Multi-modal Cognitive Architectures: A Partial Solution to the Frame Problem

Unmesh Kurup (Kurup@cse.ohio-state.edu)
Computer Science and Engineering, Rm 395, 2015 Neil Ave
Columbus, OH 43210 USA

B. Chandrasekaran (chandra@cse.ohio-state.edu)
Computer Science and Engineering, Rm 591, 2015 Neil Ave
Columbus, OH 43210 USA

Abstract

Since its definition by McCarthy in 1969, the Frame Problem
(FP) has been one of the more heavily debated problems in
AL Part of the debate has been on the exact definition of what
the FP really is. The computational aspect of the FP can be
thought of as reasoning about what changes and what doesn’t
change in a dynamic world. The “sleeping dog strategy” is
considered to be a viable solution to this aspect of the FP. We
intend to show that this strategy has a weakness that can be
partially solved using diagrammatic reasoning, under certain
conditions. A related and equally important problem, called
the Ramification Problem, is to be able to reason about the
indirect effects of an action in the world. Our proposal
provides a more efficient solution to the Ramification
Problem when reasoning about spatial relations. To illustrate
our solution, we introduce a problem solving architecture
based on Soar that is augmented with a diagrammatic
reasoning component. A problem state in this augmented Soar
is bi-modal in nature, one part being symbolic and the other
diagrammatic. We describe its use in certain problems and
show how the use of diagrams can handle the frame and
ramification problems with respect to spatial relations.

Keywords: Multi-modal; Cognitive Architectures;

Diagrammatic Reasoning; Frame Problem

Introduction

In their 1969 paper, McCarthy and Hayes discuss a number
of philosophical issues in artificial intelligence. One of the
issues they identified is the Frame Problem. As formulated
by McCarthy and Hayes (now referred to as the logical or
technical aspect of the FP), the FP is the problem of
axiomatizing the Common Sense Law of Inertia - the
understanding that an action is assumed to not have changed
a property of a situation unless there is evidence to the
contrary (Shanahan, 2004). A different problem involves
how to reason about an action’s consequences without
having to go over the entirety of its (the agent’s) knowledge.
McDermott calls this the computational aspect of the FP
(McDermott, 1987). Later discussions have identified other
distinct, but related problems, including the Philosopher’s
aspect of the FP and the Ramification Problem, lurking
where just one problem was first seen. There is broad
consensus today that the frame problem in its logical guise
has been solved (Shanahan, 1997) (Reiter, 2001). However,
the computational aspect still remains problematic. For the

remainder of the paper, when we refer to the FP, we mean
its computational aspect.

In the logic framework, information about the world and
the objects in it is represented as sentences in a symbolic
language. When a problem solving system is built in this
framework, the various actions that the agent can take in the
world are represented as rules that have pre-conditions that
decide when the rule applies and post-conditions that
explicitly capture the changes. While various heuristics and
strategies might mitigate the problem, there is a consensus
that the FP and its variants are unavoidable in the sentential
knowledge representation framework. This has resulted in
suggestions that perhaps alternative representative
frameworks might exist that avoid the problem. One such
proposal by Janlert (1996) is that analog representations
such as pictorial representations might be the answer. In
such systems, a rule only encodes the basic action. The
other changes are implicitly captured by the representation
(as in the external world). Unfortunately, analog
representations suffer from problems too, one of which is
their tendency to over-specify. Due to this, the possibility
exists that conclusions drawn within the framework could
be wrong. To avoid this, agents using such representations
usually perform additional reasoning that verifies any
conclusions. As Pylyshyn (1996) has mentioned, when this
additional reasoning is combined with the problem of
converting problems into equivalent ones that have a spatial
character, we end up trading one problem for another
equally difficult problem.

Our proposal is two-fold. While reformulating every
problem into a spatial one has prohibitive costs and is not
always possible, we believe there is a small subset of
problems, namely those that are already spatial or have a
natural spatial analog that have no need for conversion.
Analog representations can indeed be of help in these cases.
Secondly, analog representations have another advantage.
The sleeping dog strategy, the preferred technique for
handling the problem in the logic framework, has the
drawback that any addition to the vocabulary of operations
in the world results in changes to the existing knowledge in
the system. A diagrammatic representation does not have
the same problem. We take an existing, well established
general problem solving architecture — Soar (Laird et al.,
1987) — and augment it with a diagrammatic reasoning
component. We then compare how traditional Soar and this

1646

new Soar (called bi-Soar) perform in the blocks world
domain when new relations are introduced in the world.

