999), where participants follow route instructions from
different routes and directors in virtual reality.

Computational models of route instructions

Software systems that analyze or follow route in-
structions can be distinguished by how they represent
space. Freundschuh and Egenhofer (1997) survey a
variety of spatial representation models and define broad
categories based on (1) if the objects in the space
are manipulable, (2) if the space requires locomotion
to experience, and (3) the size, or scale, of the
space. This work focuses on non-manipulable, large-
scale spaces that cannot be experienced from any one
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“turn to face the green hallway” “walk forward three times”
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Figure 1: The Text Interpreter parses each sentence to
get a syntactic tree, then labels the word senses and
transforms the tree to a content frame. The Instruction
Modeler interprets the frame as an underspecified
command that the Route Executor acts to fulfill, guiding
the follower’s navigation through the environment.

perspective: the agent must turn (panoramic space) or
move (environmental space) to see the space.

Skubic et al. (2004) developed software that can
recognize and reason about spatial relations. It moves
a robot within a room to achieve a spatial command.
Bugmann et al. (2004) compared the performance for a
robot navigating through a tabletop model environment
a system following (1) programs translated by hand
from speech, (2) software-generated models of the
instructions, and (3) people controlling the motion.
Bugmann’s participants saw an outside, panoramic
perspective of a small model of a town neighborhood the
robot navigated. This paper builds on Simmons et al.
(2003), a system that follows route instructions through
large-scale environments.

Marco Route Follower Model

Marco is designed to follow route instructions in
large-scale spaces, between places not mutually visible
and separated by travel. We tested Marco on
instructions written from memory by people who learned
the environments from a first-person perspective while
navigating. Marco follows these route instructions
without any a priori environmental model by reasoning
about actions, views, and topology. These are the Causal
and Topological representation levels of the Spatial
Semantic Hierarchy (Kuipers, 2000).

Marco has modules for interpreting and
following written, natural language route instructions
(MacMahon et al., 2006). Marco consists of three
primary modules (see Figure 1 for a trace of the
linguistic modeling): A Text Interpreter , an Instruction
Modeler , and a Route Executor . For the sake of brevity,
we describe only the fundamental properties of these

modules. For details, see MacMahon et al. (2006).

Text Interpreter
The Text Interpreter models the surface structure of
an utterance and the surface meaning of an utterance.
The Syntactic Parser parses raw text into grammatical
structures. Our grammar directly models verb-argument
structure, instead of part-of-speech syntax (see the parse
tree in Figure 1). Next, the Text Interpreter translates
the surface structure of an utterance to a model of the
surface meaning, that drops arbitrary word ordering
and marks words with meaning sense, abstracting over
changes in morphology, spelling, and synonyms.

Instruction Modeler
The Instruction Modeler translates the surface meaning
of what was said into an imperative model of what
to do, when. The Instruction Modeler combines
information across phrases and sentences to generate
either imperatives (specific action instructions; e.g. “go
until”) or declaratives (i.e. information about the envi-
ronment; e.g. Path(appearance:Blue, length:Long). The
representation captures the underspecified commands
in the route instructions, modeling the route as a
sequence of simple actions (Turn, Travel, Verify) to be
taken under certain perceptual (e.g. seeing a view) or
cognitive conditions (e.g. estimating a distance). This
step is similar to the “minimal units of information”
Denis (1997) derived manually. Figure 1 shows the
transformation from text to the imperative model.

Route Executor
To navigate, Marco interprets the imperative model in
the context of the environment. The Route Executor
picks actions given the context from perceiving the
environment and tracking the state within the route in-
structions. It checks symbolic view descriptions against
sensory observations and spatial models. Marco

performs symbol anchoring (Coradeschi and Saffiotti,
2003) by tying each concept to its experience. It
verifies if the described attributes of the environment
are consistent with the observation stream and acts to
reach the described states along the route.

Route Instruction Experiment
To understand how humans give and follow instructions,
we developed a collection of novel virtual environments.
We collected route instructions from six participants
who learned to navigate efficiently in the environ-
ments. Thirty-six human participants and two variants
of Marco followed these instructions. The human
participants subjectively rated the instructions. We are
interested in how well Marco can follow these instruc-
tions and how Marco’s performance correlates with
human navigatation and ratings of route instructions.

