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Abstract

Learning spatial prepositions is an important problem in
spatial cognition. We describe a model for learning how to
classify visual scenes according to what spatial preposition
they depict. We use SEQL, an existing model of analogical
generalization, to construct relational descriptions from
stimuli input as hand-drawn sketches. We show that this
model can distinguish between in, on, above, below, and left,
after being trained on simple sketches exemplifying each
preposition.

Introduction

Spatial reasoning is a skill central to many human tasks, as
is being able to communicate about space. One way we
share spatial information is through the use of prepositions
to describe relationships between entities in the world.
These utterances involve at minimum two objects: a
reference object (the ground) and a located object (the
figure) as well as the preposition that describes their
relationship. The set of spatial prepositions in English is
quite small when compared with other word categories;
however computationally modeling the assignment of
preposition labels to visual scenes remains a difficult and
important problem.

Many recent psychological studies have focused on
understanding which properties of the figure and ground
objects play a role in the assignment of spatial prepositions.
Some of the properties studied are extracted directly from
the spatial arrangement of objects and surface features.
Spatial language has garnered so much attention since it is
considered to be an important organizing structure for
conceptual information (Talmy, 1983). Studies have also
shown that children learn how to use spatial language
through interactions with objects in the world and without
negative evidence.

In this paper, we automatically categorize simple two-
dimensional geometric sketches based on the preposition
that would best describe them. Sketching is particularly
suited to studying this domain as our understanding of
spatial terms is grounded in perception. Perceptual features
can be automatically computed using sketching systems,
thus removing a source of tailorability in modeling. For
these experiments, we used sKEA (Forbus, Ferguson &
Usher, 2001), the first open-domain sketching system.
sKEA sidesteps traditional recognition problems by

allowing users to conceptually label the glyphs in a sketch.
We use this conceptual information along with visual
properties of the ink itself to focus on understanding the
relationships in the sketch. The possibilities for conceptual
labels are limited only by the underlying database (currently
a subset of the Cyc database containing over 35,000
concepts). In addition to the conceptual label, users can
give each glyph a name to reference it by. Basic qualitative
spatial relationships are extracted from the ink in the sketch
(Forbus, Tomai & Usher, 2003). In sKEA, the frame of
reference is also specified by allowing the user to select the
view of the sketch (i.e., “looking from side”, “looking from
another object”).

We previously used sKEA as input into SpaceCase, a
Bayesian model that assigned prepositions to individual
sketches (Lockwood, Forbus, & Usher, 2005). In that
model, update rules fired based on properties in the sketch
such as animacy of the ground and figure objects. In that
work, the rules were motivated by results from
psychological studies indicating what properties of scenes
were important for preposition assignment. In the
experiments described here, we use SKEA to automatically
compute a set of spatial relationships from sketches. These
relationships are suggested by, and consistent with, those
features which have been shown to influence spatial
preposition judgments with human subjects. Analogical
generalization is used to automatically create groupings
based on the features we have extracted. The
generalizations created group the sketches together based on
the relationship (in, on, above, below, and left) between the
two objects.

Analogical Generalization

We use SEQL (Skorstad, Gentner, & Medin, 1988; Kuehne,
Forbus, Gentner, & Quinn, 2000) as our model of
categorization. SEQL is a computer model of category
learning that is based on Gentner’s (1983) structure-
mapping theory of analogy and similarity. In SEQL
categories are created through a process of successive
comparison with incoming exemplars. The comparisons are
carried out with SME, the Structure-Mapping Engine
(Falkenhainer, Forbus & Gentner, 1986; Forbus, Ferguson
& Gentner, 1994). For each category, a set of
generalizations and exemplars is maintained. Each new
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exemplar that arrives is compared against existing
generalizations. If the comparison is very close, i.e. over a
given threshold, the exemplar is merged into the
generalization and the generalization is replaced with the
overlap between them. If it is sufficiently similar to an
existing exemplar, the overlap between the two exemplars is
stored as a new generalization. Finally, if the incoming
exemplar is not similar enough to any of the existing
generalizations, it is maintained as a separate exemplar.

