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Abstract

When asked to list semantic features for concrete concepts,
participants list many features for some concepts and few for
others. Concepts with many semantic features have been
reported to be processed faster in lexical decision, naming,
and semantic decision tasks (Pexman, Holyk, & Monfils,
2003; Pexman, Lupker, & Hino, 2002). Using a much larger
and better controlled set of items, we replicated the number-
of-features (NoF) effect in both lexical and semantic decision
(Experiment 1). We then investigated the relationship
between NoF and feature distinctiveness. Shared features are
those which appear in many concepts (<has four legs>)
whereas distinctive features appear in few concepts
(<moos>). Keeping total NoF constant, decision latencies
were shorter for concepts with many shared features versus
those with few shared features in lexical and semantic
decision, with a larger difference obtaining in semantic
decision (Experiment 2). Manipulating shared or distinctive
features to create low versus high levels of NoF revealed a
larger NoF advantage for concepts with many shared features
than for those with many distinctive features (Experiment 3).
It is concluded that shared features play a dominant role in the
NoF effect, at least in lexical and semantic decision tasks.

Keywords: semantic categorization; lexical decision; word
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Introduction

People use language to convey messages, and inherent in
our ability to understand these messages is our ability to
compute the meaning of individual words. The goal of the
current research is to further our understanding of the
computation of word meaning. In particular, we investigate
an emerging finding that the 'richness' of a word's semantic
representation influences performance in speeded tasks
involving the computation of its meaning.

One example of such a result is the ambiguity advantage
(Hino & Lupker, 1996). Specifically, words with multiple
meanings (bowl) are responded to faster than words with a
single meaning (tent) in tasks such as lexical decision (Is the
letter string an English word?) and naming (Read the
presented word aloud). Words with multiple meanings are
assumed to have richer semantic representations because
multiple instead of single meanings have to be encoded.

Similarly, words that refer to concrete objects (robin) are
responded to faster than words that refer to abstract concepts
(justice). Again, this is true in both lexical decision (Binder,
Westbury, McKiernan, Possing, & Medler, 2005) and

naming (Strain, Patterson, & Seidenberg, 1995). A number
of researchers argue that this difference can be explained in
terms of a richer semantic representation for concrete words.
For example, Paivio (1986) claimed that in addition to being
able to verbally reason about both concrete and abstract
things, people can also generate mental iconic images for
concrete words because they refer to physical things in the
world which we can perceive. He argued that this additional
information associated with concrete words makes their
mental representations richer and easier to process.

Plaut and Shallice (1993) approached this issue using a
feature-based representation of word meaning. They
hypothesized that a major difference between concrete and
abstract words is the number of features. That is, although
we can easily generate many features for concrete entities
and objects (a robin <has wings>, <flies>, <eats worms>,
<has a red breast>, etc.), it is much harder to generate
features for abstract words. Plaut and Shallice reported that
patients with deep dyslexia make more errors when reading
abstract words than when reading concrete words. Using a
distributed representation of word meaning where concrete
words had on average more features than abstract words,
they simulated deep dyslexia in a connectionist network by
randomly removing connections between and within layers
of the network. They found that because concrete concepts
had more features in the model and thus generated stronger
attractors than did abstract concepts, concrete words were
often less susceptible to network damage.

All of these explanations rest on the assumption that the
underlying representations differ depending on number of
meanings and concreteness. Although this assumption may
be correct, to test the richness hypothesis directly, it would
be better to have representations of word meaning that are
generated (as directly as possible) from people's actual
conceptual representations.

McRae, Cree, Seidenberg, and McNorgan (2005)
presented participants with living (robin) and nonliving
(chair) thing concepts and had them list descriptive features
for each. For example, for robin, participants listed features
such as those presented above. Of course, people cannot
introspectively tell us everything that exists in their
conceptual representations, but it is assumed that what they
do tell us provides a reasonable window into those
representations (Medin, 1989).

McRae et al. (2005) used 725 participants to collect
these semantic feature production norms for 541 concepts.
This large set was used to define a semantic space
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consisting of 2526 featural dimensions, and enabled the
calculation of many statistics such as correlations between
features and feature distinctiveness. In conjunction with
various other measures (word frequency, word length,
conceptual familiarity, orthographic and phonological
neighborhoods), these empirically-derived conceptual
representations provide a rich basis for testing theories of
semantic representation and computation.