Methods
Apparatus These experiments used desktop virtual
reality, with human participants with a first-person
perspective moving through a computer-animated three-
dimensional world. Figure 2 provides an overhead map of
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one of environments (Top) and the first-person perspec-
tive of the participants navigating through it (Bottom).
The experiments are controlled by Python scripts using
the WorldViz Vizard software (Vizard, 2003). Subjects
navigate in discrete motions using the keyboard: ’8’ key
moves forward one hallway, ’4’ turns left, and ’6’ turns
right.

Stimuli These environments and the experiment con-
trol software build on top of previous studies on spa-
tial navigation (Stankiewicz et al., 2001; Kuipers et al.,
2003). To provide useful cues for the directors, we placed
11 objects of 6 different types within each environment.
Furthermore, each environment was divided into three
separate regions, designated by distinct pictures on the
walls (see figure 2). Finally, 7 long hallways within each
environment had a visually distinct texture mapped onto
the floor. Figure 2 (Top) shows the layout for one of the
environments and Figure 2 (Bottom) shows the view of
an easel on a black stone hallway in the fish region.

The three testing enviroments varied in the density
of the layout, as measured by the shortest travel routes
betweeen the named positions. The most compact had
a mean shortest path length of 4.2 (median 4), the
most spread-out enviroment, mean 6.0 (median 6). The
shortest route was one travel action, the longest was 13.

Procedure Two sets of participants were used in this
study: Directors and Followers . Directors learned each
environment until they could navigate efficiently, then
wrote text route instructions, navigated the routes, and
rated themselves. Followers followed the Directors’
instructions without any previous knowledge of the
layout, rated the quality of the instruction, and rated
their certainty of reaching the described destination.

Directors Directors were instructed to learn the
environment and the location of the seven target
locations. The name of each target was announced by
a computer-generated voice (e.g. “Position 3”) when the
participant entered a location. The directors were told
that later they would give instructions to travel between
these target locations. Directors had free exploration
sessions of 120 travel actions to learn the spatial layout.

After each free exploration period, we evaluated how
well the director knew the environment by giving a
navigation efficiency test . In this test, the computer
started the participant at one of the target locations
and instructed the participant to travel to a target
location (e.g. “Go to position 2.”). The participant
was instructed to travel to that location by the shortest
route. After reaching the designated target location,
the computer compared the number of travel actions
used to the shortest route. When director reached all
goals within 150% of the shortest path for each route
for seven consecutive routes, the navigation efficiency
test ended. After three routes over this threshold, the
director returned to the free exploration phase.

After passing the navigation efficiency test, the
director entered the route instruction phase of the study.
In this phase, the director gave instructions for routes
between the target locations. For each route, the director

Figure 2: Top: Map of one of three virtual environments
(not seen by participants). Three regions share a wall
hanging of a fish, butterfly, or Eiffel Tower. Each long
hallway has a unique flooring. Letters above mark
objects (e.g. ’C’ is a chair), numbers indicate named
positions. Bottom: Participants’ first-person view from
the easel (’E’) at the end of the black hall in the map.

experienced the following sequence of events:

1. The director was placed at the starting location, facing
a random direction.

2. The position name was announced (e.g. “Position 7”)
and the director was allowed to turn freely to orient,
but not to move forward. Once ready, the participant
pressed a button.

3. A text-entry window then appeared on the screen.
The director typed their instructions without a time
limit. The director could also move the cursor to
correct previously typed text in this step. The director
clicked a button when the instructions were finished.

4. After giving instructions, the director navigated from
her current location to the specified target location.
Upon reaching the target location, the director pressed
the space bar indicating that she was at the goal.

5. On a six-point scale, the director rated:
(a) how certain she was she reached the destination
(b) and the quality of her own instructions.
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For the seven locations within an environment there
are 42 possible pairs (7 choose 2). Each participant
gave instructions between all 42 ordered pairs of named
positions in a random order. Each director repeated this
procedure for all three environments, on separate days.