The Frame Problem

As mentioned earlier, the FP is faced by an agent reasoning
in a dynamic world. Consider the blocks world domain.
When a block A, resting on a block B, is moved to a block
C, not only does the new world have A on top of C, it also
no longer has A on top of B. Further, there could be other
relations that have changed, like A may have been to the left
of other blocks but after the move it could be to their right.
To complicate things, there may also be a lot of relations
that don’t change as a result of the move, such as A’s color,
size, shape etc. The relations between B and C don’t change
either. Hayes (1987) provides a more comprehensive
introduction to the frame problem. Without getting into too
much detail about the history of the problem, it is easy to
see that one possible way of handling it is to keep track of
what changes are made by each action and that anything not
explicitly mentioned as changing is assumed to not have
changed. McDermott (1987) calls this the “sleeping dog”
strategy. One way to implement such a strategy is using
suitably parameterized add and delete lists to keep track of
the consequences of actions. When the precondition of a
rule was met, everything in the add list is added to memory
and everything in the delete list is removed from memory.
In order to control the lists from becoming too big, relations
in the modeled world were divided into primitive and non-
primitive relations. Non-primitive relations are those that
can be inferred from primitive relations and hence, add and
delete lists need contain only the changes to primitive
relations.

Add and delete lists do indeed provide a solution to the
FP, but have certain drawbacks. Consider the blocks world
example described above. Each add and delete list describes
which primitive relations are changed by an action. As more
and more primitive relations are added to the world, the
number of entries in the lists also increases. At some point,
the lists will grow so large that the agent spends a
significant amount of time simply updating the state of the
world using these lists. Another problem is that the number
of inferences required to derive a non-primitive relation
from the primitive relations may turn out to be expensive
and repeated application of such inferences could slow
down the system. These drawbacks are well documented in
the FP literature.

We believe that there is yet another drawback not
identified by earlier discussions on the topic. Assume we
want the representation to capture the new (primitive)
relation right-of. This would naturally involve a new
predicate right-of and a new action with add and delete lists
that allows the agent to move blocks to the right of other
blocks. But, that is not enough because moving a block to
be on top of another block can also change its right-of
relation to other blocks. Thus, to fully capture the effects of
the new relation, the agent’s add and delete lists for the
action to move a block to be on top of another has to be

modified too. In the worst case, adding a new relation to the
agent would involve changing every add and delete list.

External Representations

Consider the same blocks world scenario as before. Except
that the agent now has a piece of paper and a pencil and the
ability to draw and erase shapes on the paper. Instead of
representing blocks A, B and C using predicates, the agent
instead draws them as blocks on the paper. If the agent
needs to know the relationship between any of the blocks, it
simply looks at the diagram and extracts the required
information from it. If the agent has to move block A from
B to C, it simply erases block A from its previous position
above B in the diagram and redraws it on top of C. One can
see how the FP does not exist in this representation and
consequently there are no add and delete lists to update after
a move. Now consider the example of adding a new relation
right-of to the vocabulary of the world. This would involve
adding perception and action routines that tell the agent how
to check for the right-of relation and how to move
something to the right-of another respectively. And that’s
all. There is no need to modify any other relation.

What makes this form of representation so powerful is a
combination of factors — One, the nature of the problem
allows the use of a spatial representation. There are many
problems that can’t be transformed into such a
representation and cannot be solved using this technique.
Two, the structure of the physical world ensures that the
causality of space is applied to the diagrammatic
representation. Three, the perceptual abilities of the agent
are capable of carrying out the tasks that are required for
perceiving, creating and modifying diagrams. This ability of
diagrammatic representations (and spatial representations in
general) to make explicit certain implicit consequences of
an operation, has been referred to variously as free rides and
emergent properties (Chandrasekaran et al., 2004).

While the use of external analog representations is non-
controversial, there has been much debate about the
presence and availability of internal analog representations
for reasoning. Without getting into the debate, our
internalization of this representation can be justified simply
as an Al solution to an Al problem. The idea of
diagrammatic representations as a solution to the frame
problem has been proposed before, most notably by Lindsay
(1995). But, while Lindsay does lay out his vision of such a
diagrammatic system, he merely mentions that “One may
view perception as offering a solution to the frame problem
by allowing “the world” to make appropriate inferences
which are then “read” by the brain/mind.” Our work takes a
closer look at the frame problem space and identifies exactly
where diagrammatic representations can make a
contribution. Also, we propose diagrammatic
representations as a solution to the drawback of the sleeping
dog strategy and lastly, we show how a general purpose
reasoner, namely Soar, can be augmented with
diagrammatic representations to create a multi-modal

1647

cognitive architecture that can be used to solve a variety of
problems.