For our purposes, one advantage of the concepts
contained in McRae et al.'s (2005) norms is that each refers
to a concrete object (living or nonliving) and each has, as
much as possible, a single meaning. Although facilitation
has been obtained for multiple over single meaning words
and for concrete over abstract words, it is not clear whether
this facilitation is due to the difference in richness or to
some other confounding variable. For instance, it is possible
that words with multiple meanings are processed more
quickly not only because their representations are richer, but
also because people have thought about them more deeply
during learning because it is necessary to tease apart their
multiple meanings. Also, because of the way that we
interact with concrete objects but not with abstract concepts,
it is likely that concrete representations span different parts
of the brain (sensory and motor). On the other hand, if it
really is a difference in semantic richness that is underlying
these facilitation effects, then we expect to find similar
results when comparing words that differ in semantic
richness within the same word type, specifically, the single
meaning concrete nouns found in McRae et al.'s norms.

Pexman and colleagues selected stimuli from McRae, de
Sa, and Seidenberg's (1997) norms, which included 190 of
the 541 concepts found in McRae et al.'s (2005) norms.
They began their investigation by generating two sets of
concepts. One set contained 25 low number-of-features (low
NoF) concepts, and the other contained 25 high number-of-
features (high NoF) concepts. For their lexical decision
tasks, they also generated two sets of 50 nonword filler
items. The first contained pronounceable pseudowords
whose spelling and sound do not correspond to any English
word (merod). The second contained pseudohomophones
whose spelling does not correspond to any English word but
whose sound does (keap). In their first study, they combined
the low and high NoF concepts with the pseudoword fillers
and found that lexical decision latencies were shorter for
high than for low NoF concepts. This effect was even larger
when the fillers were pseudohomophones. They reported
similar results in a subsequent study in which they asked
participants to name the same low and high NoF items aloud
(Pexman, Lupker, & Hino, 2002).

Pexman, Holyk, and MonFils (2003) used all 190
concepts as well as 190 filler abstract concepts. They had
participants perform a concreteness decision task in which
participants decided whether each word referred to a
concrete object or to something abstract. Whereas previous
studies had found processing differences between concrete
and abstract concepts, Pexman et al. found semantic
richness (NoF) effects among the concrete concepts.

Experiment 1

A closer investigation of the items used in Pexman et al.'s
(2002; 2003) studies, however, reveals that some variables
known to influence word processing (word frequency and
word length) were, to some degree, confounded with the
number-of-features manipulation. Although Pexman and
colleagues addressed this issue by partialling out the
influence of these variables using multiple regression, it is
possible that the observed NoF effects were due to the
combined influence of these confounded variables.
Therefore, the purpose of Experiment 1 is to test whether
Pexman et al.'s results replicate in both lexical and
concreteness decision tasks. It was possible to construct
larger lists of concepts that are better balanced on more
variables because we had access to a larger set of norms
(541 instead of 190 concepts).

Method

Participants.  Thirty-four  Psychology undergraduate
students at the University of Western Ontario participated
for course credit. Seventeen were assigned to lexical
decision and 17 to concreteness decision. In all Experiments
reported herein, all participants had normal or corrected-to-
normal visual acuity, and were native English speakers.

Materials. Two sets of target words referring to concrete
objects were generated from McRae et al.'s (2005) semantic
feature production norms. One set consisted of 64 low NoF
concepts and the other consisted of 64 high NoF concepts.
The two sets were matched carefully on a number of
potentially confounding variables (Table 1). These included
word frequency, which was computed using the natural
logarithm of the singular plus plural counts taken from the
British National Corpus (BNC) online search engine
(Burnard, 2000). Concept familiarity was measured by
asking 20 participants to rate, on a 9-point scale, with 1
corresponding to not at all familiar, and 9 corresponding to
highly familiar, 'How familiar are you with the thing the
word refers to?" Number of letters, number of phonemes,
number of syllables, and orthographic neighborhood size
(Coltheart, Davelaar, Jonasson, & Besner, 1977) were all
computed using the N-watch program (Davis, 2005).
Semantic density, a measure of the degree to which a
concept's features are intercorrelated, was calculated from
McRae et al.'s norms. In the norms, each feature is a vector
of production frequencies (number of participants listing
that feature) across the 541 concepts. Proportion of shared
variance for each feature-vector pair was calculated by
squaring the correlation between the two vectors. Semantic
density for a concept is the sum of the proportion of shared
variances for each pair of features that are included in that
concept. Finally, because the extent to which different types
of concrete objects are processed differentially is unclear
(Laws & Gale, 2002), we also matched the groups according
to the following category breakdown: creatures, fruits and
vegetables, and nonliving things.

