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Abstract

We present a novel experimental method for identifying
the inductive biases of human learners. The key idea
behind this method is simple: we use participants’ re-
sponses on one trial to generate the stimuli they see on
the next. A theoretical analysis of this “iterated learn-
ing” procedure, based on the assumption that learners
are Bayesian agents, predicts that it should reveal the
inductive biases of the learners, as expressed in a prior
probability distribution. We test this prediction through
two experiments in iterated category learning.

Many of the cognitive challenges faced by human be-
ings can be framed as inductive problems, in which ob-
served data are used to evaluate underdetermined hy-
potheses. To take two common examples, in language
acquisition the hypotheses are languages and the data
are the utterances to which the learner is exposed, while
in category learning the hypotheses are category struc-
tures and the data are the observed members of a cate-
gory. Analyses of inductive problems in both philosophy
(Goodman, 1955) and learning theory (Geman, Bienen-
stock, & Doursat, 1992; Kearns & Vagzirani, 1994; Vap-
nik, 1995) stress the importance of combining the evi-
dence provided by the data with a prior: biases about the
plausibility of hypotheses. These biases prevent learners
from jumping to outlandish conclusions that might be
consistent with the data, and can produce successful in-
ductive inferences so long as they approximately capture
the nature of the learner’s environment.

If we want to understand how people solve inductive
problems, we need to understand the biases that con-
strain their inferences. However, identifying these biases
can be a challenge. Inductive biases can result from bi-
ological constraints on learning, general-purpose prin-
ciples such as a preference for simplicity, or previous
domain-specific experience, and in many cases will be
a mixture of all three. Not all of these factors are avail-
able to introspection, and as a consequence assessment
of the biases of learners has tended to be indirect. In the
past, people’s inductive biases have been evaluated using
experiments that examine whether, for example, certain
category structures are easier or harder to learn (e.g.,
Shepard, Hovland, & Jenkins, 1961), or by assessing how
well models that embody particular biases correspond to
human judgments (e.g., Tenenbaum, 1999).

In this paper, we explore a novel experimental method
that makes it possible to directly determine the biases of

learners. The basic idea behind this method is simple:
having people solve a series of inductive problems where
the hypothesis selected on one trial is used to generate
the data observed on the next. We call this method “iter-
ated learning”, due to its close correspondence to a class
of models that have been used to study language evolu-
tion (Kirby, 2001). Our use of iterated learning is mo-
tivated by a theoretical analysis that shows that, in the
case where the learners are Bayesian agents, the proba-
bility that a learner chooses a particular hypothesis will
ultimately be determined by their inductive biases, as ex-
pressed in a prior probability distribution over hypothe-
ses (Griffiths and Kalish, 2005). We tested this predic-
tion in two experiments with stimuli for which people’s
inductive biases are well understood, examining whether
the outcome of iterated learning is consistent with previ-
ous work on the difficulty of learning different category
structures (Shepard et al., 1961; Feldman, 2000).

The plan of the paper is as follows. First, we outline
the theoretical background behind our approach, laying
out the formal framework that justifies the use of iter-
ated learning as a method for determining the biases
of learners. We then provide a more detailed analysis
of the specific case of inferring category structures from
observed members, presenting a Bayesian model of this
task. The predictions of this model, and of our more
general theoretical framework, are tested through two
experiments. We close by discussing the implications of
these experiments for iterated learning as a method for
revealing inductive biases, and some future directions.

Iterated learning reveals inductive biases

Iterated learning has been discussed most extensively in
the context of language evolution, where it is seen as
a potential explanation for the structure of human lan-
guages. Language, like many other aspects of human
culture, can only be learned from other people, who were
once learners themselves. The consequences of this fact
have been studied using what Kirby (2001) termed the
iterated learning model, in which several generations of
one or more learners each learn from data produced by
the previous generation. For example, with one learner
per generation, the first learner is exposed to some initial
data, forms a hypothesis about the language it repre-
sents, and generates new data from that language. This
new data are passed to the second learner, who infers a
hypothesis and generates data from it that are provided
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to the third learner, and so forth. Through simulations,
Kirby and his colleagues have shown that languages
with properties similar to those of human languages can
emerge from iterated learning with simple learning algo-
rithms (Kirby, 2001; Smith, Kirby, & Brighton, 2003).

