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Abstract

Behavioral studies (e.g., Anderson, Bjork, & Bjork, 1994)
suggest that competition between relevant and irrelevant
memory information is resolved in part through the inhibition
of competing irrelevant information, an effect dubbed Re-
trieval-Induced Forgetting (RIF). Green and Kittur (2004)
outlined MNEM, a model of human memory that exhibits
many retrieval dynamics observed in empirical studies (e.g.,
spacing and practice effects, forgetting over time, spontane-
ous recovery, serial position effects), but did not account for
RIF. In this paper, we describe a modified version of MNEM
that incorporates an inhibitory mechanism and simulates some
basic RIF effects. Prior work that implicates a feature-specific
inhibitory mechanism provides a context for the model and
simulations.
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Introduction

This article describes a computational memory model that
incorporates an inhibitory mechanism. We begin by describ-
ing retrieval-induced forgetting (RIF) and discussing one
proposed form of an inhibitory mechanism (feature-based
inhibition) that is suggested by behavioral data. We then
describe our model, simulation results consistent with em-
pirical findings, and our ongoing work on this project.

Retrieval-Induced Forgetting

Many details of an average day are only subtly different
than details of the day before. For instance, you may park
your car in the same lot every day. The location of your car
within that lot probably varies from day to day. With many
memories linked to your car’s location in the lot, how are
you able to recall the current spot? To retrieve today’s park-
ing spot, your memory system must discriminate that target
memory from many related, competing memories. Research
has suggested that such discrimination is facilitated by the
inhibition of competing memories, and that such inhibition
has lasting effects.

Anderson, Bjork, and Bjork (1994) demonstrated that
retrieving a memory results in reduced subsequent recall for
related memories. Their participants were required to study
a set of category-exemplar pairs (e.g., Fruit-Apple, Fruit-
Orange, Tool-Hammer, Tool-Wrench). The study phase
provided equal encoding for all items. During a retrieval
practice phase, half of the exemplars in half of the catego-
ries were practiced in a category-and-stem-cued recall task
(e.g., Fruit-Or____ cued Orange). Thus, there were prac-

ticed items in practiced categories (farget items), unprac-
ticed items in practiced categories (competitor items), and
unpracticed items in unpracticed categories (umpracticed
items). After a delay, there was a category-cued recall test
for all items.

Results indicated that target items were recalled better
than unpracticed items. Competitor items were recalled less
often than unpracticed items. The latter result is surprising
given that competitors were categorically related to targets;
a spreading activation model would have predicted better
recall for competitors than for unpracticed items. Anderson,
Bjork, and Bjork (1994) explained this result in terms of an
inhibitory mechanism. They postulated that during retrieval
practice, competitors became active and competed with tar-
gets for retrieval. To facilitate retrieval of targets, competi-
tors were inhibited, and inhibition had a lasting negative
impact on the availability of competitors. This effect is
called Retrieval-Induced Forgetting (RIF).

Similarity and the Pattern Suppression Model

Anderson and Spellman (1995) posited that RIF effects
might rely on inhibition of one of two types: the associative
link between a category cue and an exemplar might be
weakened or the exemplar representation itself could be
weakened. To choose between these hypotheses they used
new, unstudied cues (called independent probes) during the
test phase of RIF experiments to probe memory for studied
items. For example, when Fruit-Apple was a competitor
item, later recall of Apple could be tested with an independ-
ent probe (Red-Ap ). RIF effects were observed even
when independent probes were used to test memory for
studied items, ruling out inhibition of the associative link as
an explanation.

Anderson and Spellman (1995) concluded that inhibition
acted directly on the representations of competitor items.
They suggested that the inhibitory mechanism underlying
RIF might act on individual features (sub-symbolic ele-
ments) of memory representations and proposed the pattern
suppression model (PSM) in which the featural representa-
tion of a memory item is suppressed. The PSM postulates
that features that are activated during retrieval but that are
not components of the target are inhibited. Because com-
petitor items are activated during retrieval many of their
features are subject to inhibition, leading to RIF effects. The
PSM also predicts that the featural overlap (similarity) of
targets and competitors should affect the magnitude of RIF
(see Figure 1).

