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Abstract

We illustrated a computational mechanism of shape bias
and material bias with “ad-hoc meaning substitution
(AMS)” hypothesis and verified it by computer simu-
lations. AMS represents that when given a novel word
and a instance object/substance, children substitute a
known noun meaning nearest to the instance and the
instance itself as an ad-hoc template of the novel noun
meaning. The substitution enables fast mapping and
subsequent vocabulary spurt. To describe internal pro-
cess of AMS, we introduced “word distributional pro-
totype (WDP)” as an explicit representation of word
meaning with an inductive learning function. Simula-
tion 1 revealed that when neural networks with WDP
and AMS were given biased vocabularies reflecting those
of young children, it demonstrated shape, material, and
overgeneralized shape biases which means wrong shape
bias over material bias. This result suggests that the
triad of word meaning induction, AMS, and early biased
vocabulary is essential for emergence of the biases. Sim-
ulation 2 introduced a notion of maturity that denote a
degree of learning convergence for each word meaning,
and then networks showed neither shape nor material
bias during early small vocabulary. This result indicates
that the age of bias emerges is decided by the matu-
rity. These results suggest that phenomena concerning
shape and material biases are explicable with the simple
ad-hoc learning mechanism instead of meta learning or
built-in language-specific ones.

Introduction
When we encounter a novel word such as Gavagai and
guess its meaning, too many logically possible meanings
exist (Quine, 1960). Nevertheless, children can estimate
words meanings very fast (Carey & Bartlett, 1978). Such
fast mapping can’t be explained by existing machine
learning algorithms based on trial and error. The ability
appears after child’s productive noun vocabulary exceeds
about 50 words, and the vocabulary starts to grow quite
rapidly(vocabulary spurt).

To explain these phenomena, developmental psychol-
ogists have suggested word learning biases. When ap-
plying a novel name to an object, the biases make chil-
dren focus on particular features instead of other possible
features and estimate words’ meaning accurately (e.g.
Landau, Smith, & Jones, 1988; Soja, Carey, & Spelke,
1991). Problem is that these biases are just phenomeno-
logical explanations that can’t explain why they exist or
how they are processed in human brain. In this paper,
we try to illustrate a computational mechanism of shape
bias (Landau, Smith, & Jones, 1988) and material bias

(Dickinson, 1988; Soja et al., 1991). Those biases are
investigated by novel noun generalization task (Samuel-
son, 2002; Samuelson & Smith, 1999). In the task, ex-
perimenter prepares solid and nonsolid sets. Each set
consists of three stimuli: a novel target stimulus, shape-
match stimuli that have the same shape as the target
stimulus, and material-match stimuli that have the same
material . First, an experimenter assigns a novel noun to
the target stimulus in front of a subject. Next, the ex-
perimenter presents a corresponding shape-match stim-
ulus and a material-match stimulus together and asks
the subject to select one that can be called by the same
noun as the target stimulus. When either is selected sig-
nificantly more often by some subjects, we conclude that
subjects have a bias to generalize novel nouns based on
similarity in shape or material.

Shape bias is a behavior that when a novel solid tar-
get stumulus is named with a novel noun, people tend
to extend the noun to shape-match stimulus (Landau,
Smith, & Jones, 1988). Material bias is a behavior that
when a novel nonsolid target stimulus is named with
a novel noun, they tend to generalize the noun to the
material-match stimulus (Dickinson, 1988; Soja et al.,
1991). We can summarize some experimental findings
as below: (1.1.1a) shape bias doesn’t appear to solid
stimuli when subjects have small vocabulary (Samuelson
& Smith, 1999; Smith, 1995); and (1.1.1b) it does after
middle vocabulary (Landau, Smith, & Jones, 1988; Soja
et al., 1991; Dickinson, 1988; Imai & Gentner, 1997);
(1.1.2a) material bias doesn’t appear during small vo-
cabulary (Samuelson & Smith, 1999); or (1.1.2b) “over-
generalized shape bias,” which means novel noun named
to nonsolid target stimulus is extended also to shape-
match stimuli, happens to appear during small vocabu-
lary (Samuelson, 2002); and (1.1.2c) material bias ap-
pears after sufficiently large vocabulary (Soja et al.,
1991; Dickinson, 1988).

