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Abstract 

Learning spatial prepositions is an important problem in 
spatial cognition.  We describe a model for learning how to 
classify visual scenes according to what spatial preposition 
they depict. We use SEQL, an existing model of analogical 
generalization, to construct relational descriptions from 
stimuli input as hand-drawn sketches.  We show that this 
model can distinguish between in, on, above, below, and left, 
after being trained on simple sketches exemplifying each 
preposition.   

Introduction 
Spatial reasoning is a skill central to many human tasks, as 
is being able to communicate about space.  One way we 
share spatial information is through the use of prepositions 
to describe relationships between entities in the world.  
These utterances involve at minimum two objects: a 
reference object (the ground) and a located object (the 
figure) as well as the preposition that describes their 
relationship.  The set of spatial prepositions in English is 
quite small when compared with other word categories; 
however computationally modeling the assignment of 
preposition labels to visual scenes remains a difficult and 
important problem.   

Many recent psychological studies have focused on 
understanding which properties of the figure and ground 
objects play a role in the assignment of spatial prepositions.  
Some of the properties studied are extracted directly from 
the spatial arrangement of objects and surface features.    
Spatial language has garnered so much attention since it is 
considered to be an important organizing structure for 
conceptual information (Talmy, 1983).  Studies have also 
shown that children learn how to use spatial language 
through interactions with objects in the world and without 
negative evidence.   

In this paper, we automatically categorize simple two-
dimensional geometric sketches based on the preposition 
that would best describe them. Sketching is particularly 
suited to studying this domain as our understanding of 
spatial terms is grounded in perception.  Perceptual features 
can be automatically computed using sketching systems, 
thus removing a source of tailorability in modeling. For 
these experiments, we used sKEA (Forbus, Ferguson & 
Usher, 2001), the first open-domain sketching system.  
sKEA sidesteps traditional recognition problems by 

allowing users to conceptually label the glyphs in a sketch.  
We use this conceptual information along with visual 
properties of the ink itself to focus on understanding the 
relationships in the sketch.  The possibilities for conceptual 
labels are limited only by the underlying database (currently 
a subset of the Cyc database containing over 35,000 
concepts).  In addition to the conceptual label, users can 
give each glyph a name to reference it by.  Basic qualitative 
spatial relationships are extracted from the ink in the sketch 
(Forbus, Tomai & Usher, 2003).  In sKEA, the frame of 
reference is also specified by allowing the user to select the 
view of the sketch (i.e., “looking from side”, “looking from 
another object”).   

We previously used sKEA as input into SpaceCase, a 
Bayesian model that assigned prepositions to individual 
sketches (Lockwood, Forbus, & Usher, 2005).  In that 
model, update rules fired based on properties in the sketch 
such as animacy of the ground and figure objects.  In that 
work, the rules were motivated by results from 
psychological studies indicating what properties of scenes 
were important for preposition assignment.  In the 
experiments described here, we use sKEA to automatically 
compute a set of spatial relationships from sketches.  These 
relationships are suggested by, and consistent with, those 
features which have been shown to influence spatial 
preposition judgments with human subjects.  Analogical 
generalization is used to automatically create groupings 
based on the features we have extracted.  The 
generalizations created group the sketches together based on 
the relationship (in, on, above, below, and left) between the 
two objects.   

Analogical Generalization 
 
We use SEQL (Skorstad, Gentner, & Medin, 1988; Kuehne, 
Forbus, Gentner, & Quinn, 2000) as our model of 
categorization.  SEQL is a computer model of category 
learning that is based on Gentner’s (1983) structure-
mapping theory of analogy and similarity. In SEQL 
categories are created through a process of successive 
comparison with incoming exemplars.  The comparisons are 
carried out with SME, the Structure-Mapping Engine 
(Falkenhainer, Forbus & Gentner, 1986; Forbus, Ferguson 
& Gentner, 1994).   For each category, a set of 
generalizations and exemplars is maintained.  Each new 
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exemplar that arrives is compared against existing 
generalizations.  If the comparison is very close, i.e. over a 
given threshold, the exemplar is merged into the 
generalization and the generalization is replaced with the 
overlap between them. If it is sufficiently similar to an 
existing exemplar, the overlap between the two exemplars is 
stored as a new generalization.  Finally, if the incoming 
exemplar is not similar enough to any of the existing 
generalizations, it is maintained as a separate exemplar.   