Griffiths and Kalish (2005) provided a formal analy-
sis of the consequences of iterated learning for the case
where learners are Bayesian agents. Assume that a
learner has a set of hypotheses, H, and that their biases
are encoded through a prior probability distribution,
P(h), specifying the probability a learner assigns to the
truth of each hypothesis h € H before seeing some data
d. Bayesian agents evaluate hypotheses using a principle
of probability theory called Bayes’ rule. This principle
states that the posterior probability P(h|d) that should
be assigned to each hypothesis h after seeing d is
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where P(d|h), the likelihood, indicates the probability of
the data d under hypothesis h.

We can now formally analyze the consequences of iter-
ated learning with Bayesian learners. Each learner uses
Bayes’ rule to compute a posterior distribution over the
hypothesis of the previous learner, samples a hypothesis
from this distribution, and generates the data provided
to the next learner using this hypothesis. The probabil-
ity that the nth learner chooses hypothesis h,, given that
the previous learner chose hypothesis h,, 1 is

P(hnlhn-1) = > P(hn|d)P(d|hy1) (2)
d

where P(h,,|d) is the posterior probability obtained from
Equation 1. This specifies the transition matrix of
a Markov chain, since the hypothesis chosen by each
learner depends only on that chosen by the previous
learner. Griffiths and Kalish (2005) showed that when
the learners share a common prior, P(h), the stationary
distribution of this Markov chain is simply the prior as-
sumed by the learners. The Markov chain will converge
to this distribution under fairly general conditions (e.g.,
Norris, 1997). This means that the probability that the
last in a long line of learners chooses a particular hypoth-
esis is equal to the prior probability of that hypothesis,
regardless of the data provided to the first learner.

Testing convergence to the prior

The theoretical results summarized in the previous sec-
tion raise a tantalizing possibility: if iterated learning
converges to the prior, perhaps we can reproduce it in the
laboratory as a means of determining people’s inductive
biases. However, these results are based on the assump-
tion that the learners are Bayesian agents. Whether the
predictions of this account will be borne out with human
learners is an empirical question.

To test whether iterated learning with human learners
will converge to an equilibrium reflecting people’s induc-
tive biases, we need to use a set of stimuli for which
these biases are well understood. One such set of stimuli
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Figure 1: (a) Types of category structures for stimuli
defined on three binary dimensions. Vertices are objects,
with color indicating category membership. (b) Design
of iterated category learning experiments (see Method).

comes from the literature on category learning. Shep-
ard et al. (1961) conducted an experiment exploring the
relative difficulty of learning different kinds of category
structures defined on objects that vary along three bi-
nary dimensions, such as shape, color, and size. Cate-
gories are defined in terms of which subsets of the eight
possible objects they contain. In principle, there are 256
different category structures, but if we restrict ourselves
to categories with four members, this number is reduced
to 70. If we collapse together structures that are identi-
cal up to rotation and negation, this number is reduced
still further, giving us a total of six different types of
category structures. Examples of categories belonging
to these six types are shown in Figure 1(a).

Shepard et al. (1961) found that there is great varia-
tion in the ease with which people learn different types
of category structures. Type I, in which membership
is defined along a single dimension, is easiest to learn,
followed by Type II, in which two dimensions are suffi-
cient to identify members. Next come Types III, IV, and
V, which all correspond to a one-dimensional rule plus
an exception, and are about equally difficult to learn.
Type VI, in which no two members share a value along
more than one dimension, is hardest to learn. Similar
results have been obtained by Nosofsky, Gluck, Palmeri,
McKinley, and Glauthier (1994) and Feldman (2000).
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Since difficulty in learning a hypothesis is an indica-
tion that it may be inconsistent with the inductive biases
of the learner, these stimuli provide a way to test the pre-
dictions of our theoretical account of iterated learning:
we can examine whether iterated category learning using
these stimuli converges to a distribution over hypotheses
consistent with the results of Shepard et al. (1961). How-
ever, in order to do this efficiently, we need to introduce
one more innovation. Our discussion so far has focused
on cases where iterated learning occurs “between sub-
jects” | with each learner seeing data generated by a pre-
vious learner. Iterated learning experiments using such
a design can be cumbersome, requiring a large number
of participants in order to have chains of learners of any
appreciable length. Fortunately, the same analysis ap-
plies to iterated learning with a “within subjects” design,
where a single learner responds to stimuli that are based
on his or her own previous responses. In the remainder of
the paper, we discuss two experiments in within-subjects
iterated category learning. However, before we present
these experiments, we will describe a formal model that
we will use to make quantitative predictions about the
dynamics of iterated category learning.