From these findings, we argue that the biases result
from simple learning (“learned bias account [LBA]”) be-
cause: (1.2a) The fact that shape and material biases
appear after children have acquired certain number of
words indicates that they emerge as a consequence of
vocabulary learning; (1.2b) emergence of the overgen-
eralized shape bias suggests that both biases consist of
common mechanism instead of separate modules and it
causes the overgeneralization; (1.2c) both biases arise in
almost identical situations except for the solidity of tar-
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get stimuli and it supports possibility of their common
mechanism.

Linda Smith and colleagues led LBA studies (Smith,
1995; Samuelson & Smith, 1999; Smith, Jones, Lan-
dau, Gershkoff-Stowe, & Samuelson, 2002; Samuelson,
2002; Colunga & Smith, 2005). They explained that
when experiencing word learning, a “nonlinear atten-
tional system (NAS)” organized attention to particular
dimensions (e.g. shape dimensions), and the selective
attention resulted in word learning bias (Smith, 1995).
Recently, they advanced their hypothesis as “higher-
order abstraction (HOA)” (Smith et al., 2002). It ex-
plains that from learned noun meanings, children ab-
stract higher-order knowledge which represents mean-
ing nouns generally have; children use it as a template
to estimate meanings of novel nouns, which accelerates
vocabulary acquisition; when children with this mecha-
nism experience early vocabulary that is dominated by
nouns organized by similarity in shape (Samuelson &
Smith, 1999), learned higher-order knowledge becomes
shape-based, which subsequently encourages acquisition
of shape-based meanings.

Their hypothesis is meaningful because it intended
to illustrate mechanism that had been compressed into
NAS. But their hypothesis contains two points of debate:
the age at which cognitive functions become available
and the concreteness of their hypothesis. First, Smith
(1989) demonstrated that children begin to pay selective
attention to particular sensory dimensions in nonnaming
categorization tasks after five years old. So we consider it
difficult to explain shape and material bias at 24 months
by NAS, although experiencing novel nouns may encour-
age the organization of selective attention (Smith, 1995).
And they also didn’t provide evidence that HOA is possi-
ble at 24 months1. The second issue about concreteness
means that their hypothesis still retains some unclear
points. Therefore though they verified NAS or HOA by
simulations with neural networks (Smith, 1995; Samuel-
son, 2002; Colunga & Smith, 2005), it remains unclear
whether those studies could have verified their hypothe-
sis because they didn’t describe its essence, that is, how
to acquire the attention or abstraction.

So, in this study we manifest requirements for an alter-
native hypothesis of shape and material biases as follows:
(1.3a) concrete description of computational process of
the biases; (1.3b) explanation for why their emergence
depends on children’s vocabulary size; (1.3c) explanation
for the existence of interference between them; (1.3d)
clarification of essential factors that enable shape bias
to appear at 24 months. Based on them, we hypothesize
about these biases as below. Shape and material biases
arise from simple learning and consist of two common
primitive abilities available from infancy: (1) ability to
learn the meanings of words by induction, and (2) ability
to instantly estimate novel noun meaning based on al-

1Children begin to use words of superordinate-level cat-
egories at about four years. If the knowledge of a
superordinate-level category word is abstracted from the
knowledge of basic-level category words, the abstraction pro-
cess should resemble HOA and both available ages can hardly
be expected to be so different.

ready learned words meanings and given input stimulus
with the noun. We call the second ability “ad-hoc mean-
ing substitution (AMS).” Both have no specific mecha-
nism to generate biased behavior. But when exposed to
the statistically biased vocabulary of toddlers, learner
with the two abilities shows shape and material biases.
This triad of the word meaning induction, AMS, and the
early biased vocabulary is essential for the emergence of
biases. But this triad can cause stable biases from very
early stages of development, while young children actu-
ally show inefficient word learning and no bias (1.1.1a;
1.1.2a). The delay of bias emergence is caused not by
the triad but by a secondary factor: maturity in learn-
ing word meanings.