The determination of “similar enough” is controlled by 
the match threshold parameter, which is 1.0 when the two 
descriptions are identical.  If this threshold is too high, it is 
difficult to find any exemplars that are similar enough to 
create generalizations.  If too low, then the generalizations 
created are meaningless.  Previous experiments suggest that 
a match threshold between 0.75 and 0.9 tends to yield the 
most useful results. 

SEQL can now use probabilities in producing 
generalizations (Halstead & Forbus, 2005).  When 
generalizations are created or extended, the union of the 
descriptions is used, with the probability of an expression 
being in the generalization calculated by the frequency of 
occurrence in the exemplars that make up the generalization. 

Experimental Design 

Experiment 1 
Input. Input was provided as sketches created using sKEA.  
Each sketch contained two geometric shapes named 
figure/ground and conceptually labeled with their common 
shape names (for example, in figure 1 below, the square was 
named figure and conceptually labeled “square”).  The 
shapes used were circles, triangles, rectangles, and squares. 

     
In the first experiment the library of sketches used 

contained 50 sketches.  Each sketch was designed to be a 
good example of one of five spatial prepositions: in, on, 
above, below, or left, with 10 sketches created for each 
preposition.  By “good example” we mean that it would be 
easily and unequivocally recognized as a good 
representative of the English use of that preposition.  For 
example, in all of the in sketches, the figure object was 
smaller than the ground object and the figure object was 
completely enclosed in the boundary of the ground object.  
Each preposition had examples containing different shapes 
in the ground and figure roles.  All sketches were 2D and 
drawn from the same side view perspective. 

The sketches were drawn from stimuli in the 
psychological literature studying spatial prepositions, 

focusing on simple two-dimensional geometric shapes.  The 
sketches for above and on were taken in part from examples 
provided in Regier (1995).  Other sketches for left and 
above were created based on information from Gapp 
(1995a, 1995b), whose experiments explored the effect of 
distance and shape (extent)/size of the ground in judgments 
of applicability for projective spatial relationships.  The 
sketches were also informed by a variety of experiments that 
discuss limitations on regions of acceptability for 
prepositions, such as Logan and Sadler (1996) and Regier 
and Carlson (2001).   
 
Visual Processing.  Initial processing is done on the sketch 
to extract visual information from the ink.  This information 
is meant to approximate high-level visual processing.  For 
example, RCC-8 relations (Cohn, 1996) are computed 
between the objects in the sketch to determine topological 
relationships such as touching (RCC8-EC) and inside (RCC8-
nTPP).  We use these qualitative spatial relations as one 
source of perceptually salient relationships in the sketches.   

sKEA automatically computes a variety of other 
qualitative spatial relationships from the ink.  For example, 
spatial processing identifies groups of glyphs that form 
connected glyph groups and contained glyph groups.  In the 
latter case it also specifies which glyph acts as the container 
and which acts as the insider.  sKEA computes positional 
relations (i.e., above and to the right of between all pairs of 
glyphs in a sketch that are disjoint from each other.  

Our model does some minimal additional processing 
based on the spatial relationships computed from the sketch.  
For example, positional relations are always computed with 
the figure in the first argument and the ground in the second 
argument, i.e., (above ground figure) would be translated 
to (below figure ground)1. For each sketch, this visual 
information and any conceptual information about the 
objects in the sketches is recorded as an exemplar.  
Unnecessary information, like bookkeeping facts 
representing specifics of our implementation, are filtered out 
since we do not view them as psychologically relevant.  All 
filtering and processing procedures were done over the 
entire case library of sketches.  Individual sketches were 
never singled out for specific processing. 
 
Classification.  All 50 sketch cases were run through  
SEQL, using a match threshold of 0.9.  Our goal in doing 
these experiments is to see whether we can achieve human-
like classification results automatically, and what specific 
sets of relationships are needed to do so.   
 

                                                           
1 Above as computed by sKEA is very different from its English 
language counterpart.  The spatial relationship above in sKEA is 
derived by comparing the relative positions of the centers of area 
of the bounding boxes of the glyphs. This alone is not enough 
information to parse different prepositions.  For example, the 
positional relationship above shows up in the generalizations for 
both above and on.     

Figure 1. An example of 
the sketched input used in 
this experiment. 
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Results.  The fifty simple sketches were classified into the 
five generalizations expected (corresponding to in, on, 

above, below, and left).  These results were stable over a 
variety of match threshold values between 0.8 and 0.9.  
Inspection of the generalizations generated shows the 
overlap between the sketches that creates the generalization.  
Figure 2 shows the generalization created for on. 