Followers Participants in the follower group were told
that they would be given a set of instructions written
previously by other participants. The followers were
instructed that they should follow the instructions to
the best of their ability. The route instructions were
presented on the computer screen as text as typed by the
director. However, any reference to a target position by
name (e.g. “This is Position 1”) was replaced with
an anonymizing ’X’ or ’Y.’ The followers recognized
destinations from the descriptions, not a name.

Each follower followed and rated 126 instructions
balanced across routes, directors and environments.
The procedure interleaved instructions from all three
environments to discourage the followers learning the
environments. No follower experienced exactly the same
route twice, so none repeated a route with new route
instructions.

Each follower experienced the following sequence of
events for each route instruction:

1. The computer presented a text box containing the
route instruction text. The follower was allowed to
read the instructions without a time limit, selecting
an ’OK’ button when finished.

2. The follower was placed at the starting position facing
a random direction.

3. The follower navigated through the environment.
4. At any time, the follower could review the instructions

by pressing ’d’ on the keyboard. The instruction
display fully obscured the view of the environment.

5. When the follower believed that he had reached the
destination described in the instructions (or finished
trying), he pressed the space bar.

6. The follower rated how confident he was that he had
reached the goal and the quality of the instructions,
both on a six-point scale.

Participants Forty-two participants were used in the
study. Six participants were directors (3 females) and
thirty-six were followers (15 females). The directors were
paid $10.00/hour for an average of 7 hours. The followers
participated for one or two hours to help satisfy course
credit in an undergraduate psychology course.

Human Instruction Experiment Results

Table 1 provides a sample of the instructions given by
the six directors. The instructors’ styles varied from very
sparse instructions providing specific move sequences
(EDA) to very rich and elaborate instructions (KLS).

Marco Performance Study

Over runs through the 756 route instructions (42 routes
in 3 environments for 6 directors), we measured how
often Marco successfully reaches and recognizes the
destination. For analysis, we focus on the 682 of the
route instructions where director typed at least one

Table 1: Example instructions for routes from same start
and end. Instructions include errors (e.g. “halllway”).

EDA: turn to face the green halllway, walk

three times forward, turn left, walk forward

six times, turn left, walk forward once

EMW: Follow the grassy hall three segments

to the blue-tiled hall. Turn left. [...]

Turn left. Go one segment forward to the

corner. This is Position 5.

KLS: take the green path to the red brick

intersection. go left towards the lamp to

the very end of the hall. at the chair,

take a right. [...] at the end of this

hall at the corner, you are at position 5

KXP: head all the way toward the butterfly

hallway, keep going down it until you reach

a dead end square area. pos 5 is in the

corner to the left as you enter the block.

TJS: go all the way down the grassy hall,

take a left, go all the way down the blue

hall until you see a coat rack, take another

immediate left.

WLH: from four face the grass carpet and

move to the hat rack, [...] move into the

corner such that the lamp is behind you and

to your right you see a gray carpeted alley

sentence. We also used Marco and the test corpus to
examine why people prefer some instructions over others,
even when both lead to the goal.

We ran Marco with and without an error recovery
strategy. The recovery strategy is a Find behavior,
which simply performs a “drunkard’s walk” when the
follower does not see a view that matches a necessary
description in the instructions. The follower randomly
picks one of the paths at the current location to travel
along, then checks whether the sought-after view is now
visible. There is also a small chance of giving up, which
gradually increases with each forward move.

Marco and Human Comparison

Table 2: Marco model’s success predicts people’s with
84% precision, 75% recall, and 79% F-measure.

Human Success Human Failure
Marco Success 1809 338
Marco Failure 618 758

Human followers successfully followed the instructions
on 68% of the route instruction runs. Tables 2 and 3
and Figure 3 summarize the success rates of Marco and
people and how subjects rated the instructions.1

1 Comparisons are with Marco as of April 21, 2006.
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Table 3: Correlations of success rates and human
subjective ratings. Spearman rank-order correlation
coefficients (RS) are all significant at p < 0.001.

Route
Success
Rate

Human
Subjective
Rating RS

Human
Success
Rate RS

Human 68% 0.578 1.000
Full Marco 61% 0.544 0.607

Marco w/o Find 53% 0.610 0.585

As expected, there is a strong correlation between the
instruction rating and the human rate of stoping at the
goal (RS=0.578). The mean human subjective rating
has a slightly lower correlation to the success rate of the
full Marco model (RS=0.544), but a higher correlation
to the success rate of Marco without Find (RS=0.610).