Proposed Hypothesis

Input and Word Representation
Following Samuelson (2002), input consisted of three at-
tributes: SOLIDITY, SYNTAX, and FEATURE. Their
attributes are represented as 3, 3, and 30 dimensions,
respectively. SOLIDITY, which denotes solidness of ob-
jects/substances presented to learners, has three discrete
attributes, SOLID, NONSOLID, and AMBIGUOUS2.
The attributes were represented as vectors of (0.95, 0,
0), (0, 0, 0.95), and (0, 0.95, 0), respectively. SYNTAX,
which represents a contextual attribute in a sentence
given in parallel with the named object3, has three dis-
crete attributes: COUNT, MASS, and AMBIGUOUS4.
They are represented as vectors of (0.95, 0, 0), (0, 0,
0.95), and (0, 0.95, 0), respectively. FEATURE is an
attribute that denotes other information and consists of
three attributes: SHAPE, MATERIAL, and OTHER5.
They are represented as separate 10-dimentional vectors,
respectively.

We assumed children constructed category knowledge
for nouns. Based on the definition of FEATURE, we
defined three categories: SHAPE-BASED, MATERIAL-
BASED, and OTHER-BASED, organized on the basis of
similarity in SHAPE, MATERIAL, and OTHER, respec-
tively. These categories can overlap for each noun. In-
puts belonging to a SHAPE-BASED category had arbi-
trary but constant values of SHAPE dimensions and ran-
dom values of MATERIAL and OTHER dimensions. To
the fixed SHAPE dimensions, random noises between [-
0.05, 0.05] was added. Inputs belonging to MATERIAL-
and OTHER-BASED categories were made in the same
way as SHAPE-BASED category, respectively.

Word Distributional Prototype (WDP)
We introduced explicit representation of word meaning,
which enable us to describe process of AMS concretely.
We assume that a word meaning is defined as an ex-
tended prototype (Rosch & Mervis, 1975) that consists of
distribution formed by inputs co-occurring with the word

2AMBIGUOUS denotes borderline cases in which SOLID-
ITY is neutral or both SOLID and NONSOLID are possible.

3Broad sense of syntax such as articles and determiners.
4SYNTAX AMBIGUOUS also denotes borderline cases.
5OTHER includes miscellaneous information other than

SHAPE and MATERIAL: color, taste, temperature, fun, etc.
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(Kurosaki & Omori, 2005a,b). For example, banana is
generally used for crescent-shaped yellow fruits, but not
for red or globular things. It’s so sensitive to shape and
usage information that even slight discrepancy in them
is unacceptable. Meanwhile, such information as emo-
tion isn’t crucial for the recognition of banana, though
it’s also presented simultaneously with the name. Such
characteristics of word meaning can be expressed by two
factors: mean value in each input dimension and allow-
able deviation from the mean value. Children must learn
them based on experience.

So we used a multidimensional normal distribution as
one of the simplest possible representations for a word’s
meaning to fulfill the above requirements. We called it
word distributional prototype (WDP). Its mean vector
denoted the word’s standard appearance in input space.
Its variance matrix denoted the allowable range of fluctu-
ation from the mean vector. We used diagonal variance
matrices assuming that input dimensions had no corre-
lation each other. Though the simplification might have
some problems, we thought WDP was sufficient for word
meaning representation of young children.