The information included in the generalization is visual 
information based on the spatial arrangement of the glyphs 
in the sketch.  Looking at the facts generalized, it makes 
sense that the salient perceptual information needed to 
assign the relationship on would be a combination of 
tangential connection between the figure and the ground and 
the figure being above the ground.  Currently, every fact in a 
case is weighted the same as every other fact.   

These are surprisingly good results considering that we 
only used 10 sketches for each preposition and no prior 
training was needed.  Also, relatively few facts were needed 
in each case to determine which category a sketch fell into.  
The average number of facts per generalization was 5.6.  
The most facts needed was 7 for on. 

It is important to note that not just any set of facts will 
result in a useful classification.  If bookkeeping information 
is not filtered out, it will overwhelm the cases and 
categories that result are meaningless.  Also, object-centric 
perceptual information had to be filtered out, as it ended up 
being irrelevant to the spatial preposition categories and was 
adding noise to the similarity comparisons.  For example, 
the spatial properties that sKEA automatically computes 
includes an estimation of roundness of glyphs.  If the 
roundness facts are left in the cases, they sometimes cause 
sketches to classify based on similar roundness facts instead 
of on the relationship between the glyphs.  So the set of 
facts that ended up in each case ends up being focused on 
those facts that specifically related to the relationship 
between the two glyphs.  

Likewise, while doing these experiments, we found 
several additional spatial relationships that had not 
previously been computed that were needed to create 
meaningful generalizations.  In order to get the above and 
below cases to generalize, we added information about the 
grazing line.  The grazing line is a horizontal line, that 
grazes (is tangential to) the very top of the ground object.  
Regier and Carlson (2001) suggest that above ratings are 
sensitive to the grazing line and we found the same result in 
our experiments.    

The set of facts retained in generalizations is summarized 
in the table below along with the categories they appear in: 

Relationship Categories  
Horizontal enclosure below, above, on 
Vertical enclosure left 
Left of  left 
RCC8-DC (disjoint) below, above, left  
Above above, on 
Below below 
Above Grazing Line above 
Below Grazing Line below 
Contained Glyph Group in 
RCC8-NTPP/TPP (inside) in 
Connected Glyph Group on 
RCC8-EC (touching) on 

 

When glyphs partially overlap, a fact is also asserted based 
on percentage of total area overlap (LessThan10Overlap, 
DefiniteOverlap, or GreaterThan90Overlap).  These facts 
are useful for disambiguating cases of partial overlap from 
those that are just poorly drawn examples of in or on and are 
computed for every sketch.  Since none of the simple 
sketches had overlap cases, none of these facts shows up 
here. It is interesting that this small set of relationships is 
sufficient to distinguish between these prepositions.  Efforts 
were made to remove redundant and unnecessary 
information.  For example, in addition to designating 
contained glyph groups, sKEA also asserts information 
about which object is designated as the container and which 
is the insider.  At this level of classification removing that 
information had no impact on the generalizations created.  
Keeping just the information that the ground and the figure 
form a contained glyph group is enough to ensure the 
correct generalization will form. 

Experiment 2 
Input.  The input for Experiment 2 was very similar to that 
for Experiment 1.  The same 50 sketches from Experiment 1 
were used.  In addition, 20 new sketches which were more 
complicated (non-standard) and/or ambiguous cases of 
spatial prepositions were used.  Figure 4 below shows two 
sketches from the 20 added and illustrate two different 
reasons for inclusion.  The sketch on the left shows an 
ambiguous case where the circle could be considered above 
or to the left of the square.  The sketch on the right shows an 
instance of in where the figure is only partially contained 
within the boundaries of the ground (this is similar to the 
case “the flowers are in the vase”). For the rest of this 
discussion, the 50 original sketches from Experiment 1 will 
be referred to as the simple sketches and the 20 additional 
sketches from Experiment 2 will be referred to as the 
complex sketches. 

(enclosesHorizontally ground figure) 
(connectedGlyphGroupTangentialConnection 

figure ground) 
(connectedGlyphGroupTangentialConnection 
 ground figure) 
(rcc8-EC figure ground) 
(above figure ground) 
 
Figure 2. The SEQL generalization created for the 
preposition on. 
 