1401



Table 1: Characteristics of Experiment 1 Stimuli

Variable Low NoF High NoF

M SE M SE

Number of features (NoF) 90 0.2 157 03

In(BNC) frequency 6.4 0.2 64 0.2
Familiarity 57 0.2 57 0.2
Number of letters 54 0.2 54 0.2
Number of phonemes 44 0.2 45 0.2
Number of syllables 16 0.1 17 01
Orth. neighborhood size (N) 4.6 0.8 44 0.7
Semantic density 156.9 20.1 155.3 11.3
Number of creatures 18 - 21 -

Number of fruits/vegetables 11 - 8 -

Number of nonliving things 35 - 35 -

Note. NoF = Number of Features, In = the natural logarithm
(loge), BNC = British National Corpus

Lexical decision filler items consisted of 128
pronounceable pseudowords and concreteness (“'semantic')
decision filler items consisted of 128 abstract concepts.
Both sets were matched with the target items on the mean
number of letters.

Procedure. Participants were tested individually using
PsyScope (Cohen, MacWhinney, Flatt, & Provost, 1993) on
a Macintosh computer equipped with a CMU button box.
Letters were approximately 0.5 cm high, black, and
presented on a white background. One item was presented at
a time and participants made either a lexical or semantic
decision depending on which task they were assigned.
Participants used the index finger of their dominant hand for
a 'yes' response and the index finger of their nondominant
hand for a 'no’ response. Decision latencies were measured
from the onset of the stimulus presentation to the onset of
the button press. Items were presented until the participant
made a decision and were presented in a different random
order for each participant. Participants were instructed to
make their decisions as quickly and accurately as possible.

Results and Discussion

Separate subject (t;) and item (t;) analyses were performed
on decision latencies for concrete concepts.* Errors (lexical
decision;: 4.6% of trials; semantic decision: 3.9%) were
removed from the analyses and correct decisions that
exceeded 3 standard deviations above the grand mean for
the target words were replaced with the cutoff value (lexical
decision: 1.8%; semantic decision: 1.4%). The independent
variable was NoF (low versus high) which was within-
subjects and between-items.

! Error analyses were performed for all Experiments, but the
differences between conditions were generally small and where
significant differences were observed, there was no speed-accuracy
tradeoff. Therefore, error analyses are not presented.

Lexical decision latencies to high NoF concepts (M =
593 ms, SE = 20 ms) were 30 ms shorter than to low NoF
concepts (M = 623 ms, SE = 19 ms), t;(16) = 7.37, p < .001,
t,(126) = 2.34, p < .05. Semantic decision latencies to high
NoF concepts (M = 637 ms, SE = 14 ms) were 29 ms shorter
than to low NoF concepts (M = 666 ms, SE = 16 ms), t;(16)
=4.27, p < .01, t,(126) = 2.51, p < .05. Thus, using this
tightly controlled and larger set of items, we replicated
Pexman et al.'s (2002; 2003) number-of-features effect.
Words rich in semantic representation (as measured by the
number of features listed in the norms) were responded to
faster than words that are less rich.

In the remainder of this article, we investigate a potential
source of the NoF effect by contrasting shared versus
distinctive features. Shared features are those that occur in
many concepts (<has four legs> and <is hard>) whereas
distinctive features are those that occur in few concepts
(<moos> and <oinks>). Shared features denote
commonalities among concepts, and thus indicate ways in
which concepts are similar to one another. In contrast,
distinctive features denote differences, and thus help people
to discriminate among concepts.