The determination of “similar enough” is controlled by
the match threshold parameter, which is 1.0 when the two
descriptions are identical. If this threshold is too high, it is
difficult to find any exemplars that are similar enough to
create generalizations. If too low, then the generalizations
created are meaningless. Previous experiments suggest that
a match threshold between 0.75 and 0.9 tends to yield the
most useful results.

SEQL can now wuse probabilities in producing
generalizations (Halstead & Forbus, 2005). When
generalizations are created or extended, the union of the
descriptions is used, with the probability of an expression
being in the generalization calculated by the frequency of
occurrence in the exemplars that make up the generalization.

Experimental Design

Experiment 1

Input. Input was provided as sketches created using sKEA.
Each sketch contained two geometric shapes named
figure/ground and conceptually labeled with their common
shape names (for example, in figure 1 below, the square was
named figure and conceptually labeled “square”). The
shapes used were circles, triangles, rectangles, and squares.

Figure 1. An example of
the sketched input used in
this experiment.

In the first experiment the library of sketches used
contained 50 sketches. Each sketch was designed to be a
good example of one of five spatial prepositions: in, on,
above, below, or left, with 10 sketches created for each
preposition. By “good example” we mean that it would be
easily and unequivocally recognized as a good
representative of the English use of that preposition. For
example, in all of the in sketches, the figure object was
smaller than the ground object and the figure object was
completely enclosed in the boundary of the ground object.
Each preposition had examples containing different shapes
in the ground and figure roles. All sketches were 2D and
drawn from the same side view perspective.

The sketches were drawn from stimuli in the
psychological literature studying spatial prepositions,

focusing on simple two-dimensional geometric shapes. The
sketches for above and on were taken in part from examples
provided in Regier (1995). Other sketches for left and
above were created based on information from Gapp
(1995a, 1995b), whose experiments explored the effect of
distance and shape (extent)/size of the ground in judgments
of applicability for projective spatial relationships. The
sketches were also informed by a variety of experiments that
discuss limitations on regions of acceptability for
prepositions, such as Logan and Sadler (1996) and Regier
and Carlson (2001).

Visual Processing. Initial processing is done on the sketch
to extract visual information from the ink. This information
is meant to approximate high-level visual processing. For
example, RCC-8 relations (Cohn, 1996) are computed
between the objects in the sketch to determine topological
relationships such as touching (rccs-tc) and inside (rccs-
nTPP). We use these qualitative spatial relations as one
source of perceptually salient relationships in the sketches.

sKEA automatically computes a variety of other
qualitative spatial relationships from the ink. For example,
spatial processing identifies groups of glyphs that form
connected glyph groups and contained glyph groups. In the
latter case it also specifies which glyph acts as the container
and which acts as the insider. sKEA computes positional
relations (i.e., above and to the right of between all pairs of
glyphs in a sketch that are disjoint from each other.

Our model does some minimal additional processing
based on the spatial relationships computed from the sketch.
For example, positional relations are always computed with
the figure in the first argument and the ground in the second
argument, i.e., (above ground figure) would be translated
to (below figure ground)’. For each sketch, this visual
information and any conceptual information about the
objects in the sketches is recorded as an exemplar.
Unnecessary  information, like bookkeeping facts
representing specifics of our implementation, are filtered out
since we do not view them as psychologically relevant. All
filtering and processing procedures were done over the
entire case library of sketches. Individual sketches were
never singled out for specific processing.

Classification. All 50 sketch cases were run through
SEQL, using a match threshold of 0.9. Our goal in doing
these experiments is to see whether we can achieve human-
like classification results automatically, and what specific
sets of relationships are needed to do so.