While the proposal is for an agent that is multimodal, we
restrict our attention in the rest of the paper to bi-modal
agents in which the predicate-symbolic component is
augmented with a visual component. We next describe a
representational system that is the functional equivalent of
an external diagram.

The Diagrammatic Representation System
(DRS) and the Bi-modal State

We make use of a data type called DRS, proposed in
(Chandrasekaran et al., 2004), to represent a diagram. A
physical diagram (on a screen or on paper) is an image that
contains diagrammatic objects, each to be interpreted as a
point, curve or a region, that represent objects of interest in
the domain of discourse. That is, the diagram is viewed not
as an un-interpreted image, but as a configuration of
diagrammatic objects. Note too that while in the physical
diagram all the objects are regions, so that they can be
perceived, DRS captures the intended diagram. If an object
in the physical diagram appears as a circle, in DRS it would
be treated as a Euclidean point object with just location to
characterize it. DRS is domain-independent — the only
objects are points, curves or regions. Interpreting them in
domain terms is the job of the user of the representation.
The objects in DRS have associated with them information
about their spatiality -- locations for point objects, and
representations that are functionally equivalent to the sets of
points that constitute the objects for curves and regions.
Associated with the DRS are a set of perception and
diagram construction/modification capabilities; following
Ullman (1984), these are called routines. All these routines
are visual, but we use the more general term so that it will
apply to the more general multi-modal view.

Perception Routines take diagrammatic elements as
arguments and return information about specified spatial
properties or spatial relations. There are two types of
perception routines: the ones in the first type re-perform the
figure-ground separation on the image — rather than on the
DRS - perceiving emergent objects (e.g., the two sub-
regions that emerge when a curve intersects a region.)
Routines of the second type return specified spatial
properties of objects, e.g., the length of a curve; and
evaluate specified spatial relations between objects, e.g.,
Inside(Regionl, Region2). These routines work from
descriptions in DRS. DRS thus is an intermediate
representation that supports reconstituting the image, a
capability needed for emergent object identification, and
also the perceptual routines that perceive properties of and
relations between objects.

Routines that help in constructing or modifying the
diagram are action routines. They create diagrammatic
objects that satisfy specific perceptual criteria, such as “a
curve object that intersects a given region object,” and “a
point object inside the region object.” The sets of routines
are open-ended, but routines that are useful across a number

of domains are described in Chandrasekaran (2004), which
also contain more information on DRS.

DRS is the functional equivalent of a diagram in the sense

that it has the same information that a diagram has — objects
and their spatiality — and can be operated on by routines that
are equivalent to perception on external diagrams. DRS will
provide us the representational medium for the visual
modality of the bi-modal state. The symbolic component in
the standard architectures may be transformed in two ways:
by rules as in traditional symbolic representations and by
the relational predicates generated by perceptual routines
operating on DRS. The visual component of the state may
be transformed by action routines invoked during problem
solving to create or modify aspects of the diagram.
Functionally, the bi-modal states are exemplified by Figures
1 and 2, both of which represent the same world state. The
predicate-symbolic representations on the left of each of the
figures are the usual state descriptions. The diagrams on the
right are the visual modality. The diagrammatic part is
represented in DRS. The fact that diagrams are the same in
the figures, while the descriptive components are different
leads us to an important point about how perceptual
representations partially help with the Frame Problem.
With respect to the spatial aspects of the problem, the
diagrammatic component is complete in a way that the
symbolic component is not, and cannot be. We can apply
different perceptions and extract different descriptive pieces
from the diagrammatic component. Diagrammatic
representations (and similar things such as scale models)
can often provide a partial solution to the Frame Problem
for the spatial components, provided perceptions are
available for the information of interest. Thus, while
contemplating the world state corresponding to Fig. 1, the
agent can simply check the diagrammatic component — or
the external world — perceptually to see if the required
spatial relations are satisfied, e.g., Above(A, C), at the point
when such information is needed. In fact, there is no real
reason to carry the complete set of symbolic descriptions
from state to state.