WDP described each word meaning as below. ~x ∈ <M,
~x = (x1 x2 · · · xM)T is an input vector in M -di-
mensional input space, j is an ID number for WDPj,
~µj ∈ <M, ~µj = (µj 1 µj 2 · · · µj M)T is a mean vector
of WDPj, µj i ∈ < is a mean value of input unit i of
WDPj, Σj ∈ <M × <M is a diagonal variance matrix of
WDPj, and σj i ∈ < is a standard deviation of input unit
i of WDPj. Then, likelihood of WDPj to an input ~x is
calculated as:

pj(~x) =
1

(2 π)
M
2 |Σj|

1
2
exp

(
−1

2
(~x−~µj)TΣ−1

j (~x−~µj)
)
. (1)

WDPs were trained by following algorithm: (2a) Ini-
tially, each word is paired with an individual WDP; (2b)
Given an input vector ~x and a corresponding word, all
WDPs calculate likelihood pj(~x) for the input, and the
winning WDPc that outputs the highest likelihood is
chosen; (2c) If the WDPc is the correct paired one with
the given word, then it learns to increase its likelihood for
the input (Eq. (3) and (4)), and the others don’t; (2c’)
If WDPc is incorrect WDP for the given word, then it
learns to decrease its likelihood pj(~x) for the input. Its
update rules correspond to those of the opposite direc-
tion of (2c). The correct WDP, which is paired with
a given word and should give the highest likelihood, si-
multaneously learns by the update rule (2c); (2d) Re-
peat (2b), (2c), and (2c’) depending on word inputs.
The learning corresponds to extension of “learning vec-
tor quantization (LVQ)” (Kohonen, 1995). To maintain
stable learning, we set lower limit of σj i to 0.1 and range
of µj i to [−1, 1]. The initial value of every σj i is set to
a sufficiently large value so that all WDPs don’t output
higher likelihood to particular inputs in the initial state.
Loss function εc(~x) and update rules for each parameter
are defined as:

εc(~x) = − log (pc(~x)) (2)

SOLIDITY

... ... ...

SYNTAX FEATURE

SHAPE MATERIAL OTHER

... ...
c0

Known WDPs

( = Meanings)

p  (x)
0

p  (x)
c

Novel WDP

Copying Variance

Matrix. (NNH)

Copying Input Vector.

Dog SaltCloud
Novel Noun

"Yith"
Nouns

Figure 1: Ad-hoc meaning substitution (AMS).

∆µc i = −α
∂εc(~x)
∂µc i

= −α
µc i − xi

σc i
2

(3)

∆σc i = −β
∂εc(~x)
∂σc i

= −β

(
1

σc i
− (µc i − xi)2

σc i
3

)
. (4)

Ad-hoc Meaning Substitution (AMS)
When a child is given a novel objects/substances and a
corresponding noun, the single experience may indicate
the mean vector of the noun, but not the standard devi-
ation. Nevertheless, the existence of word learning bias
demonstrates that children do complement the missing
information of standard deviations in some way. Chil-
dren must do it by use of mechanisms nonspecific to vo-
cabulary learning because as discussed in introduction,
the biases seems to be learned.

We explain a process of novel noun generalization as
below. Children determine the noun’s meaning based
on meaning of a known noun: The variance matrix of
a known noun WDP, which output the highest likeli-
hood to the input information (Eq. (5)), is copied as
the variance matrix of the novel noun WDP (Eq. (6)).
We call the copying process “nearest neighbor hypothe-
sis (NNH)” (Fig. 1), which denotes that WDP which has
the nearest Mahalanobis distance to the input vector was
chosen. Meanwhile, the input vector presented with the
novel noun was copied as the mean vector of the novel
noun WDP (Eq. (7)). Though they may not work al-
ways correctly, algorithm which always complements the
missing information correctly doesn’t exist. We suggest
that one of probable strategies for the complements is to
substitute the nearest known word and input vector for
the information. We call the ad-hoc construction of novel
noun meaning ad-hoc meaning substitution (AMS).

c = arg max
j

pj(~x) (5)

Σnew = Σc (6)

~µnew = ~x (7)
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Table 1: Structural ratio in early vocabulary evaluated in this study. Upper table shows ratio of each attribute value
in SOLIDITY, SYNTAX, and FEATURE. Lower tables show conditional ratio of each attribute value.