! Above as computed by sKEA is very different from its English
language counterpart. The spatial relationship above in SKEA is
derived by comparing the relative positions of the centers of area
of the bounding boxes of the glyphs. This alone is not enough
information to parse different prepositions. For example, the
positional relationship above shows up in the generalizations for
both above and on.
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Results. The fifty simple sketches were classified into the
five generalizations expected (corresponding to in, on,
(enclosesHorizontally ground figure)
(connectedGlyphGroupTangentialConnection
figure ground)
(connectedGlyphGroupTangentialConnection
ground figure)
(rcc8-EC figure ground)
(above figure ground)

Figure 2. The SEQL generalization created for the
preposition on.

above, below, and leff). These results were stable over a
variety of match threshold values between 0.8 and 0.9.
Inspection of the generalizations generated shows the
overlap between the sketches that creates the generalization.
Figure 2 shows the generalization created for on.

The information included in the generalization is visual
information based on the spatial arrangement of the glyphs
in the sketch. Looking at the facts generalized, it makes
sense that the salient perceptual information needed to
assign the relationship on would be a combination of
tangential connection between the figure and the ground and
the figure being above the ground. Currently, every fact in a
case is weighted the same as every other fact.

These are surprisingly good results considering that we
only used 10 sketches for each preposition and no prior
training was needed. Also, relatively few facts were needed
in each case to determine which category a sketch fell into.
The average number of facts per generalization was 5.6.
The most facts needed was 7 for on.

It is important to note that not just any set of facts will
result in a useful classification. If bookkeeping information
is not filtered out, it will overwhelm the cases and
categories that result are meaningless. Also, object-centric
perceptual information had to be filtered out, as it ended up
being irrelevant to the spatial preposition categories and was
adding noise to the similarity comparisons. For example,
the spatial properties that sKEA automatically computes
includes an estimation of roundness of glyphs. If the
roundness facts are left in the cases, they sometimes cause
sketches to classify based on similar roundness facts instead
of on the relationship between the glyphs. So the set of
facts that ended up in each case ends up being focused on
those facts that specifically related to the relationship
between the two glyphs.

Likewise, while doing these experiments, we found
several additional spatial relationships that had not
previously been computed that were needed to create
meaningful generalizations. In order to get the above and
below cases to generalize, we added information about the
grazing line. The grazing line is a horizontal line, that
grazes (is tangential to) the very top of the ground object.
Regier and Carlson (2001) suggest that above ratings are
sensitive to the grazing line and we found the same result in
our experiments.

The set of facts retained in generalizations is summarized
in the table below along with the categories they appear in:

Relationship Categories

Horizontal enclosure below, above, on

Vertical enclosure left

Left of left
RCC8-DC (disjoint) below, above, left
Above above, on
Below below
Above Grazing Line above
Below Grazing Line below
Contained Glyph Group in
RCCS8-NTPP/TPP (inside) in
Connected Glyph Group on
RCCB8-EC (touching) on

Figure 3. A summary of the spatial
relationships used for generalization.

When glyphs partially overlap, a fact is also asserted based
on percentage of total area overlap (LessThanlOOverlap,
DefiniteOverlap, or GreaterThan900verlap). These facts
are useful for disambiguating cases of partial overlap from
those that are just poorly drawn examples of in or on and are
computed for every sketch. Since none of the simple
sketches had overlap cases, none of these facts shows up
here. It is interesting that this small set of relationships is
sufficient to distinguish between these prepositions. Efforts
were made to remove redundant and unnecessary
information.  For example, in addition to designating
contained glyph groups, sKEA also asserts information
about which object is designated as the container and which
is the insider. At this level of classification removing that
information had no impact on the generalizations created.
Keeping just the information that the ground and the figure
form a contained glyph group is enough to ensure the
correct generalization will form.

Experiment 2

Input. The input for Experiment 2 was very similar to that
for Experiment 1. The same 50 sketches from Experiment 1
were used. In addition, 20 new sketches which were more
complicated (non-standard) and/or ambiguous cases of
spatial prepositions were used. Figure 4 below shows two
sketches from the 20 added and illustrate two different
reasons for inclusion. The sketch on the left shows an
ambiguous case where the circle could be considered above
or fo the left of the square. The sketch on the right shows an
instance of in where the figure is only partially contained
within the boundaries of the ground (this is similar to the
case “the flowers are in the vase”). For the rest of this
discussion, the 50 original sketches from Experiment 1 will
be referred to as the simple sketches and the 20 additional
sketches from Experiment 2 will be referred to as the
complex sketches.
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Figure 4. Two examples of the stimuli used
for experiment 2.

