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Abstract

An open question in category learning research is how
prior knowledge affects the process of learning new con-
cepts. Rehder and Murphy’s (2003) Knowledge Reso-
nance (KRES) model of concept learning uses an inter-
active neural network to account for many observed ef-
fects related to prior knowledge, but cannot account for
the learning of nonlinearly separable concepts. In this
work, we extend the KRES model by adding exemplar
nodes. The new model accounts for the fact that linearly
separable concepts are not necessarily easier than non-
linearly separable concepts (Medin & Schwanenflugel,
1981), and more importantly, accounts for a notable in-
teraction between the presence of useful prior knowledge
and linear separability (Wattenmaker, Dewey, Murphy,
& Medin, 1986). Two architectural variants of the model
were tested, and the dependence of good results on a
particular architecture, indicates how formal modeling
can uncover facts about how the prior knowledge which
influences concept learning is used and represented.

Most current theories of category learning address how
new concepts are learned on the basis of empirical reg-
ularities in the environment. Considerable progress has
been made in determining how learners encode empirical
information about how features, and sets of features, co-
vary with category labels. However, these models fail to
account for the important role of prior knowledge. Other
models of category learning address the effects of prior
knowledge, but they in turn fail to account for the wide
range of empirical effects that have been observed. The
work reported here aims to integrate these two veins of
concept learning research.

Prior knowledge is known to have a number of effects
on concept learning. When knowledge is related to a
learning task, learning is often faster (Murphy & Al-
lopenna, 1994; Wattenmaker et al., 1986). In addition,
when new concepts are related to prior knowledge, struc-
tural effects that have been found in empirical concept
learning studies may not be found or may even be re-
versed (Pazzani, 1991; Wattenmaker et al., 1986).

In this research we introduce a new category learning
model whose goal is to account for effects of both prior
knowledge and empirical regularities on concept learn-
ing. We address the question of which kinds of represen-
tations (exemplars? prototypes? rules?) are involved
in learning tasks and how those representations become
related to one another and to representations of prior
knowledge as a result of experience. By fitting variants
of our new model to two human learning data sets, we

will show that only a very particular pattern of connec-
tivity among representations is warranted.

We pursue this question by extending an existing
model of category learning, the Knowledge Resonance
(KRES) model introduced by Rehder and Murphy
(2003). KRES is a connectionist model of knowledge
effects in concept learning that uses interactive activa-
tion among representations of stimulus features, cate-
gory labels, and prior knowledge, then uses a supervised
learning algorithm called Contrastive Hebbian Learning
(CHL: O’Reilly, 1996) to learn symmetrical weights be-
tween the representations. KRES accounts for effects of
prior knowledge on learning rate, generalization patterns
and reaction time.

KRES builds on the Baywatch model introduced by
Heit and Bott (2000). Baywatch is a standard feed-
forward connectionist network supplemented with prior
concept nodes that can be used as the basis for cat-
egorization. Baywatch accounts for knowledge effects
on responses to novel but knowledge-related features, as
well as to prior knowledge that is incongruent with the
empirical stimuli (Heit, Briggs, & Bott, 2004). KRES
goes beyond Baywatch in being able to also represent
prior knowledge that relates stimulus features to (a) one
another, and (b) concept nodes (allowing the model to
account for “top down” effects in learning).

Nevertheless, the published versions of both Baywatch
and KRES have a significant restriction. They are lim-
ited to learning linearly separable concepts. Their archi-
tectures are similar to a classical prototype model, where
the weights compute a monotonic function of the input
representation. However, people are able to learn nonlin-
early separable concepts, and often find such concepts as
easy to learn as linearly separable ones (Medin & Schwa-
nenflugel, 1981). In part as a result of this, exemplar
models of classification (Medin & Schaffer, 1978; Nosof-
sky, 1986; Kruschke, 1992) have become prominent, as
they naturally account for learning of nonlinearly sep-
arable concepts. Some recent work has challenged ex-
emplar models (Smith & Minda, 1998, but see Nosofsky
& Zaki, 2002; Rehder & Hoffman, 2005), and some re-
cent models of classification have proposed alternatives,
such as using clusters instead of exhaustive sets of ex-
emplars (Love, Medin, & Gureckis, 2004). However, our
goal is to build a new model with the ability to learn
nonlinearly separable concepts, and exemplars are a rea-
sonable starting place with much empirical evidence to
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Figure 1: Architecture of new KRES network. I = input
nodes; O = output nodes; P = prior knowledge nodes;
E = exemplar nodes. Connections depicted with solid
lines are fixed weights; with fine dashed lines are set-once
exemplar weights; with dashed lines are CHL-learnable
weights. The KRES/EFK model includes all three of the
links labeled E, F, and K; other models include subsets.

support them.
We first describe how we incorporated exemplars into

KRES, noting several possible architectural variations.
We then give the results of our work simulating exper-
iments by Medin and Schwanenflugel (1981) and Wat-
tenmaker et al. (1986), focusing on the architectural
variations and their implications for theories of concept
learning. We conclude with a discussion of the results
and their implications for a comprehensive theory of cat-
egory learning with and without prior knowledge.