Figure 3. A summary of the spatial 
relationships used for generalization. 
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  (a)           (b) 
 

The 20 complex sketches obviously could not cover every 
possible arrangement of figure and ground, so we focused 
on the following deviations:  
• Sketches where the figure overlaps the ground by 

varying amount (ambiguous between in and on) 
• Sketches ambiguous between above and left (as in 

Figure 4a above) 
• Sketches where the figure is attached to the side of the 

ground – vertical as opposed to horizontal support (on 
as in “the picture is on the wall”) or where the ground is 
sloped. 

• On and above examples where the figure was larger 
(larger vertical extent) than the ground 

The idea that some scenes are better examples of certain 
prepositions than others is common in the literature.  For 
example, Logan and Sadler (1996) argue that for spatial 
templates, there are three regions of acceptability for spatial 
relationships: the good region, the region of examples that 
are not good, but are acceptable, and the region of 
unacceptable examples.  These sketches are intended to fall 
into the acceptable but not good category. 
 
Classification. First, the simple geometric sketches were 
classified using SEQL.  Once the base generalizations were 
created, the complex sketch examples were added to SEQL 
and the generalization algorithm was run again.  Several 
different runs were done with varying match thresholds.  
Good results were found at both the 0.8 and 0.9 levels.   
 
Results.  As mentioned above, the original 50 sketches 
created 5 generalizations, one corresponding to each 
relationship represented.  This result was unchanged in this 
experiment.  The ambiguous above/left sketches divided – 
the one that was most like the left sketches joined that 
generalization while the others created a separate 
generalization.   The sketches where the figure overlapped 
the ground by varying amounts formed another 
generalization. The on category assimilated all of the other 
sketches that were meant as complex or ambiguous 
examples of that preposition.  The incorporation of these 
instances into the overall generalization altered the facts that 
were considered part of the generalization as can be seen in 
the figures at the top of the next column. 

 

Clearly this new generalization covers a wide variety of 
sketches.  However, it is important to note that all sketches 
that were included in this generalization depict a 
relationship that would be classified using the preposition 
on.  Another interesting result is that the sketches 
representing those cases where the figure overlaps the 
ground, but is not fully contained in it, formed a separate 
generalization.    While they would most likely be labeled as 
in (although some might be on depending on the context of 
the scene) they did not join the generalization that contained 
the simple cases of in. 

Although there were a variety of new sketches added, the 
group of facts used to create the generalizations did not 
change that much from Experiment 1.  In addition to the 
facts listed in Figure 3, the following facts showed up in the 
generalizations created in Experiment 2: 
• RCC8-PO (i.e., partially overlaps) 
• DefiniteOverlap2 
• rightOf 
• The horizontal and vertical inclusion was expanded to 

include cases where the figure included the ground. 

                                                           
2 For all sketches where an RCC8-PO relationship exists, one of 
{DefiniteOverlap, LessThan10Overlap, 
GreaterThan90Overlap} gets asserted based on the 
percentage of area overlap (<10%, between 10% and 90%, or 
>90%) between the figure and ground. 

 
 

Figure 4. Two examples of the stimuli used 
for experiment 2.   

 on on 

 
 

 
Figure 5. Two dissimilar examples, both instances of on.  
The sketch on the left is a simple example, and the one on 
the right is complex in that it involves vertical rather than 
horizontal support. 

 
 
--DEFINITE FACTS: 
(connectedGlyphGroupTangentialConnection 
  figure ground) 
(connectedGlyphGroupTangentialConnection 
  ground figure) 
(rcc8-EC figure ground) 
--POSSIBLE FACTS: 
88% (above figure ground) 
65% (enclosesHorizontally ground figure) 
18% (enclosesHorizontally figure ground) 
12% (leftOf figure ground) 
12% (enclosesVertically ground figure) 
6% (rightOf figure ground) 
 
 
Figure 6. The new generalization created for on after the 
complex sketch examples are added.  
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Related Work 
A number of models of spatial prepositions involve 

representational templates that are created by hand.  For 
example, Herskovits (1980, 1986) categorizes spatial 
language into use cases based on object and contextual 
features as well as typicality, and Logan and Sadler (1996) 
classify geometric scenes using spatial templates.  These 
models require an exhaustive list of the use cases/templates 
needed, mechanisms for selecting the correct one, and an 
account of what modifications can be made to fit an 
imperfect template to a scene.  By contrast, our use of 
SEQL produces relational templates automatically, and 
reduces the imperfect fit problem to structural alignment. 