The 20 complex sketches obviously could not cover every
possible arrangement of figure and ground, so we focused
on the following deviations:

o Sketches where the figure overlaps the ground by
varying amount (ambiguous between in and on)

o Sketches ambiguous between above and left (as in
Figure 4a above)

e  Sketches where the figure is attached to the side of the
ground — vertical as opposed to horizontal support (on
as in “the picture is on the wall”) or where the ground is
sloped.

e On and above examples where the figure was larger
(larger vertical extent) than the ground

The idea that some scenes are better examples of certain
prepositions than others is common in the literature. For
example, Logan and Sadler (1996) argue that for spatial
templates, there are three regions of acceptability for spatial
relationships: the good region, the region of examples that
are not good, but are acceptable, and the region of
unacceptable examples. These sketches are intended to fall
into the acceptable but not good category.

Classification. First, the simple geometric sketches were
classified using SEQL. Once the base generalizations were
created, the complex sketch examples were added to SEQL
and the generalization algorithm was run again. Several
different runs were done with varying match thresholds.
Good results were found at both the 0.8 and 0.9 levels.

Results. As mentioned above, the original 50 sketches
created 5 generalizations, one corresponding to each
relationship represented. This result was unchanged in this
experiment. The ambiguous above/left sketches divided —
the one that was most like the left sketches joined that
generalization while the others created a separate
generalization. The sketches where the figure overlapped
the ground by varying amounts formed another
generalization. The on category assimilated all of the other
sketches that were meant as complex or ambiguous
examples of that preposition. The incorporation of these
instances into the overall generalization altered the facts that
were considered part of the generalization as can be seen in
the figures at the top of the next column.

=L

Figure 5. Two dissimilar examples, both instances of on.

The sketch on the left is a simple example, and the one on
the right is complex in that it involves vertical rather than
horizontal support.

--DEFINITE FACTS:

(connectedGlyphGroupTangentialConnection
figure ground)

(connectedGlyphGroupTangentialConnection
ground figure)

(rcc8-EC figure ground)

--POSSIBLE FACTS:

88% (above figure ground)

65% (enclosesHorizontally ground figure)

18% (enclosesHorizontally figure ground)

12% (leftOf figure ground)

12% (enclosesVertically ground figure)

6% (rightOf figure ground)

Figure 6. The new generalization created for on after the
complex sketch examples are added.

Clearly this new generalization covers a wide variety of
sketches. However, it is important to note that all sketches
that were included in this generalization depict a
relationship that would be classified using the preposition
on.  Another interesting result is that the sketches
representing those cases where the figure overlaps the
ground, but is not fully contained in it, formed a separate
generalization. While they would most likely be labeled as
in (although some might be on depending on the context of
the scene) they did not join the generalization that contained
the simple cases of in.

Although there were a variety of new sketches added, the
group of facts used to create the generalizations did not
change that much from Experiment 1. In addition to the
facts listed in Figure 3, the following facts showed up in the
generalizations created in Experiment 2:

e RCCS8-PO (i.e., partially overlaps)

e DefiniteOverlap

e rightOf

e The horizontal and vertical inclusion was expanded to
include cases where the figure included the ground.

% For all sketches where an RCC8-PO relationship exists, one of
{DefiniteOverlap, LessThanlOOverlap,
GreaterThan900verlap} gets asserted based on the
percentage of area overlap (<10%, between 10% and 90%, or
>90%) between the figure and ground.
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Related Work

A number of models of spatial prepositions involve
representational templates that are created by hand. For
example, Herskovits (1980, 1986) categorizes spatial
language into use cases based on object and contextual
features as well as typicality, and Logan and Sadler (1996)
classify geometric scenes using spatial templates. These
models require an exhaustive list of the use cases/templates
needed, mechanisms for selecting the correct one, and an
account of what modifications can be made to fit an
imperfect template to a scene. By contrast, our use of
SEQL produces relational templates automatically, and
reduces the imperfect fit problem to structural alignment.