Modeling iterated category learning

Our account of category learning is based on a model de-
veloped by Tenenbaum (1999) and Tenenbaum and Grif-
fiths (2001). The data, d, that people observe will consist
of m positive examples — objects that belong to a cate-
gory. If we assume that objects are drawn by sampling
without replacement, then the probability of a particular
set of m positive examples is

(Ih] = m)!/[n]!

dch
P(d|h) = { ;

otherwise (3)
where |h| denotes the number of objects in the category
associated with hypothesis h and d C h indicates that
all m objects in d are members of h (and m < |h]).
We can now use Bayes’ rule to evaluate the posterior
probability of any hypothesis h given some set of objects
d. Combining the likelihood given by Equation 3 with a
prior on hypotheses, P(h), we obtain

P (h] - m) )
POld) = = bty (Wl —myi Y

for all hypotheses h such that d C h, and 0 otherwise.
All categories are of the same size (Jh| = 4), so we have

P(h|d) = Zhiifg(h’) (5)

which is simply the prior, normalized over all hypotheses
consistent with d.

The likelihood given by Equation 3 and posterior dis-
tribution from Equation 5 can be substituted into Equa-
tion 2 to find the transition matrix of the Markov chain
on hypotheses induced by iterated learning. The result is
a square matrix where the number of rows and columns
is equal to the number of hypotheses. Given an initial

distribution over hypotheses, represented as a column
vector, the distribution over hypotheses at each subse-
quent iteration can be computed by multiplying this vec-
tor by the transition matrix. This can be used to make
predictions not just about the asymptotic distribution
over hypotheses, which we know to be the prior, P(h),
but also the dynamics of iterated learning. The asymp-
totic distribution will not be affected by the amount of
data seen by the learners, but the dynamics will change
significantly depending on the degree to which the data
constrain the choices of the learners.

Our two experiments examine iterated category learn-
ing in two regimes: with two positive examples (m = 2),
and with three positive examples (m = 3). The goals
of these experiments are twofold. First, to determine
whether iterated learning converges to a distribution
over hypotheses consistent with people’s inductive bi-
ases, and second, to establish whether the fine-grained
dynamics of this process are consistent with the Bayesian
framework presented above.

Experiment 1: Two positive examples
Method

Participants Participants were 20 members of the
Brown University community, paid $8 per hour for
their participation, and 97 University of Louisiana at
Lafayette undergraduates participating for course credit.

Stimuli Following Feldman (2000), stimuli were
“amoebae” with a wavy cell wall and an internal nu-
cleus. Nuclei varied along three binary dimensions:
shape (round/square), color (black/white), and size
(large/small). Categories were “species” of amoebae.

Procedure The design of the experiment is shown in
Figure 1(b). Each participant completed 120 trials of
category learning, being presented with two positive ex-
amples from a category and selecting one of the fifteen
category structures that were consistent with those ex-
amples. To remove memory demands, examples and hy-
potheses were presented simultaneously on a computer
screen, as shown in Figure 2 (a), and participants se-
lected category structures using a mouse. The 120 trials
were divided into 10 blocks of 12, corresponding to 10
iterations of learning. Within each block, six trials be-
longed to “dependent” chains, with the objects being
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Figure 2: Sample displays showing stimuli and possible
responses for (a) Experiment 1 and (b) Experiment 2.
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Figure 3: Results of Experiment 1. The leftmost panel shows data aggregated over all chains, while the remaining
panels break this down by the type of category structure used to initialize each chain. Each point represents the
contribution of 69 subjects, so the maximum standard error is 0.025 for the aggregate data, and 0.060 otherwise.

generated at random from the hypothesis selected on
the previous trial in that chain. Each dependent chain
was initialized with a hypothesis corresponding to a dif-
ferent type of category structure (these hypotheses are
referred to as iteration 0). The other six trials within
each block were part of “independent” chains, with the
objects being generated from a randomly selected hy-
pothesis corresponding to one of the six types. Trials
were randomized within blocks.