The relative contribution of these two feature types to
processing appears to be task dependant. For instance,
Humphreys, Riddoch, and Quinlan (1988) found that people
were faster to name pictures of objects belonging to
categories whose exemplars were structurally dissimilar
(clothing and furniture) than pictures of objects from
structurally  similar  categories (insects, fruits, and
vegetables). However, when asking participants to make
category decisions involving these same stimuli, Riddoch
and Humphreys (1987) found that they could do so more
quickly when the pictures of objects belonged to categories
whose exemplars were structurally similar than when they
were dissimilar. Thus, distinctive features appear to
facilitate processing when the task requires distinguishing
an item from among similar items (picture naming),
whereas shared features appear to facilitate processing when
the item has to be identified as a member of a larger
category.

In the cases of deciding whether a string of letters is a
word, or whether it refers to a concrete object, it is possible,
at least theoretically, that people can initiate their response
prior to precisely identifying or distinguishing a concept
from among similar concepts. As such, it seems reasonable
to predict that shared features contribute more than
distinctive features to the processing advantage found in the
number-of-features effect. That is, the more shared features
a concept has, the more likely it is to be processed quickly
in lexical and semantic decision tasks.

Cree and McRae (2003) defined a feature as shared if it
was listed for more than 2 of the 541 concepts and
distinctive if it was listed for only 1 or 2 concepts. They also
computed feature distinctiveness as a continuous dimension
(the multiplicative inverse of the number of concepts in
which a feature occurred), but for present purposes, we
focus on the shared versus distinctive binary measure.
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In Experiment 1 and Pexman et al.'s (2002) studies, both
shared and distinctive features were higher for the high NoF
concepts. Therefore, these Experiments provide no insight
into the relative contributions of shared versus distinctive
features. One way to test the relative contributions is to
directly contrast the number of shared versus distinctive
features while holding NoF constant (Experiment 2).
Another way is to create the NoF manipulation by altering
either the number of shared or distinctive features while
holding the other constant (Experiment 3).

Experiment 2

The purpose of Experiment 2 is to investigate whether
lexical and semantic decisions are systematically influenced
when the number of shared (and distinctive) features is
manipulated while holding NoF constant.

Method

Participants. Forty-nine undergraduate students at the
University of Western Ontario received $10 for their
participation. Twenty-five were assigned to lexical decision
and 24 to semantic decision.

Materials. Two sets of target words referring to concrete
objects were generated from McRae et al.'s (2005) norms.
One set consisted of 55 low number-of-shared-features
concepts and the other consisted of 55 high number-of-
shared-features concepts. The two sets were tightly matched
on the same variables described in Experiment 1, plus NoF.

Lexical decision filler items consisted of 110
pronounceable pseudowords and semantic decision filler
items consisted of 110 abstract concepts. Both sets were
matched with the target items on the mean number of
letters.

Procedure. The procedure was identical to Experiment 1.

Results and Discussion

Errors (lexical decision: 3.6%; semantic decision: 3.8%)
again were removed from the analyses and correct decisions
that exceeded 3 standard deviations above the grand mean
for the target concepts were replaced with the cutoff value
(1.6% of trials for both lexical and semantic decision). The
independent variable was number-of-shared-features (low
versus high) which was within-subjects and between-items.

Lexical decision latencies to concepts with a high
number-of-shared-features (M = 544 ms, SE = 12 ms) were
11 ms shorter than to those with a low number-of-shared-
features (M = 555 ms, SE = 13 ms), which was significant
by subjects, t;(24) = 4.60, p < .001, but not by items, t,(108)
= 1.07, p > .2. Semantic decision latencies to concepts with
a high number-of-shared-features (M = 714 ms, SE = 29 ms)
were 42 ms shorter than to those with a low number-of-
shared-features (M = 756 ms, SE = 31 ms), t;(23) = 6.17, p
<.001, t,(108) = 2.18, p < .05.

Thus, increasing the number of shared features facilitates
both lexical and semantic decision, although the degree of
facilitation is greater for semantic decision. Obtaining a

larger effect in semantic decision is not particularly
surprising. Although there was no difference in effect size
between lexical (30 ms) and semantic (29 ms) decision in
Experiment 1, a number of studies have found stronger
effects of semantic manipulations on semantic than lexical
decision tasks (McRae & Boisvert, 1998; Becker,
Moscovitch, Behrmann, & Joordens, 1997). Although it is
clear that participants must compute the meaning of a word
to decide whether it refers to something that is concrete or
abstract, computation of meaning may be less strongly
related to making a lexical decision (Pexman et al., 2002).
That is, it appears that lexical decisions can be made on the
basis of some combination of orthographic, phonological,
and semantic knowledge.