Regier’s (1995) connectionist model was able to learn
spatial prepositions for a variety of languages. However, it
required labeled training data, and a total of 3000 epochs of
training on 126 movies. Since we do not label our stimuli,
there are no cues for our system as to which sketches should
be classified together. Their system operated on videos of
scene sequences allowing it to also handle dynamic
prepositions such as through.

Regier and Carlson’s (2001) attentional vector sum
(AVS) model is able to reproduce similar results to humans
for several different prepositions. Recent extensions
(Regier, Carlson, & Corrigan, 2005) modified the original
AVS model to account for functional information. This is
done by focusing attention on the functional parts of objects
(such as the bristles of a toothbrush). This work predicts
acceptability judgments of spatial terms as opposed to
categorizing stimuli.

Coventry et al. (2004; Cangelosi et al 2005) have
developed a model which implements the constraints of the
functional geometric framework (Coventry & Garrod, 2004)
for the prepositions over/under/above/below. The model
has been shown to be consistent with human data on the
appropriateness of these four prepositions in describing
scenes involving both geometric and functional information.
Martinez, Cangelosi, and Coventry (2001) describe another
model that simulates the same set of data, using a neural
network whose input is descriptions of visual scenes. These
descriptions are created using variables to encode various
factors that were found to influence over/under/above/below
judgments in experiments (Coventry, Prat-Sala, & Richards,
2001): orientation, function, appropriateness, and object
type. The encoding of variables is done by hand, however,
unlike our automatic encoding scheme.

We find all of these projects to be complementary to our
work; there are tradeoffs to the different approaches. The
main benefit of our approach is the flexibility and
extendibility of the system. Since the input is sketches, it is
very quick and easy to create more stimuli and to test more
arrangements of objects. Since conceptual labeling ties to
the underlying off-the-shelf knowledge base, functional
information can be added through inference. No
information for any case needs to be hand coded or added
individually.

Discussion

We have shown that we can successfully classify simple
two-dimensional geometric sketches by the spatial
preposition that would be used to describe them by
extracting a sufficient set of spatial relationships. Our
contribution is unique in two ways. The first is our use of
sketch-based input. This allows us the flexibility to quickly
and easily create a variety of stimuli, including being able to
recreate similar examples to stimuli from different
psychological experiments. Automatically extracting the
salient perceptual information eliminates the need for hand
coding of representations. The second unique aspect of our
model is the wuse of analogical generalization to
automatically create categories. By altering the contents of
our case libraries, through variations of the automatic
encoding process, we were able to explore what
relationships are sufficient to create the correct
generalizations.

Future Work

We plan to extend the corpus of sketches to include
everyday objects in addition to abstract geometric shapes.
Psychological studies show that functional information
about objects in scenes contributes heavily to the choice of
preposition used to describe them (Coventry, Prat-Sala, &
Richards, 2001; Feist & Gentner, 1998; Carlson-Radvansky,
Covey, & Lattanzi, 1999; Coventry & Mather, 2002;
Coventry & Garrod, 2004). Since we are already
conceptually labeling the objects in our sketches, we can use
the knowledge base to infer the functional properties of
figure and ground objects, and verify that the figure and
ground are fulfilling their functional roles. We also plan to
extend the corpus to include sequences of sketches
representing dynamic situations.

Another direction involves testing with human subjects.
The sKEA interface provides an interesting opportunity to
run human subjects with the exact same stimuli (sketches)
provided to the computational model. For example, we plan
to present people with a categorization task similar to what
was given to SEQL, and determine how they classify the
harder sketches to inform subsequent versions of our model.

Finally, we also plan to explore categorization of
prepositions in other languages (cf. Regier, 1995;
Bowerman, 1999). There are competing theories as to how
spatial reasoning and spatial language develop. One theory
is that all humans share a small set of spatial primitives that
we then learn to map to prepositions. Some recent work
suggests that these primitives may be more varied than
previously suspected (Choi et al, 1999). By comparing the
relationships necessary to correctly classify prepositions in
different languages we hope to shed some light on this
discussion.
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