Results and Discussion

While previous work makes qualitative predictions about
the relative prior probabilities of the six different types of
category structure, the model presented above provides
the opportunity to estimate these quantities directly, and
use them to make quantitative predictions about the dy-
namics of iterated learning. We specified a prior over
hypotheses, P(h), by assuming that the prior probabil-
ity was affected only by the type of category structure
to which a hypothesis corresponds, being uniform within
types. Since there are six such types, the prior can be
completely specified by five parameters, giving the prob-
abilities of Types I-V (the probability of Type VI follows
from the fact that probabilities sum to one).

The parameters of the prior were estimated from the
frequencies with which participants selected hypotheses
given different sets of examples, aggregated across de-
pendent and independent chains, rather than by optimiz-
ing the fit of the model to the dynamics of the data. Ac-
cording to the Bayesian model, people’s choices should
follow the distribution given by Equation 5. Parameters
were found using maximume-likelihood estimation. Pre-
liminary analyses indicated that a subset of the partici-
pants were responding at random, so a variant of the EM

algorithm (Dempster et al., 1977) was used to simulta-
neously estimate the prior and probabilistically classify
participants as either responding at random or in ac-
cord with the model. The resulting parameter estimates
gave Types I-VI prior probabilities of 0.687, 0.136, 0.048,
0.012, 0.079, and 0.039, respectively. Computing the ac-
tual prior probability of a category structure of each type
requires dividing by the number of categories of each
type, being 6, 6, 24, 8, 24, and 2, respectively. These
probabilities are consistent with previous findings con-
cerning the relative difficulty of learning different types
of category structures, with the only possible exception
being the relatively high probability of Type VI struc-
tures. Using these parameters, we computed the proba-
bility that each participant was responding at random.
The remainder of our analyses use only the 69 partici-
pants for whom this probability was less than 0.5.

The leftmost panel of Figure 3 shows how the propor-
tion of participants selecting a hypothesis of each type
varies as a function of the number of iterations, aggregat-
ing over all six dependent chains. To evaluate whether
iterated learning was having an effect on responses, we
ran a x2 test comparing the proportions of the six types
across the independent and dependent chains at each
iteration. The results of these tests were statistically
significant for all iterations after the third, with p < .01.

Figure 3 also shows the predictions of the Bayesian
model outlined in the previous section when applied to
this task. As can be seen from the figure, there is a re-
markably close correspondence between the predictions
of the model and the human data, with a linear correla-
tion of (58) = 0.997. In particular, both the model and
the human data converge to an asymptotic distribution
over hypotheses consistent with the prior. This close cor-
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Figure 4: Results of Experiment 2. The leftmost panel shows data aggregated over all chains, while the remaining
panels break this down by the type of category structure used to initialize each chain. Each point represents the
contribution of 64 subjects, so the maximum standard error is 0.026 for the aggregate data, and 0.062 otherwise.

respondence prevails despite the fact that the model pa-
rameters were estimated from the hypotheses that people
selected across all trials, rather than explicitly attempt-
ing to capture the dynamics of iterated learning. The
remaining panels of Figure 3 show a more fine-grained
analysis of the correspondence between model and data,
breaking the aggregate data shown in the leftmost panels
up based on the type of category structure with which
the chains were initialized. The model and data still
exhibit a strong correlation, with r(358) = 0.990, and
both converge to a distribution consistent with the prior
regardless of initial conditions.

The results of this first experiment bear out the pre-
dictions of our theoretical framework, with human learn-
ers converging to a distribution over hypotheses consis-
tent with their inductive biases. Furthermore, the dy-
namics of this process correspond well with the quanti-
tative predictions of our Bayesian model, with conver-
gence occurring extremely rapidly regardless of initial
conditions. However, the speed of convergence prevents
a detailed analysis of the dynamics of iterated learning,
with very little variation in behavior following the sec-
ond or third iteration. To address this problem, our sec-
ond experiment examined iterated category learning in
a context where the data provided stronger constraints
on hypotheses, reducing the rate of convergence.

Experiment 2: Three positive examples
Method

Participants Participants were 20 members of the
Brown University community, paid $8 per hour for
their participation, and 53 University of Louisiana at
Lafayette undergraduates participating for course credit.

Stimuli Stimuli were those used in Experiment 1.

Procedure The procedure was that of Experiment 1,
but three positive examples of each category were pre-
sented on each trial. Since this meant only one member
of the category was unknown, participants had to choose
a response from just five consistent hypotheses. Figure
2 (b) shows a sample display from the experiment.