If adding shared features facilitates processing, what
about adding distinctive features? Under the richness
hypothesis, one might predict that adding features,
regardless of type, facilitates processing to some degree
because the result is a richer semantic representation.
However, it is also possible that adding distinctive features
inhibits processing because as distinctive features are added
to a concept, the concept becomes more dissimilar to other
concepts. This could be particularly true in a task such as
semantic verification in which latencies are longest for
concepts that are dissimilar to other category members
(atypical; Rips, Shoben, & Smith, 1973). In fact, although
shared features were manipulated in Experiment 2, if we
reverse the logic and focus on distinctive rather than shared
features, there is evidence that distinctive features inhibit
processing in both tasks. That is, since each feature is either
shared or distinctive, the numbers of shared and distinctive
features are simply the complements of one another in
Experiment 2. Re-labeling the low-shared condition as high-
distinctive and the high-shared condition as low-distinctive
suggests that decision latencies are longer to concepts with
many versus few distinctive features. Although this
interpretation is possible, it is unlikely given that in
Experiment 1 we added, on average, more distinctive
features (3.9) than shared features (2.9) in the high NoF
condition and facilitation was obtained.

Experiment 3

Experiment 3 is designed to overcome the ambiguity in
interpreting Experiment 2 by systematically testing the
influence of shared and distinctive features while holding
the other constant in both lexical and semantic decision.

Method

Participants. Eighty-nine undergraduate  Psychology
students at the University of Western Ontario received
course credit for their participation. Forty-five were
assigned to lexical decision and 44 to semantic decision.

Materials. Four sets of 20 words referring to concrete
objects were generated. In the first two sets, the number-of-
distinctive-features was held constant while the number-of-
shared-features was manipulated. In the other two sets, the
number-of-shared-features was held constant and the
number-of-distinctive-features was manipulated. Again,
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these four sets were tightly matched on the same variables
described in Experiment 1.

Lexical decision filler items consisted of 80
pronounceable pseudowords and semantic decision filler
items consisted of 80 abstract concepts. Both sets were
matched with the target items on the mean number of letters.

Procedure. The procedure was identical to Experiment 1.

Results and Discussion

Errors (lexical decision: 3.3%; semantic decision: 4.7%)
were removed from the analyses and correct decisions that
exceeded 3 standard deviations above the grand mean for
the target concepts were replaced with the cutoff value
(1.7% of trials for both lexical and semantic decision). The
independent variables were type of manipulated feature
(shared versus distinctive) and NoF (low versus high), both
of which were within-subjects and between-items. Mean
decision latencies are presented in Table 2.

In lexical decision, feature type interacted with NoF by
subjects, Fi(1, 44) = 7.59, p < .01, but not by items, F,(1,
76) = 1.27, p > .2. Planned comparisons revealed that
decision latencies to high NoF concepts were marginally
shorter than to low NoF concepts when shared features were
manipulated, Fy(1, 86) = 13.19, p < .05, F»(1, 76) = 1.76, p
> .1. There was no NoF difference when distinctive features
were manipulated, F;(1, 86) <1, F»(1, 76) < 1.

Decision latencies were 10 ms shorter for high NoF (M
=598 ms, SE = 9 ms) than for low NoF concepts (M = 608
ms, SE = 9 ms) overall, which was significant by subjects,
F.(1, 44) = 5.65, p < .05, but not by items, F,(1, 76) < 1.
Decision latencies were 10 ms shorter for concepts with
distinctive features manipulated (M = 598 ms, SE = 8 ms)
than for those with shared features manipulated (M = 608
ms, SE = 9 ms), which was significant by subjects, F;(1, 44)
=6.37, p <.05, but not by items, F»(1, 76) < 1.