In Figure 1a, the competitor Banana has many features
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Figure 1. The Pattern Suppression Model predicts that
moderate target-competitor similarity (1a) will yield more
RIF than high similarity (1b). [Figure reprinted with permis-
sion from Anderson, M.C., Green, C. & McCulloch, K.C.
(2000). Similarity and inhibition in long-term memory: A
two-factor theory. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 26(5), 1141-1159].

which are not components of the retrieved target Orange.
These features are inhibited during retrieval of Orange and
later recall of Banana suffers. In Figure 1b, the competitor
Tangerine overlaps Orange on many features, and these are
strengthened rather than inhibited. As a result, subsequent
RIF is diminished for Tangerine (see Anderson, Green, &
McCulloch, 2000).

Anderson and McCulloch (1999) and Anderson, Green,
and McCulloch (2000) tested and confirmed the predictions
of PSM regarding similarity and RIF. Using the same RIF
paradigm as Anderson, Bjork, and Bjork (1994), they
showed that emphasizing common features of targets and
competitors at study reduced RIF, while emphasizing
unique features at study increased RIF. The work by Ander-
son and colleagues suggests that inhibition acts upon sub-
symbolic features and the total inhibition of a representation
is a function of the sum of inhibition across all its features.

The central motivation for the work presented here was
the formal assessment of feature-based inhibition as a basis
for RIF, and thus the viability of Anderson and Spellman’s
theoretical ideas about feature-based inhibition in RIF.
Anderson, Green, and McCulloch (2000) offer an account of
how such a mechanism would work based on Anderson and
Spellman’s (1995) PSM. Taking the PSM as a theoretical
starting point, we implemented a feature-based inhibitory
mechanism in the MNEM model (Green & Kittur, 2004).

The MNEM Model

The Memory Need Expectation Model (MNEM; Green &
Kittur, 2004) was conceived as an implementation of Bjork
and Bjork’s (1992) New Theory of Disuse (NTD). NTD

postulates that memory items are associated with two
strengths: a storage strength, corresponding to the total level
of learning of the item, and a retrieval strength, correspond-
ing to the accessibility of the item. Storage strength only
increases, decelerating as it grows. Gains in storage strength
are also a function of retrieval strength such that highly ac-
cessible items benefit less from practice than items with low
accessibility. Retrieval strength fluctuates up and down as a
function of both current retrieval strength (highly accessible
lose accessibility quickly) and storage strength (well-learned
items lose accessibility slowly).

MNEM borrows some basic operations and representa-
tional conventions (including approaches to trace compari-
son and composition) from Hintzman’s (1984, 1986, 1988)
MINERVA2 model. However, MNEM and MINERVA?2 are
distinct in important ways, including the method by which
they predict the accessibility of memory items. More detail
regarding the MNEM model and its relation to MINERVA2
is presented in Green and Kittur (2004).

General Architecture

MNEM has two modules: a working memory (WM) and a
long-term memory (LTM). WM consists of a single-item
buffer.' It holds an item that is to be encoded into LTM, and
also receives the information retrieved from LTM.

LTM is a collection of stored memory traces. The capac-
ity of LTM is assumed to be unlimited (at least, very large).

Memory Representations

Memory Traces as Vectors Each memory trace in MNEM
is an ordered vector of size n, with each element taking on a
value of -1, 0, or +1. These values can be considered to in-
dicate the absence of a feature, no information about a fea-
ture, or the presence of a feature, respectively. This format
is consistent with Anderson and Spellman’s (1995) descrip-
tion of simple feature list representations in the PSM.

Trace Similarity The similarity of any two memory traces
(A4 and B) can be calculated as follows:

S(4.B) = (. )Y ABO) - (1

R

where n is the number of elements in the trace and Ny indi-
cates the number of “relevant features” in the pair of traces.
Relevant features are defined as features for which at least
one of the two traces contains a non-zero value. If neither
trace contains any information about a feature, then that
feature is not counted as relevant.

Trace Composition Two or more traces can be combined
using a simple weighted average. Each feature in the com-
posite trace is the weighted average of the corresponding
features in the traces being combined. That is, to combine m

' MNEM makes no claims about the structure or function of hu-
man working memory: MNEM’s WM is used solely as a buffer for
input to and output from LTM.
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traces (7 through T,,), feature j of the composite trace E, is
calculated as:

N .
E()) =;ZWIT,»(/), @)
i=1

where w; is a weighting factor for trace 7;. Trace composi-
tion is used to keep track of traces that have recently been
targets or competitors (discussed in detail later).