New Models

Our new models are simple extensions of the KRES
model (Rehder & Murphy, 2003). Figure 1 shows the
overall architecture. The models work as follows.

In KRES, connections between nodes are bi-
directional, and those connections can either be fixed in-
hibitory, fixed excitatory, or learned with experience. In
Figure 1, there are fixed inhibitory connections between
the two prior-knowledge nodes in layer P, fixed excita-
tory connections between each of the prior-knowledge
nodes and one of the two banks of input nodes (e.g., be-
tween P0 and I0), learned connections between the two
prior-knowledge nodes and the output nodes in layer O,
etc. Note that the input (layer I) is represented as pairs
of mutually exclusive values of a particular attribute, so
nodes A0 and A1 also have fixed inhibitory connections.
To make a categorization prediction, the inputs to the
model have constant signals applied to them. Activation
then spreads throughout the model, both forward and
backwards. For example, if the I0 input nodes are ac-
tive, that activity will resonate with the prior knowledge
P0 node, and their activation will increase as a result.
Activation of nodes is a sigmoidal function of the total
input, with a steepness parameter α. After many cy-

cles of spreading activation, the network settles, and the
activations of the output nodes are transformed using a
Luce choice rule into the probability that the input is
categorized as an X or a Y. The model learns when a
teaching signal is then applied to the output nodes. For
details, see Rehder and Murphy (2003).

To account for the learning of nonlinearly separable
concepts, we added exemplar nodes to KRES. As with
ALCOVE (Kruschke, 1992) and related models, we used
fixed exemplar nodes activated by matching stimuli. The
first time a new exemplar is seen, an exemplar node is
connected to the input nodes with fixed weights set to
match the stimuli and scaled by a parameter, we. The
new node is also connected to the output nodes with
weights initialized and learned in the usual manner for
KRES. Activation of the new exemplar nodes then pro-
ceeds as with any other node in a KRES network.

As shown in Figure 1, there are a number of possi-
ble variations of the new network’s connectivity. In the
original KRES model, there were connections between
the feature nodes (layer I) and the output nodes (layer
O), and the prior-knowledge nodes (layer P if present)
and the output nodes. With the addition of the new
exemplar nodes (layer E), the full model, which we no-
tate as KRES/EFK, has three separate possible bases
for classification: the exemplar, feature, and knowledge
nodes. However, each of those connections is theoreti-
cally optional (although one must be present), and each
is theoretically interesting. The exemplar connections
are essential if nonlinearly separable concepts are to be
learned, so we did not consider variations without them.

The KRES/E model has only these exemplar connec-
tions, and no other connections to the output nodes.
The feature nodes influence categorization only by ac-
tivating the exemplar nodes, while the prior-knowledge
nodes (if present) can influence categorization only by
influencing the activation of the input nodes. Note that
in KRES/E the sole effect of the prior concept nodes is to
modify the activation of the input features so that they
are more consistent with those concepts. For example, a
stimulus with many P0-linked features will strongly acti-
vate P0, which in turn will reinforce those features (and
thus dampen the activation of any features associated
with P1). The feature nodes, thus partially canonical-
ized (i.e., made more consistent with P0), will then exert
their influence on the category labels via the exemplar
nodes.

In the KRES/EK model, output nodes have connec-
tions from both the exemplar and the prior knowledge
nodes. The prior knowledge concepts not only modulate
input feature activation, they can also be used as the ba-
sis for categorization, with (potentially) no contribution
from the exemplar nodes.

The KRES/EF model has connections from the exem-
plar nodes as well as direct connections from the input
features. It can be seen as a model that combines ex-
emplar and prototype-like computations in its effort to
categorize. As with KRES/E, prior-knowledge nodes can
influence the activation of the input nodes, but cannot
be directly used as the basis for categorization.
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Table 1: Category structure for Preliminary Simulation,
based on Medin & Schwanenflugel (1981, Experiment 1).