Regier’s (1995) connectionist model was able to learn 
spatial prepositions for a variety of languages.  However, it 
required labeled training data, and a total of 3000 epochs of 
training on 126 movies.  Since we do not label our stimuli, 
there are no cues for our system as to which sketches should 
be classified together.   Their system operated on videos of 
scene sequences allowing  it to also handle dynamic 
prepositions such as through. 

Regier and Carlson’s (2001) attentional vector sum 
(AVS) model is able to reproduce similar results to humans 
for several different prepositions.  Recent extensions 
(Regier, Carlson, & Corrigan, 2005) modified the original 
AVS model to account for functional information.  This is 
done by focusing attention on the functional parts of objects 
(such as the bristles of a toothbrush).  This work predicts 
acceptability judgments of spatial terms as opposed to 
categorizing stimuli.  

Coventry et al. (2004; Cangelosi et al 2005) have 
developed a model which implements the constraints of the 
functional geometric framework (Coventry & Garrod, 2004) 
for the prepositions over/under/above/below.  The model 
has been shown to be consistent with human data on the 
appropriateness of these four prepositions in describing 
scenes involving both geometric and functional information.  
Martinez, Cangelosi, and Coventry (2001) describe another 
model that simulates the same set of data, using a neural 
network whose input is descriptions of visual scenes.  These 
descriptions are created using variables to encode various 
factors that were found to influence over/under/above/below 
judgments in experiments (Coventry, Prat-Sala, & Richards, 
2001): orientation, function, appropriateness, and object 
type.  The encoding of variables is done by hand, however, 
unlike our automatic encoding scheme.  

We find all of these projects to be complementary to our 
work; there are tradeoffs to the different approaches.  The 
main benefit of our approach is the flexibility and 
extendibility of the system.  Since the input is sketches, it is 
very quick and easy to create more stimuli and to test more 
arrangements of objects.  Since conceptual labeling ties to 
the underlying off-the-shelf knowledge base, functional 
information can be added through inference.  No 
information for any case needs to be hand coded or added 
individually.   

Discussion 
We have shown that we can successfully classify simple 

two-dimensional geometric sketches by the spatial 
preposition that would be used to describe them by 
extracting a sufficient set of spatial relationships.  Our 
contribution is unique in two ways.  The first is our use of 
sketch-based input.  This allows us the flexibility to quickly 
and easily create a variety of stimuli, including being able to 
recreate similar examples to stimuli from different 
psychological experiments.  Automatically extracting the 
salient perceptual information eliminates the need for hand 
coding of representations.  The second unique aspect of our 
model is the use of analogical generalization to 
automatically create categories.    By altering the contents of 
our case libraries, through variations of the automatic 
encoding process, we were able to explore what 
relationships are sufficient to create the correct 
generalizations. 

Future Work 
We plan to extend the corpus of sketches to include 
everyday objects in addition to abstract geometric shapes.  
Psychological studies show that functional information 
about objects in scenes contributes heavily to the choice of 
preposition used to describe them (Coventry, Prat-Sala, & 
Richards, 2001; Feist & Gentner, 1998; Carlson-Radvansky, 
Covey, & Lattanzi, 1999; Coventry & Mather, 2002; 
Coventry & Garrod, 2004).  Since we are already 
conceptually labeling the objects in our sketches, we can use 
the knowledge base to infer the functional properties of 
figure and ground objects, and verify that the figure and 
ground are fulfilling their functional roles.  We also plan to 
extend the corpus to include sequences of sketches 
representing dynamic situations.   

Another direction involves testing with human subjects.  
The sKEA interface provides an interesting opportunity to 
run human subjects with the exact same stimuli (sketches) 
provided to the computational model. For example, we plan 
to present people with a categorization task similar to what 
was given to SEQL, and determine how they classify the 
harder sketches to inform subsequent versions of our model.   

Finally, we also plan to explore categorization of 
prepositions in other languages (cf. Regier, 1995; 
Bowerman, 1999).  There are competing theories as to how 
spatial reasoning and spatial language develop.  One theory 
is that all humans share a small set of spatial primitives that 
we then learn to map to prepositions.  Some recent work 
suggests that these primitives may be more varied than 
previously suspected (Choi et al, 1999).  By comparing the 
relationships necessary to correctly classify prepositions in 
different languages we hope to shed some light on this 
discussion. 
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