SOLIDITY SYNTAX FEATURE
SOLID NON-

SOLID
AMBIG-
UOUS

COUNT MASS AMBIG-
UOUS

SHAPE MATE-
RIAL

OTHER

.63 .04 .32 .74 .10 .16 .48 .16 .39
SOLID .88 .03 .09 .71 .09 .19

NONSOLID .07 .43 .50 .07 .86 .14
AMBIGUOUS .56 .19 .25 .24 .36 .45

Simulation 1

Inductive Learning Phase
We divided the word learning process into two phases.
In “inductive learning phase,” learners received sets of
words and corresponding input and constructed WDPs
with Eq. (3) and (4). Then in “generalizing phase,” they
were conducted novel noun generalization tasks on with
AMS and the learned WDPs. We prepared six groups
whose learners were given 18, 50, 102, 213, 281, and 312
words, respectively (see Samuelson & Smith, 1999). We
called them groups 1, 2, 3, 4, 5, and 6, respectively. Each
learner in a group learned different words each other.

Vocabulary used in this phase should contain words
generally heard and produced by young children. Hence,
we used MCDI (Fenson et al., 1994), which include a
typical vocabulary for 16- to 30-month-olds. Based on
previous studies (Samuelson & Smith, 1999; Samuelson,
2002), we used 312 words from nine categories6 of MCDI.
We evaluated the words ourselves in terms of SOLID-
ITY, SYNTAX, and FEATURE (Table 1) so that the
evaluated structural ratio in the vocabulary was consis-
tent with previous study (Samuelson & Smith, 1999) and
made the 36-dimensional input data.

We set learning parameters α and β to 0.001, the ini-
tial values of µj i to [0.4999, 0.501] and σj i to 1.0. We
prepared 50 instances for a word, and a corresponding
WDP learned the instances. In an epoch , a learner expe-
rienced all instances of all words prepared for the learner.
The learning iterated the epoch 30 times. We confirmed
that the learning of all groups almost converged at 30th
epoch, and that the learned parameters in each WDP
were correctly estimated to form distribution of corre-
sponding noun.

Generalizing Phase
We prepared solid and nonsolid sets and conducted novel
noun generalization tasks separately with them. Each
set had 21 stimulus sets, and a stimulus set consisted
of a target stimulus and 20 pairs of shape-match and
material-match stimuli. Shape-match stimuli were made
as input vectors that had same SOLIDITY and SHAPE
values as the target stimulus, random MATERIAL and

6animals, vehicles, toys, food and drink, clothing, body
parts, small household items, furniture and rooms, outside
things

OTHER values, and no SYNTAX7 value. Random
noises between [−0.05, 0.05] were added to the SHAPE
values. The material-match stimuli were made in the
same way. Both sets were initially prepared and shared
by all learners in all groups.

In our model, shape choice probabilities for each group
were calculated as below. Given a novel target stimulus
and a novel noun, Learnerg i of Groupg made a novel
noun WDP applying AMS. Then we gave Learnerg i

20 pairs of shape-match and material-match stimuli
and compared which evoked higher likelihood for each
pair. Shape choice probability to Target stimulusj by
Learnerg i was calculated by p(g, i, j) = (winning number
of shape-match stimuli) / (total number of pairs). Shape
choice probability to all target stimuli by Learnerg i was
calculated by pL(g, i) =

(∑
j p(g, i, j)

)
/ (total number

of target stimuli). Mean probability of shape choice in
Groupg was calculated by p(g) =

(∑
i pL(g, i)