Linearly Separable Non-linearly Separable
Stimuli Category Stimuli Category
1011 A 1000 A
1010 A 0111 A
1101 A 1110 A
0110 A 1011 A
1001 B 0110 B
0010 B 1001 B
0100 B 0000 B
0001 B 0001 B

KRES/EFK has all three sets of connections to the
output nodes, allowing categorization decisions to be
made with any combination of prior concept, input, or
exemplar activations.

By comparing these models, we hope to show that a
particular pattern of connectivity among representations
is needed to account for the experimental findings.

Preliminary Simulation:
Nonlinearly separable concepts

We begin by confirming that our new model can indeed
learn nonlinearly separable concepts, and (more ambi-
tiously) by testing whether one of its variants exhibits
the same learning patterns as people. In their Experi-
ment 1, Medin and Schwanenflugel (1981) notably found
that linearly separable categories were not necessarily
easier to learn than nonlinearly separable categories.
This highly influential result was one of several that un-
dermined the independent-cue, or prototype, models of
category learning. We investigated whether one of the
variants of our new model would reproduce the equiv-
alent learning difficulty of Medin and Schwanenflugel’s
linearly separable and nonseparable category structures.

The new model, with exemplar nodes but without
prior knowledge, was trained on the two conditions
shown in Table 1. Both KRES/E and KRES/EF (see
Figure 1) were fit. (Because of the absence of prior
knowledge, KRES/EK reduces to KRES/E for this
task.) Three parameters were explored systematically.
These were the learning rate, LR, the strength of the
fixed inhibitory weights, win, and α, the sharpness of
the sigmoidal squashing function. (High values of α force
node activations to be either very high or very low.) The
strength of exemplar weights, we, was fixed at 1. The
bias on the exemplar nodes, be, was set to be a function
of α such that the activation of the exemplar nodes was
1
n (where n is the number of exemplars) when the net
input to a node was 0: be = − log(n−1)

α . Other parame-
ters, such as the gain, remained at the defaults reported
in Rehder and Murphy (2003).

A parameter search was performed, with replications
to reduce effects of noise. Each replication involved a run
of the model, learning the stimuli shown in Table 1, with
the same number of blocks as in the experimental work.
Erroneous predictions during training were counted for
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Figure 2: Performance of two KRES variants on Medin &
Schwanenflugel (1981) task, showing overall error counts
with various parameter settings. Grey circles are exper-
imental error counts. Chance performance is 64 errors.

each item. The results were compared with the per-
item error rates reported by Medin and Schwanenflugel
(1981). Overall, the strength of inhibitory weights was
not critical, as long as they were adequately inhibitory.
We thus set the strength of inhibitory weights to win =
−2 for the simulations reported here.

For KRES/EF, the best results were found with LR =
0.1, α = 1.5. The MSE and χ2 error, relative to the
experimental per-item error rates, were 2.84 and 11.41,
respectively. For KRES/E, the best results were found
with LR = 0.4, α = 1.2. The MSE and χ2 error were
much lower, at 0.66 and 2.59.

Medin and Schwanenflugel (1981) reported a mean
33.3 errors on the LS problems and 30.9 errors on the
NLS problems. KRES/E made about the same number
of errors on the LS and NLS problems (32.6 and 31.6,
respectively), while KRES/EF showed easier learning of
the linearly separable category (26.6 versus 35.2 errors).
Figure 2 shows a scatter plot of the number of train-
ing errors on the two problems for the two models, over
a wide range of parameter settings. KRES/E accounts
for the qualitative Medin and Schwanenflugel (1981) re-
sult, regardless of parameter settings; for KRES/E, the
two concepts are about equally difficult. For KRES/EF,
however, no parameter settings were able to reproduce
this result; for KRES/EF, the LS problem is easier, re-
gardless of parameter settings.
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Table 2: Category structure for Main Simulation, based
on Watternmaker et al. (1986).

Linearly Separable Non-linearly Separable
Stimuli Category Stimuli Category
1110 A 1000 A
1011 A 1010 A
1101 A 1111 A
0111 A 0111 A
1100 B 0001 B
0001 B 0100 B
0110 B 1011 B
1010 B 0000 B

KRES/E is successful because exemplar nodes allow
equally rapid learning of linearly and nonlinearly sep-
arable concepts, and direct connections from input to
output nodes are not present. Other exemplar models of
classification, such as ALCOVE, share this architecture.
(We have also successfully fit ALCOVE to the Medin
& Schwanenflugel, 1981 results.) The next simulation,
however, goes beyond ALCOVE’s scope as a model of
concept learning.