Assumptions About Representation MNEM’s representa-
tional assumptions are minimal. In fact, we do not make
strong claims about representation here. MNEM requires
only that its representations be amenable to some systematic
similarity metric (e.g., Eq. 1), and they be systematically
combinable (e.g., Eq. 2). MNEM can be implemented with
any representational scheme that meets these requirements.

Encoding

To encode an item, the content of the encoded trace is cop-
ied into a newly-created LTM trace. The learning rate pa-
rameter / (where 0 </ < 1) indicates the independent prob-
ability that any one feature will be copied accurately into
LTM during encoding. Features that are not encoded accu-
rately are encoded with zero value (i.e., MNEM /oses in-
formation, but does not distort information).

Each instance upon which an item is studied yields a new
and independently-encoded LTM trace (MNEM is a “multi-
ple-trace” memory model). The encoding of a new trace is
not affected by its similarity to items already in LTM.
MNEM assigns each LTM trace a unique index which
serves as a timestamp for encoding. This index is used (for
now) in place of a more elaborate spatio-temporal tag for
each trace. In related work, the authors are exploring how
the addition of context elements to the memory trace itself
may accomplish the work of tags or indices.

Retrieval

Retrieval comprises the activation of LTM traces, the mark-
ing of LTM traces as targets, competitors, or irrelevant
traces, the calculation of retrieval strength, and (possibly)
the construction of a composite trace from activated targets.
Retrieval also includes the updating of the inhibitory mecha-
nism in MNEM (described later).

LTM Trace Activation and Marking The activation of
LTM traces involves the calculation of similarity scores for
all LTM traces. The total similarity score for an LTM trace
is a linear combination of its simple similarities (Eq. 1) to
three other traces: the retrieval probe P; the recent targets
trace (I7); and the recent competitors trace (Ic).> When a
retrieval probe P is introduced to the system, each item 7 in
LTM is given a total similarity score S,,(7), defined as:

S (T, P)=S(T,P)+aS(T,1;)-pS(T,1.), (3)

2 Irand I are described in detail in the section “Tracking Inhibi-
tion”. See Egs. 9a, 9b, 10a, and 10b.

where a and £ are parameters that weight the relative contri-
butions of recent targets and recent competitors. That is,
traces are activate more when similar to a current probe or
recent targets, and less when similar to recent competitors.

LTM traces are designated as targets if their total similar-
ity score exceeds the criterion parameter s, Traces with
scores falling between s, and the criterion parameter s, are
designated competitors. Traces with scores below s. are
considered irrelevant to the current retrieval. The activation
of LTM results in each LTM trace being assigned to exactly
one of these sets based on its total similarity score.

Calculating Retrieval Strength (RS) According to NTD,
the probability of retrieving an item (its retrieval strength) is
a function of how well-learned it is (its storage strength),
and the time elapsed since it was last study or retrieved.

MNEM uses the average spacing and the cumulative simi-
larity score of traces designated as targets in LTM to calcu-
late an item’s storage strength (SS). For a memory probe P,
MNEM calculates the average retention interval RI/(P) be-
tween targets in LTM:

Ny,
RI(P) = (1 > [index(M ) —index(M,)]- (4
m) i=2
M; is the i LTM trace marked as a target and N,, is the total
number of LTM traces marked as targets.’ (The index() op-
erator simply indicates that the model is using the LTM in-
dex for a trace and not the trace itself).

MNEM also calculates the sum of all targets’ total simi-
larity scores as an indicator of the overall similarity of the
probe item to items in LTM.* That is, the base rate BR(P)
for an item P is calculated as:

BR(P):ZSmmI(Mi’P)’ ®)
i=1
where Sy, (M;, P) is the total similarity score of the ith
marked item in LTM (Eq. 3).

The product of RI(P) and BR(P) corresponds to SS (which
increases with the frequency or spacing of study events).
Retrieval strength is defined as a ratio of storage strength to
the interval elapsed since the last study event occurred. The

interval elapsed since the last study event, or current interval
CI(P), is defined:

CI(P) = index(P) —index(M . ), (6)

where index(M,,,) indicates the index of the most recently
encoded target trace. Also, index(P), the index for the probe
item, is simply set to the current time step (which is equal to
the number of traces in LTM plus one: N, + I).