)
/ (total

number of learners).
For the solid set, t-test confirmed that the shape choice

probability for each group was significantly larger than
chance: They showed shape bias; t(20)=12.95, p≺.001;
t(20) =23.02, p≺.001; t(20) =26.77, p≺.001; t(20)=
27.98, p≺.001; t(20)=27.89, p≺.001; and t(20)=32.45,
p≺.001, respectively. For the nonsolid set, the proba-
bilities of shape choice for groups 1, 2, and 3 were sig-
nificantly larger than chance even for the nonsolid set:
They showed overgeneralized shape bias; t(20)=2.71, p≺
.05; t(20)=3.27, p≺.01; and t(20)=4.68, p≺.001, respec-
tively. But those for groups 4, 5, and 6 were significantly
smaller than chance: They showed material bias; t(20)
=−3.54, p≺.01; t(20)=−3.57, p≺.01; and t(20)=−4.82,
p≺.001, respectively (Fig. 2).

Results of the stable shape bias during somewhat
larger vocabulary (1.1.1b), the overgeneralized shape
bias during small vocabulary (1.1.2b), and the material
bias during large vocabulary (1.1.2c) is explained as fol-
lows. WDPs having same SOLIDITY as a target stim-
ulus, which were SOLID WDPs for solid set and NON-
SOLID WDPs for nonsolid set, were likely to be chosen
as the nearest WDP by NNH because they output higher
likelihood. Since SOLID WDPs tended to be SHAPE-

7SYNTAX information was withheld because we intended
to compare our results to previous experimental results with-
out syntax (see Samuelson & Smith, 1999; Samuelson, 2002).
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Figure 2: Probabilities of shape choices in generalizing phase of simulation 1 (left) and 2 (right). Vertical lines depict
standard errors. Horizontal broken line depicts chance level (=.5). *p ≺ .05. **p ≺ .01. ***p ≺ .001.

BASED (see Table 1), novel WDP was inclined to copy
the SHAPE-BASED variance matrix by NNH and it led
to shape bias. Meanwhile, NONSOLID WDPs couldn’t
be the nearest to nonsolid set during small vocabulary.
NONSOLID WDPs were far less than SOLID WDPs and
the NONSOLID field was too sparse (see Table 1) for
them to be chosen as the nearest. Therefore SOLID
WDPs could be chosen alternatively, though they had
a disadvantage of having different SOLIDITY from the
target stimulus. Then as with the case of solid set, it
led to overgeneralized shape bias. When the sparseness
disappeared, NONSOLID WDPs could be the nearest to
nonsolid stimuli and it caused material bias.

Simulation 2

Inductive Learning Phase
We introduced maturity to produce a situation in which
convergence of word meaning learning was more insuffi-
cient for learners who had small vocabularies than large
vocabularies. We realized the situation by reducing the
number of instances for each word depending on the vo-
cabulary size of each group: 5, 10, 20, 40, 50, and 55,
respectively, in ascending order of group number. Other
conditions were identical to simulation 1.

Learning hadn’t converged even at 30th epochs in
groups 1 and 2. Their parameters hadn’t been esti-
mated correctly, compared with simulation 1. Though
the learning in group 3 apparently converged better than
groups 1 and 2, their parameters hadn’t been estimated
as well as simulation 1. After group 4, their learning
had almost converged and their parameters had been es-
timated well enough. From these results, the expected
effects by introducing the maturity were realized.

Generalizing Phase
The generalizing phase procedure was identical to simu-
lation 1. For the solid set, the probability of shape choice
for group 1 was significantly lower than chance even

for the solid set, demonstrating material bias: t(20)=
−20.39, p≺.001. But in group 2, there was no significant
differences to chance, that is, it showed no bias: t(20)=
0.081, pÂ.05. After that, the probabilities for groups 3,
4, 5, and 6 were significantly higher than chance, showing
shape bias: t(20)=15.01, p≺.001; t(20)=33.59, p≺.001;
t(20)=26.63, p≺.001; and t(20)=37.49, p≺.001, respec-
tively. For the nonsolid set, the shape choice probabili-
ties for groups 1, 2, 4, 5, and 6 were significantly smaller
than chance, showing material bias; t(20)=−24.54, p≺
.001; t(20)=−5.98, p≺.001; t(20)=−3.77, p≺.01; t(20)=
−3.86, p≺.001; and t(20)=−4.01, p≺.001, respectively.
But in group 3, we observed a significantly larger shape
choice than chance, demonstrating shape bias even for
the nonsolid set; t(20)=5.48, p≺.001 (Fig. 2).