Bi-modal Augmentation of Cognitive State in
Soar

Soar

Soar is an architecture for constructing general cognitive
systems (Laird et al., 1987) that perform a wide variety of
tasks. For achieving this goal, Soar provides representations
for short and long-term memory, mechanisms for interacting
with the external world, a subgoaling strategy that is
independent of the problem and a learning mechanism that
allows Soar to learn as a result of success in solving
subgoals. The Soar architecture also provides a rule-based
programming language that can be used to program the
intelligent agent. Soar’s long-term memory is in the form
these rules or productions of the language. The agent’s
cognitive state is called Working Memory (WM) in Soar.
For our immediate purposes, we do not need many of the

1648

details about WM, which we will simply model as
containing any goal state, description of the state of the
world it is solving a problem about, and active operators.
Soar’s design belief is that all deliberate goal-oriented
behavior can be cast as the selection and application of
operators to the current problem state; and a goal is the
desired outcome of the problem solving activity. All state
representations in Soar make use of predicate-symbolic
descriptions.

For comparison purposes, we constructed biSoar, that is a
Soar with a diagrammatic component available to represent
various states. The resulting problem state is a bi-modal
problem state with part (or whole) of the information
represented symbolically and part diagrammatically. The

On(A,B),
On(B,C), On(C,
Table)

Fig 1. A bi-modal state

On(A,B),
On(B,C),
On(C, Table),
Above(A,C)

Fig.2. Alternate symbolic description
of same world state as in Fig. 1.

diagram or diagrams used in the solver can be initialized as
part of the initialization production of biSoar. A perceptual
routine can be executed on a diagram by calling the routine
in the RHS of a biSoar production. Due to the generic
domain-independent nature of the DRS, the problem solver
in biSoar needs to translate from the domain dependent
nature of the perceptual questions to the generic ones
supported by DRS.

For example, if biSoar asks a question “Is block A inside
of box B1?”, the question is translated into “Is region A
inside of region B1?” During problem solving, the biSoar
problem solver can modify the diagram by invoking the
action routines, and modify the symbolic components by
applying perceptual routines to the diagram.

In biSoar, when solving problems concerning some
external situation, WM may contain several elements each
of which may be augmented with a diagrammatic
component. It is useful to distinguish between world state,
goal state, and cognitive state. World state is simply the
state of the world which is the subject of problem solving.
Goal state is a state in the world that we wish to achieve.
Cognitive state is the contents of the WM of the agent. WM
may contain the goal state the agent is working towards, and
the world state that is the result of any action being
contemplated by the agent. In traditional implementation,
each of these components of WM would be represented in a
form similar to the left sides of Figures 1 and 2. In the
augmented version, these parts of WM will each be

Goal State:
On(A,Table)
World State:
Block(A)
Block(B)
Table(T1)
On(A,B)
On(B,Table)
Table
Operators:
Fig 3: A simple blocks Fig 4: Initial contents of
world example Soar’s WM
Goal State: Goal State:
On(A,Table) On(A,Table)
World State: orld State:
Block(A) Block(A)
Block(B) Block(B)
Table(T1) Table(T1)
On(A,B) On(A,Table)
On(B,Table) On(B,Table)
Operators: move(A,Table) Operators:

Fig 5: Soar’s WM after

operator proposal
augmented with the corresponding diagrammatic
component when such a representation is appropriate and
available. In the rest of the paper, the term Soar will refer to
the traditional symbolic version, while biSoar will refer to
the augmented version.

Fig 6: Soar’s WM after
Move applied

Blocks World in Bi-modal Soar

Example 1

Let us start with an extremely simple example, Fig 3, to
illustrate the basic ideas and issues. The situation has only
two blocks — A and B and a Table, one relation on-fop-of
and a move-on-top-of operator. The goal is to create a
domain state that satisfies the description ON(A,Table).

We will run through the representations in Soar,
describing its problem space and working memory at each
point in problem solving, and repeat the sequence for
biSoar .

Fig 4 shows the starting state of working memory in Soar.
It contains a description of the world state, and the current
goal. During the proposal phase, the production for
proposing a move operator fires and a move operator is
proposed to move A onto the Table. Fig 5 shows the state of

! For our purposes, a content description of Soar’s WM is all that is
required. This is what the figures represent and should not be
mistaken for an exact replica of Soar’s WM.

1649

Soar after the operator proposal phase. During the
application phase, shown in Fig 6, the rule for applying the
move operator fires and removes On(A,B) from the state
and adds On(A,Table) to it.