So, for a probe P, retrieval strength RS(P) is defined:

3 When only a single trace in LTM is marked, the average retention
interval is defaulted to a value of one.

* In this respect, MNEM’s new base rate calculation is similar to
MINERVAZ2’s intensity calculation (Hintzman, 1984).
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RI(P)-BR(P)
CI(P)
To accurately compare retrieval strengths across items,

the raw retrieval strength RS(P) from Eq. 7a is converted to
normalized retrieval strength RSy(P):

log(RS(P)+1)
log(RS._(P)+1)

where RS, (P) is the maximum retrieval strength that P
could attain (retrieval strength at immediate recall).

RS(P) = (7a)

RS, (P)= (7b)

max

Retrieved Information Retrieval strength is a measure of

the probability of retrieving LTM information given a probe.

However, memory also involves the reconstruction of the
remembered content. MNEM reconstructs content by creat-
ing a composite of the target traces in LTM. Eq. 2 describes
a general weighted-average method for combining traces,
and MNEM implements this method using the target traces’
total similarity scores as weights:

N R .
i=1

We do not address reconstructed memory content in the
simulations reported here.

Tracking Inhibition

To implement a PSM-like inhibitory mechanism in MNEM,
we modified the similarity calculation used to mark LTM
traces (resulting in Eq. 3). This requires tracking the content
of recent targets and competitors. Each retrieval event is
associated with a set of targets and a set of competitors. The
traces in each of these sets are combined into single vectors.
Targets from the most recent retrieval are represented by a
trace Ry, where each feature of R is a weighted average of
the corresponding features in each of the m LTM traces
marked as targets (a version of Eq. 2):

Ry ()=S0 (T P)-T.()). (9a)
i=1

Competitors from the most recent retrieval are represented
by a trace Rc, where each feature of R is a weighted aver-
age of the corresponding features in each of the £ LTM
traces marked as competitors:

k
RC(j):ZStotal(Ci’P)'Ci(j)v (%9b)
i=1
R7 and R( describe the features of targets and competitors
from the most recent retrieval event. The “running count” of
such features from several recent retrieval events is tracked
in traces /7 and /.. Each time a new retrieval event occurs,
the entries of /r and I are updated with the contributions of
Rrand R¢:

pl())+R:())
p+1 ’

I.(j)= (10a)

where p is a parameter controlling how quickly the vector

representing recent targets changes. And likewise:
alc())+R:())

Ic(j): 6]+1 >

(10b)

where ¢ is a parameter controlling how quickly the vector
representing recent competitors changes.’

In summary, each retrieval event is associated with a set
of competitor traces, and these are combined into a trace R¢
via weighted averaging. The model tracks a trace /¢, which
is a simple composite (straight average) of the traces Rc
over the most recent g+1 retrievals. In subsequent retrieval
events, /¢ is used to mark LTM, and then modified by the
that marking. The same procedure holds for recent targets
(tracked with traces Ry and I7).

An aspect of our implementation that bears additional
mention is the special status of the inhibitory mechanism: it
is not emergent from the basic dynamics of the model, but
instead involves special structures and processes on top of
the MNEM architecture. At first glance, this may seem in-
elegant. However, there is behavioral evidence that the in-
hibitory mechanism underlying RIF can be willfully in-
voked, and may therefore be related to special executive
processes not solely related to memory (Anderson & Green,
2001).

Simulation of RIF with Similarity Effects

Simulations based on the Anderson, Green, and McCulloch
(2000) experiments were run. Each simulation involved four
items (two members of each of two categories). One item
was a target (practiced item from a practiced category), one
a competitor (unpracticed item from a practiced category),
and two were unpracticed items (from an unpracticed cate-
gory). During the study phase, each item was studied three
times with equal spacing between study events. In the re-
trieval practice phase, the target item was tested and re-
studied three times (we assumed successful retrieval prac-
tice and the equivalent of another study exposure resulting
from that practice). RSy for all four items was tracked from
the beginning of study until well after the end of retrieval
practice (including time when testing would occur).

The items were 30-element traces. Elements one through
ten corresponded to a category label and elements 11
through 30 corresponded to exemplar descriptions. Items
from different categories were orthogonal. Items within a
category were not orthogonal: they had identical category
label features but differed (to varying degrees) in the fea-
tures of the specific exemplars. During the retrieval practice
and to assess retrieval strength®, we used test probes with

> Iy and I¢ equate to averages of the Ry and R¢ vectors calculated
over the most recent p+1 and g+1 retrievals, respectively.