Only the results during small vocabulary were dif-
ferent from simulation 1. So, we discuss the disap-
pearance of robust shape bias during small vocabulary
(1.1.1a, 1.1.2a) and the alternative appearance of ma-
terial bias. WDPs in the very early groups were closer
to hyperspheres because learning of their variance ma-
trices hadn’t progressed at all due to the effect of ma-
turity. Novel WDPs that copied the variance matrix
output low likelihood to every input equally. It led to no
shape and material bias. Actually the robust shape bias
during small vocabulary in simulation 1 disappeared and
p(g = 1) and p(g = 2) became almost close to chance.
But statistically, early groups showed significant mate-
rial choice. The problem seemed to be due to our simpli-
fied setting in each group. Exactly the same setting of
the maturity and the number of words for learners in a
group caused almost same pL(g, i) and their small stan-
dard deviation. In that case, just slight difference than
chance lead to shape/material bias. But the problem
could be resolved by modifying the current simplifica-
tion. In sum, we could replicate some previous findings
in simulation 1 (1.1.1b; 1.1.2b; 1.1.2c) and the others in
simulation 2 (1.1.1a; 1.1.2a) and also explain the process
computationally.
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Position of AMS

HOA and AMS were proposed as LBA instead of ac-
counts based on innateness of the biases. It’s well known
that children reason about animals and plants by anal-
ogy with humans familiar to them (Inagaki & Hatano,
1987). Since AMS means that children construct knowl-
edge of unfamiliar nouns based on nouns familiar to
them, AMS resembles in it. Therefore AMS is natural for
them as a method to estimate novel noun meaning. And
AMS has simpler process, but it can illustrate wider phe-
nomena of shape bias, material bias, and overgeneralized
shape bias than other accounts. Besides, since applica-
bility of HOA to them all is unclear and it has the age
problem, we argue that AMS is more appropriate expla-
nation for the biases. But we shouldn’t exclude HOA
because it can apparently explain acquisition of words
belonging to superordinate categories or more abstract
concepts well. And it is quite plausible that HOA and
AMS cooperatively engage in bias emergence with other
functions (e.g. theory of mind). We consider AMS to be
the simplest function within them, and thus it takes an
important role as the foundation of bias emergence from
the early stage of development.

Conclusion

In this paper, we presented an integrated explanation of
ad-hoc meaning substitution (AMS) for behaviors that
had been described separately as shape and material bi-
ases and verified it by computer simulations. Besides, to
describe AMS’s processing, we introduced word distri-
butional prototype (WDP) with the inductive learning
function. We consider the explicit meaning representa-
tion is valid methodology for illustrating the computa-
tional mechanism of word learning bias, which is deeply
committed to word meaning.

Simulation 1 revealed that when learners that possess
(1) WDP and (2) AMS were exposed to (3) early biased
vocabulary, they showed shape, material, and overgen-
eralized shape bias. This result suggested that the triad
is essential for emergence of the biases. Simulation 2
revealed that when maturity was introduced, learners
showed neither shape nor material bias during the early
small vocabulary. This result indicated that the period
of bias emergence is decided not by the triad but by
maturity. So we can reply to the requirements in in-
troduction: (1.3a) AMS (especially, NNH); (1.3b) bias
emergence is influenced by maturity and sparseness of
SOLID and NONSOLID WDPs; (1.3c) shape and mate-
rial biases derive from common mechanisms; (1.3d) the
triad and maturity. Our results suggest that phenomena
concerning shape and material biases, which have been
explained by meta learning (HOA) or built-in language-
specific mechanism, are explicable with a simple ad-hoc
learning mechanism.
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