Fig 7 shows the starting state for biSoar. There are two
blocks — A and B and a table T. The problem state now has
a diagram, represented in DRS, attached to it. In the Figure,
the goal to be achieved is represented both symbolically and
diagrammatically, but either alone might be sufficient’.
Unlike in standard Soar, in biSoar there is no requirement
for the symbolic part of the state to contain predicates
describing the initial state world state, if the diagrammatic
component depicts the situation. During the proposal phase,
the rule that proposes the Move operator fires (this state is
not shown in any of the figures). During the application
phase, instead of updating the symbolic part, the rule calls
the action routine to update the diagram to reflect
Move(A,Table). Checking for preconditions can be done
directly by the relevant perceptual routines. Fig 8 shows the
final state after the move operator has been applied. Unlike
standard Soar, biSoar does not need add or delete lists to
keep track of the state of the world. The diagrammatic part
does it instead.

Example 2

Let us add the following new relations to the world: under,
above, below, imm-right-of, imm-lefi-of, right-of, left-of and
inside-of. These relations are interpreted in their natural
meanings, so we forego formal descriptions of them. The
goal state to be achieved is described in terms of above and
right-of relations.

oal State:
Cimi &, T1

[A]TL

Word State:
Elock(4) o
E

Elock(E)
Tahle(T1)

Tl

Operators:

Figure 7: Initial contents of biSoar’s WM

Goal State:
Ol T1)

ﬂlTl

World Staie:

Elock(4)
ElockE)
Tahle(T1)

Operators:

(A1

Figure 8: biSoar’s WM after Move applied

Zpecause of the ambiguity inherent in diagrammatic representations
about what is intended, we only use symbolic goal descriptions.

For our list of relations, on-top-of, under, imm-right-of,
imm-left-of and inside-of are the primitive relations while
above, below, right-of and left-of are the non-primitive
relations. In Soar, the primitive relations, from which all
other relations may be derived, are updated after each
change in the world. If a non-primitive relation is needed,
the solver performs inference to find the answer.

Fig 9 shows the initial state for our blocks world problem.
The final state is laid out as a sequence of goals to be
achieved by the problem solver, while the initial state is
simply a DRS representation of Fig 9. The goals to be
achieved are: B inside-of Bl, E above A, F above A, H
above A, D above B, G above A. The problem solving
sequences for the standard Soar problem solver and bi-
modal Soar are shown in Fig 10. The solvers try to achieve
each goal in the sequence in which it is presented. We
examine one slice of this sequence. Consider the final sub-
goal of the problem “G above A”. To achieve this sub-goal,
standard Soar first checks if Block A is clear. Since it’s not,
the solver sets up a sub-goal to find the topmost block above
A. In order to find the topmost block, the solver performs
inference by moving up the stack starting with block A. It
finds that E is on-top-of A, that F is on-top-of E, H is on-
top-of F and that there is nothing on-top-of H. Instead of
just 3 blocks above A, if the stack had 20, the solver would
have had to go through 20 such steps to find the topmost
block. Consider the same sub-goal being solved in bi-modal
Soar. The sequence does not vary from any of the other sub-
goals. The solver calls a perceptual routine to check if A is
clear. Since A is not, it calls the perceptual routine fopmost
to find the topmost block above A. The routine returns H
and the solver calls the move routine to move G onto H.
This sequence of problem solving steps is independent of
the number of blocks in the stack. If there were 20, the
solver would still call the topmost routine just once to find
the topmost block.

Adding these new relations also means that we have to
add the corresponding move operators for each of these
relations as well as modify the existing move-on-top-of
operator. For example, consider adding the imm-right-of
relation. The corresponding move-imm-right-of operator will
update the state of the world by adding and deleting the
appropriate imm-right-of() predicates. It will also have to
maybe add and delete some ON predicates depending on
whether the block being moved was on or is being moved
on to a block. But this is not enough. We also need to
modify the existing move-on-top-of operator, because now,
moving a block on top of another block could change its
imm-right-of relations with other blocks. Similarly, now
adding imm-left-of means that we need to modify both
move-on-top-of and move-imm-right-of operators.

In biSoar, instead of modifying the symbolic content, we
add perceptual and action routines corresponding to the
imm-right-of and imm-lefi-of to the diagrammatic
component. The move-on-top-of operator however was left
untouched. According to Janlert (1996) “A sign that the
frame problem is under proper control is that the

1650

representation can be incrementally extended: A
conservative addition to the furniture of the world would
involve only a conservative addition to the representation.”
In our case, the world is the blocks world and an addition to

B1
LA B[oc [E JqFu]

Figure 9. The initial state for Example 2.

the world can be in the form of objects and/or relations. The
examples show that biSoar handles both additions well
without exponential additions to the agent or modifications
to its knowledge of existing objects and relations.