Main Simulation: Prior knowledge and
linear separability

Wattenmaker et al. (1986) showed an interaction be-
tween category structure and prior knowledge. Subjects
learned either the linearly separable or nonlinearly sep-
arable structure shown in Table 2. In the knowledge-
related condition but not the knowledge-unrelated (con-
trol) condition the features were correlated with person-
ality traits (e.g., the ”1” and ”0” features were behaviors
which exemplified ”honesty” and ”dishonesty,” respec-
tively). In the knowledge-unrelated condition, Watten-
maker et al. found that the two category structures were
about equally easy to learn (there were nonsignificantly
fewer errors for the nonlinearly separable structure, Fig-
ure 3). When knowledge was present, both structures
became easier to learn, illustrating that prior knowl-
edge can speed learning. Importantly however, this ef-
fect was stronger with the linearly-separable categories
(Figure 3). Apparently, the prior knowledge that the
category features independently instantiated known per-
sonality traits biased learners toward a “summing” strat-
egy consistent with a linearly-separable concept but less
helpful for a nonlinearly-seperable concept (also see Mur-
phy & Kaplan, 2000).

KRES was able to account for the speedup due to
prior knowledge in the linearly separable case (Rehder
& Murphy, 2003, Simulation 2), but it could not even
attempt to account for the interaction with the nonlin-
early separable case. The present simulation used both
prior concept nodes and exemplar nodes to account for
this interaction.

We focused on three of the six possible variants
on KRES: KRES/E, KRES/EK, and KRES/EFK. (As
shown above, KRES/EF was unable to account for the
basic pattern of results in the Medin and Schwanenflugel
(1981) data, and thus was not considered.) That is, in
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Figure 3: Performance of KRES/EK on Wattenmaker
et al. (1986, Experiments 1 and 2) task, compared with
experimental results. Chance performance was 64 errors.

addition to accounting for the Wattenmaker et al. (1986)
results, the Main Simulation examined whether adding
direct connections between the output nodes and the
prior knowledge and/or feature nodes is necessary.

As before, the parameter space of the three varia-
tions was systematically explored. The learning rate,
LR, exemplar weight, we, and α were varied, while
the other parameters were held constant. The excita-
tory weights were set to wex = 1 and the inhibitory to
win = −2. Training replicated the experimental proce-
dure and replications were performed to get stable es-
timates of average performance. We combined the re-
sults of Wattenmaker et al.’s Experiments 1 and 2 (which
had identical category structures but different stimuli),
weighted by numbers of subjects, to get a less noisy set
of numbers for comparison.

Table 3 shows the best fit for each model, along with
the mean squared error. The KRES/EK model was able
to closely fit the quantitative and qualitative patterns in
the error counts (see Figure 3), while the other models
could not. The failures of KRES/EFK to account for
these results confirm the model selection results in the
first experiment, showing that direct connections from
features to the output are not helpful for reproducing
the human learning pattern. In addition, the success of
KRES/EK relative to KRES/E indicates that connec-
tions from prior knowledge nodes to the output nodes
are helpful. It could have been that prior concepts af-
fected learning in the model merely by changing the ac-
tivations of the nodes in the input layer, increasing acti-
vation levels and pulling the representation towards the
prior knowledge prototype. The results of the simula-
tions, however, suggest that this is not the case. The
model is unable to account for the experimental results
without connections from the prior knowledge nodes to
the output nodes.

Per-item fits were quite good for KRES/EK, with a
few exceptional points–see Figure 4. We suspect that
these exceptions may be partly due to KRES’s lack of
feature attention weights. The dimensions in Table 2
are not equally diagnostic, and KRES does not shift at-
tention away from less diagnostic dimensions to more
diagnostic dimensions.
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Table 3: Best fits for the Main Simulation. Parameters, number of training errors, and Mean Squared Error (vs.
experimental data) are shown. “Rel” and “Unrel” specify the related (theme) and unrelated (control) conditions.

LR we α Rel / LS Rel / NLS Unrel / LS Unrel / NLS MSE
WDMM86 29.4 40.6 53.9 49.6
KRES/E 0.7 1.0 1.0 45.0 32.6 52.3 39.2 105.4
KRES/EK 0.55 0.6 0.9 31.4 43.2 58.1 48.1 7.6
KRES/EFK 0.15 0.6 0.9 36.0 46.6 49.3 49.3 25.3
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Figure 4: Performance of KRES/EK on Wattenmaker
et al. (1986, Experiments 1 and 2) task, showing mean
per-item training error rates. The dotted line is chance
performance.