Comparing the success rates, a different pattern
emerges. Human success rate per route instruction
correlates more highly with the success rate of the
full Marco (RS=0.607) than with the success rate of
Marco without Find (RS=0.585). The full Marco

model is a better predictor of the objective human
success rate for a route instruction, while Marco

without Find is better predicts human subjective rating.

Analysis of Follower Performance
Figure 3 shows the navigation success rates for people,
the full Marco and Marco without the Find behavior.
Each plotted point is the arithmetic mean over the set
instructions with post-hoc human subjective rating of
n ± 0.125, with poor instructions (from 1.0) on the left
to and excellent on the right.

The top line (◦) shows the success rate by human
followers increasing with instruction rating. The default
Marco (�) system approximates human performance
for highly-rated instructions (> 4.0), while succeeding
less often on poorly-rated instructions (< 4.0). On
highly-rated instructions (right side), using the Find
error recovery method (⊲) does not greatly affect
performance. However, for poor instructions, Find
actions become as crucial, as can be seen as the
performance of the system without Find (⊲) drops on
the poor instructions on the left.

We coded the primary reason for failure on 118
instructions where Marco’s success rate is 50 percentage
points less than people’s. There were 8 errors in model-
ing word meaning, 28 errors in modeling phrases, 8 errors
in combining phrases within an utterance, 50 errors
in combining information from separate utterances, 5
perceptual errors, 6 anaphora errors, and 8 errors of over-
relying on part of the description.

Based on this discrepancy analysis, the most effective
ways for Marco to improve are in better and more
comprehensive modeling of phrases and in modeling
discourse context. Some phrases are not yet inter-
preted, such as some fictive motion phrases, while
others are misinterpreted in some contexts. Some
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Figure 3: Route instruction following success for runs by
human followers and Marco with and without Find.

modeling of discourse context will allow interpretation
when one utterance depending on the prior utterance.
One example is “Go down two intersections. At
the third, turn right,” which was also a difficulty
for Bugmann et al. (2004).

Analysis of Director Performance

Figure 4 shows the mean success rate on instructions
from each director for people, Marco and Marco

without Find. Each bar represents the mean percentage
of routes successfully followed over multiple runs through
the route instructions by a director (all directors for
’All’). Each group of bars displays the performance for
runs using the instructions from one director.

Marco best approximates human performance on
two of the directors who give the more reliable and
highest rated instructions (EDA and EMWC). These
directors also show the least drop off without the Find
behavior. Marco does not perform quite as well
on these instructions from the next two most reliable
directors, KLS and WLH, but still does not require the
Find behavior often. These directors all tend to give
instructions explicitly covering entire route.

On instructions from the two poorest performing
directors, KXP and TJS, Marco does not perform
as well as people do. Both of these directors wrote
instructions that require frequent use of the Find
behavior, as can be seen by the decrease in performance
without it. The routes from these directors are often
fragmentary and error-laden.

Conclusions

This study examined what separates highly- and poorly-
rated verbal route instructions. One human study
collected a large corpus of text route instructions de-
scribing three complex large-scale virtual environments.
A second human study followed and rated these route
instructions. A software system that can parse, model,
and reactively enact route instructions is presented. The
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Figure 4: Route instruction following success and mean
human instructions rating for each of the 6 directors by
people and Marco with and without Find.

system, Marco, approximates human performance, as
measured by whether the follower successfully navigates
from a starting place to the destination and correctly
declares reaching the goal.

We find that the base Marco system is a strong
predictor of which instructions people can follow, while
the Marco system without an error recovery behavior
is a strong predictor of how people will rate the
instructions. If Marco successfully reaches the goal,
people most likely will also. If Marco must use its error
recovery Find behavior to reach the destination, people
will be able to reach the goal less often and will rate
the instructions lower. Further work will use Marco

to investigate how people think and communicate about
large-scale spaces and provide a practical interface for
assistive technologies such as smart wheelchairs.
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