In  semantic decision, the interaction between
manipulated feature type and NoF was significant by
subjects, F1(1, 43) = 15.98, p < .001, and marginal by items,
F»(1, 76) = 2.54, p > .1. Planned comparisons revealed that,
when number of shared features was manipulated, decision
latencies to high NoF concepts were shorter than to low
NoF concepts, F1(1, 85) =63.03, p < .01, F»(1, 76) =9.59, p
< .01. However, when number of distinctive features was
manipulated, the NoF effect was significant by subjects,
F1(1, 85) = 4.65, p < .05, but not by items, F»(1, 76) < 1.

Decision latencies were 51 ms shorter for high NoF
concepts (M = 713 ms, SE = 13 ms) than for low NoF
concepts (M = 764 ms, SE = 14 ms), Fy(1, 43) =53.59, p <
.001, F,(1, 76) = 7.67, p < .01. Decision latencies were 27
ms shorter for concepts with distinctive features
manipulated (M = 725 ms, SE = 13 ms) than for concepts
with shared features manipulated (M = 752 ms, SE = 14
ms), which was significant by subjects, F;(1, 43) = 26.16, p
<.001, but not by items, F»(1, 76) =2.12, p > .1.

Table 2: Decision latencies (ms) for Experiment 3

Manipulated Feature Type

Shared Distinctive
M SE M SE

Lexical Decision

Low NoF 621 13 506 12

High NoF 596 14 600 12

Difference 25 * -4
Semantic Decision

Low NoF 792 19 736 19

High NoF 711 18 714 19

Difference 81 ** 22 *

Note. NoF = Number of Features, * = significant by
subjects, ** = significant by subjects and items

As in Experiment 2, in Experiment 3 increasing the
number of shared features marginally decreased lexical
decision latencies and significantly decreased semantic
decision latencies. It was also the case that increasing the
number of distinctive features did not decrease lexical
decision latencies, but did marginally decrease semantic
decision latencies although the effect was smaller than for
shared features. Thus, while adding distinctive features does
not inhibit performance, Experiment 3 confirmed that
adding shared features provides more facilitation than
adding distinctive features in lexical and semantic decision.

General Discussion

The present experiments demonstrate that the richness of a
word's semantic representation, in terms of the number of
features, influences speeded decisions involving the
computation of its meaning. Using empirically-derived
feature lists, Pexman and colleagues found that concepts
with many features were responded to faster than concepts
with few features, and this was taken as evidence of a
processing advantage for concepts rich in semantic
representation. We extended this research in two ways.
First, Experiment 1 showed that the effect is robust when
using large lists of items that are tightly controlled on many
variables. Second, Experiments 2 and 3 showed that
increasing the number of shared features facilitates
processing to a greater extent than does increasing the
number of distinctive features.

Why do shared features provide more facilitation,
particularly in the semantic (concreteness) decision task?
We computed the degree to which features are shared with
respect to 541 concrete concepts. Thus, in terms of the
present concreteness decision task, the concepts that possess
numerous shared features are precisely the ones that are
most similar to other concrete objects. That is, concepts
with many shared features are more typical members
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(assuming equal number of distinctive features) of the
category ‘concrete objects' and so are categorized fastest.

The fact that adding distinctive features does not inhibit
concreteness decisions is interesting because it seems to
conflict with a traditional typicality account. However, in a
broad and variable category such as ‘concrete objects', it is
not clear that adding distinctive features necessarily makes a
concept less typical of concrete objects. For instance, a
feature like <moos> is distinctive of the concept cow, but
retrieving this feature would presumably not inhibit
categorizing cow as a concrete object.

The relative contribution of these two feature types is
likely to be task specific. Recall that Riddoch and
Humphreys (1987) and Humphreys et al. (1988) found that
whereas pictures of exemplars taken from categories
composed of numerous structurally similar items (shared
features) were categorized faster than those from
structurally distinct categories, the opposite pattern was
found when the pictures were named. This suggests that
distinctive features matter more than shared features in tasks
such as picture naming where distinctive features are crucial
to distinguishing an item from among similar items. In fact,
preliminary results support this prediction (P. Pexman,
personal communication, Nov, 2005).

One implication of the number-of-features effects and
the differential role of shared and distinctive features in
processing is that they provide strong evidence against a
static, localist view of conceptual representation. Instead,
concepts appear to be highly distributed and dynamically
generated depending on the task. Thus, these results have
important implications for understanding and constructing
models of the computation of word meaning.
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