The results of the Main Simulation validate the
KRES/EK model, showing that it (and not its cousins)
can account for the interaction between the presence
or absence of prior knowledge and the linear separabil-
ity of the concept to be learned. Without knowledge,
the model finds Wattenmaker et al.’s linearly separable
structure slightly more difficult to learn than the nonlin-
early separable structure, consistent with the empirical
data, and due to the use of exemplar representations.
With knowledge, the effect of linear separability reverses,
as the model can use prior knowledge nodes directly as
the basis for effective learning. Overall, collapsing across
category structures, the model accounts for faster learn-
ing with prior knowledge, as prior knowledge nodes both
directly and indirectly (through influencing representa-
tions of feature nodes) aide classification.

Discussion

In this paper we have introduced a new model of con-
cept learning with the potential to account for effects of
both empirical regularities and prior knowledge on con-
cept learning. We first showed that KRES/E was able to
account for a critical result regarding how empirical reg-
ularities affect learning difficulty–nonlinearly categories
are not intrinsically more difficult than linearly separa-

ble ones (Medin & Schwanenflugel, 1981). Of course,
nonlinearly separable category learning is not the only
important empirical learning result, but we are confi-
dent, based on prior work (Rehder & Murphy, 2003),
that the KRES framework exhibits a number of the other
standard effects, such as sensitivity to features’ category
and cue validity and prototype effects. Our new model
has thus shown itself to be an empirical learning system
faithful to many facets of human learning. We therefore
conclude that it is suitable as a platform to model the
additional effects of prior knowledge.

We next investigated whether KRES/EK was able to
account for the intriguing interaction in the difficulty of
learning linear and nonlinear concepts with and with-
out prior knowledge (Wattenmaker et al., 1986). With-
out knowledge, people found those nonlinearly concepts
easier to learn, a preference which was reversed when
knowledge was present. Our Main Simulation showed
that KRES/EK was able to reproduce this interaction,
and even more detailed error results as well. KRES/EK
is the only model of category learning able to fully ac-
count for these data1.

We have also shown that successfully accounting for
the experimental results involves creating connections
among certain kinds of representations and not others.
This result is exemplified in our rejection of KRES/EF
(in the Preliminary Simulation) and KRES/EFK (in the
Main Simulation). When concepts could be built on a
basis of raw features, in addition to exemplars and con-
cepts due to prior knowledge, the model was unable to
fit the experimental data well. We suggest that this is
support for a theory of concept learning where the effect
of a stimulus on a categorization decision is mediated by
exemplars and prior knowledge. However, the categories
studied here both had weak family resemblance struc-
tures, which would necessarily impair the usefulness of
direct feature-category weights. Future work with other
category structures will be needed to confirm that our
conclusion holds up more generally.

KRES/EK shares some central architectural assump-
tions of ALCOVE (Kruschke, 1992). Like ALCOVE,
exemplar nodes are used to form the basis for con-
cept learning, with category node activation being a
monotonic function of exemplar activation. Of course,
KRES/EK extends significantly beyond ALCOVE’s
scope by being able to incorporate prior knowledge

1Heit (2000) uses the integration model of category learn-
ing (Heit, 1994), a generalization of Medin and Schaffer’s
(1978) context model, to account for other results from Wat-
tenmaker et al. (1986).
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through prior concept nodes and to account for exper-
imental results with prior knowledge. As discussed in
the introduction, KRES/EK also has similarities to Bay-
watch, with prior knowledge nodes that can act as the
basis for categorization (Heit & Bott, 2000). However,
our results suggest that Baywatch, without exemplar
representations, cannot account for learning of nonlin-
early separable concepts, and also cannot account for the
Wattenmaker et al. (1986) results. Baywatch is most
similar to the versions of KRES with feature-category
links, which did not fit the data.

Overall, this work supports a particular view of con-
cept learning and prior knowledge. Categorization is
based on a process of parallel constraint satisfaction,
where stimuli, prior knowledge and concepts all inter-
act to find the most consistent category response. Prior
knowledge can either be based on relationships among
features, or (as in this work) can be prior concepts that
interact with the stimulus representations and also act
as a potential basis for categorization. Exemplars, or
perhaps more abstract representations, form the basis
for empirical categorization.

Planned future work includes further investigation of
the architectural constraints discovered here, of other
interactions with knowledge, and of KRES’s limitations.
Most current models of concept learning include a mech-
anism for selective attention, and some also can account
for unsupervised learning effects, but KRES currently
does neither. We also plan to investigate the effects of
redundant, irrelevant, and incongruent knowledge. The
work described here is a significant step towards devel-
oping a truly comprehensive model of concept learning
and how it interacts with other aspects of cognition.
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