Using a diagrammatic component does come with its
share of costs. Though each access to a routine is presented
as taking only a single Soar cycle, the cycle itself could be
considerably longer than normal. It is also worth mentioning

Standard Soar

Multi-modal Soar

Check if Box Bl clear
Wlowe B to inside of B1
Check if A is clear

Wlowe E onto &

Check if A is clear.

No. Find black on-top-of &
Check if E iz clear

Wlove F onto E

Check if A is clear

No. Find block on-top-of &

Check ifbox Bl clear
Movwe B to inside of B1
Find topmost block abowve &
Mowe E onto &

Find topmost block above B
Mowe F onto &

Find topmost block above &
Mowe H onto F

Find topmost block above B
Mowve D onto F

Check if E is clear
Ho. Find block on-top-of E
Check if F is cleat
Wlowe H onto lefi-half of F
Check if B iz clear
Mo. Find block on-top-of B
Check if E iz clear
Mo. Find block on-top-of E
Check if F is clear
Mowve D onto right-half of F
Check if A is clear
Mo, Find block on-top-of &
Check if E is clear
Mo. Find block on-togp-of E
Check if F iz clear
Mo. Find block on-top-of F
Check if H iz clear
Wowe G onto H

Find topmost block abowve &
Mowe Gonto H

Fig 10: The problem solving sequences for standard and
multi-modal Soar for the problem in Fig 9.

that while the complexity of perceptual routines is
independent of the number of blocks and relations only up
to a certain limit. There are also, important conceptual
issues that remain. One relates to the aforementioned over-
specificity of perceptual representations. While it seems to
be a daunting task, we seem to be able to use diagrams
without falling into the trap of over-specificity. It doesn’t
seem too hopeful to assume that agents could perform the
same way and in comparable time. At the very least it is
possible to specify what can be trusted for a particular
domain.

Conclusion

Most of the approaches to solving the frame problem have
been to find clever heuristics to restrict the explosion of
causal effects in a dynamic world. A smaller section of these
problems, namely those that depend on the causal structure
of the world can be solved by the use of diagrams. There
are serious drawbacks to this approach. However, it also has
the advantage that changes to the vocabulary of the world
can be incrementally added without a reworking of the
existing parts of an agent. We have presented a multi-modal
architecture that combines the predicate symbolic reasoning
power of Soar with a diagrammatic component and reasons
both symbolically and diagrammatically and shown that the
agent is capable of dealing with a change in the number
of/type of objects and relations without having to modify
the existing knowledge of the agent.

Acknowledgements

Advanced Decision Architectures Collaborative Technology
Alliance sponsored by the U.S. Army Research Laboratory
under Cooperative Agreement DAAD19-01-2-0009.

References

Chandrasekaran, B., Kurup, U., Banerjee, B., Josephson,
JR., Winkler, R. (2004). An architecture for problem
solving with diagrams. Proceedings of the Diagrammatic
Representation and Inference conference (pp. 151-165):
Springer-Verlag.

Hayes, P. J. (1987). What the frame problem is and isn't. In
Z. W. Pylyshyn (Ed.), The robot's dilemma: The frame
problem in artificial intelligence (pp. 123-138): Ablex
Publishing.

Janlert, L.-E. (1996). The frame problem: Freedom or
stability? With pictures we can have both.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar:
An architecture for general intelligence. Artificial
Intelligence, 33(1), 1-64.

Lindsay, R. (1995). Images and inference. In Glasgow, J. et.
al. (Eds), Diagrammatic Reasoning: Cognitive and
Computational Perspectives (pp. 112-135): AAAI Press

McDermott, D. (1987). We've been framed: Or, why ai is
innocent of the frame problem.

Pylyshyn, Z. W. (1996). The frame problem blues: Once
more, with feeling.

Reiter, R. (2001). Knowledge in action: Logical foundations
for specifying and implementing dynamical systems.
Cambridge, MA.: The MIT Press.

Shanahan, M. (1997). Solving the frame problem: The MIT
Press.

Shanahan, M. (2004). The frame problem. The Stanford
Encyclopedia of Philosophy, 2004

Ullman, S. (1984). Visual routines. Cognition, 18, 97-159.

1651