Results and Discussion

The procedure developed for Experiment 1 was used to
estimate the parameters of the prior, resulting in prob-
abilities of 0.651, 0.195, 0.040, 0.008, 0.062, and 0.044
for Types I-VI respectively. These parameters were con-
sistent with both previous research and the estimates
from Experiment 1. Using these parameters, 64 partic-
ipants were classified as responding non-randomly, and
were used in the remainder of our analyses. The left-
most panel of Figure 4 shows how the proportion of par-
ticipants selecting a hypothesis of each type varies as a
function of the number of iterations. x?2 tests found a sig-
nificant difference between dependent and independent
chains for every iteration after the third, with p < .01.
Figure 4 also shows the predictions of the Bayesian
model, which again correlated extremely well with the
human data, r(58) = 0.992. The stronger constraints
on choices imposed by using more examples resulted in
much slower convergence towards the prior for both the
Bayesian model, and the human data. In particular, it
seems that iterated learning has not fully converged after
10 iterations, with the prevalence of Type I still increas-
ing, and the prevalence of other types still decreasing.
One small difference from the predictions of the Bayesian
model appears for the Type II structures, which should
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still be decreasing at the end of the experiment, but ap-
pear to have stabilized at a slightly higher probability
than predicted by the model.

The remaining panels in Figure 4 show the data broken
down across the six dependent chains. The slower con-
vergence results in some interesting differences in the dis-
tribution over hypotheses across chains. For example, in
the data for the Type VI chains, the dominance of Type
I categories only emerges after a period in which Type V
increases in popularity. As can be seen from the figure,
the Bayesian model does a good job of capturing these
dynamics, with a correlation of r(358) = 0.990. The
slight over-prevalence of Type II category structures rel-
ative to the model predictions is more pronounced for the
Type IT and III chains, and seems to be complemented
by under-prevalence in Type I and IV chains. With
sufficiently many iterations, the probabilities across all
chains should converge. The fact that they remain quite
different at the end of the experiment suggests that these
discrepancies may be the result of noise rather than a
systematic failure of the model.

General Discussion

The results of our experiments bear out the predictions
of both our theoretical framework, and our Bayesian
model of iterated category learning. In both exper-
iments, the distribution over category structures con-
verged towards an equilibrium consistent with previous
research on learning difficulty (Shepard et al., 1961; Feld-
man, 2000; Nosofsky et al., 1994), with Type I structures
being most prevalent, followed by Type II, and then the
other four types. The dynamics of this convergence, as
represented by the distribution over category structures
at each iteration, were also strongly in accord with our
Bayesian model: the greater constraints on hypotheses
provided by three positive examples resulted in slower
convergence to the prior, and the Markov chains initial-
ized with different types of category structures showed
fine-grained dynamics that closely matched the predic-
tions of the Bayesian model. These results suggest that
iterated learning may provide a viable method for deter-
mining the inductive biases of learners.

One interesting aspect of our data is the persistently
high probability of Type VI category structures. The
previous research mentioned above suggested that Type
VI structures are hardest to learn, but the prior that
seemed to characterize people’s inferences in our ex-
periments gave these structures higher probability than
Types III-V. One possible explanation for this difference
is the lack of memory demands in our task. The experi-
ments that suggest Type VI structures are hard to learn
required participants to remember a set of examples from
the category, while in our experiments participants could
see both the examples and the full set of possible cat-
egory structures. Type VI structures actually have far
greater symmetry and simplicity than Types I1I-V, being
describable as the structures for which every two mem-
bers have the same value on exactly one dimension. Our
presentation format could have made this property more
apparent, resulting in a stronger preference for Type VI.

There are a number of directions in which the experi-
ments presented in this paper could be extended. First,
a more complete test of the predictions of our frame-
work, and of the Bayesian model outlined above, could
be conducted by considering a wider range of category
learning tasks, potentially producing a deeper picture
of the dynamics of iterated category learning. Second,
given the original proposal of iterated learning as a mode
of intergenerational knowledge transmission, exploration
of whether similar dynamics are observed when iterated
learning occurs “between subjects” could provide insight
into questions relating to the consequences of cultural
evolution. However, perhaps the most exciting direction
for future research is the investigation of people’s induc-
tive biases in contexts where they remain unknown. By
reproducing iterated learning in the laboratory, we may
be able to map out the implicit biases that are at the
heart of the remarkable human ability to solve problems
requiring inductive inference.
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