® We have included in MNEM a function that evaluates RSy
for a test item without affecting the state of the model.
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Category A, Exemplar a1

Category A, Exemplar a2

Category A, Exemplar a1 (test probe)

Category B, Exemplar b1

Category B, Exemplar b2

Category B, Exemplar b1 (test probe)

Category Features Exemplar Features

11111000001 111111111000000000°0
1111100000-11111-11-1-1-1000 0000000
11111000001 100011000000000000°0
0000011111:000000000011 11111111
0000011111:00000000001-1-1-111-11-11
0000011111:00000000001100001100

Figure 2. Examples of items used in simulations. The first ten elements of each trace describe features of the item’s category,
and the remaining twenty elements describe features of the exemplar itself. [tems from different categories are orthogonal. At
test, most of the exemplar features were removed to mimic a category-and-stem-cued recall method.
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Figure 3. RS for target, competitor, and unpracticed items at four levels of target-competitor similarity. The magnitude of
RIF was affected by the similarity of target items to competitor items. High similarity (upper-left panel) protected competitor
items from RIF relative to moderate similarity. RIF increased as similarity decreased (upper-right and lower-left panels), until

competitors became very dissimilar at which point RIF began to decrease again (lower-right panel).

intact category features, but without most of their exemplar
features (see Figure 2).

The PSM predicts that the similarity of target and com-
petitor items will influence the magnitude of RIF. Competi-
tors that are very similar to target items will be protected
from RIF. As target-competitor similarity decreases RIF
should also decrease (but remain present as long as similar-
ity is greater than zero). Simulations were run in which tar-
get-competitor similarity was 0.4667, 0.3333, 0.2000, and

0.0667. Other parameter settings were: /= 1.0, s, = 0.50, s. =
0.01,a=0.5,=0.75,p=3,q=3.

The data are shown in Figure 3 and qualitatively match
the results of Anderson, Green, and McCulloch (2000).” The

" MNEM predicts lower recall rates than observed in humans. This
may be because humans have pre-experimental associations be-
tween categories and exemplars (non-zero guessing rates) and
because human mental representations are richer than those used
here.
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magnitudes of simulated RIF effects changed with target-
competitor similarity. In the 0.2000 similarity simulation,
competitor RSy is approximately 0.125 below the unprac-
ticed items’ RSy at time step 100 (20 time steps after re-
trieval practice has ended). This difference corresponds to
RIF. As similarity is increased, RIF is reduced (virtually no
RIF when similarity is set at 0.4667). Decreasing similarity
also diminishes RIF. Figure 4 illustrates how the magnitude
of RIF changes with the similarity of target and competitor
traces. In addition, RIF effects diminished over time in our
simulations. The three different curves show the magnitude
of RIF effects at 100, 150, and 200 time steps.

Another notable feature of our data is the decrease in peak
target RSy as retrieval practice proceeds through several
repetitions. The decrease is counterintuitive in that the target
is becoming less accessible with more retrieval practice. It is
important to keep in mind that the data do not account for
any contribution of WM to retrieval. Thus, one possibility is
that reductions in the accessibility of a target LTM trace do
occur as retrieval practice proceeds, but that these decreases
are offset by substantial contributions of WM. The (longer-
term) accessibility of target traces does increase with re-
peated retrieval practice (hence the difference between tar-
get and unpracticed items).

0.15-

0.1-
100 ts

0.05- 1501s
200 ts

Magnitude of RIF

0.2000 0.3333 0.4667

Target-Competitor Similarity

0.0667

Figure 4. The magnitude of RIF changed with target-
competitor similarity. High target-competitor similarity pro-
tected competitors from RIF. The magnitude of RIF dimin-
ished as the delay from retrieval practice increased, but RIF

peaked at moderate similarity regardless of delay.

Conclusions

Our simulation results match those from behavioral experi-
ments, and demonstrate a computational instantiation of the
PSM’s feature inhibition explanation of RIF. Admittedly,
the simulations reported here do not thoroughly explore
MNEM’s parameter space and different settings may yield
results that less accurately resemble the human data. Simu-
lations with a wider range of parameters must be evaluated
both to understand how sensitive these results are and to
explore the predictions MNEM makes about the influence
that noise, distortion, and the relative strengths of excitation
and inhibition exert on RIF. One line of ongoing work with
MNEM focuses on developing a better understanding of the
way that parameter settings influence RIF and other mem-
ory dynamics in the model.

We are also working on a more sophisticated approach to
inhibition in which traces are less subject to rigid criteria in
the search for target, competitor, and irrelevant LTM items.

Another line of research is making use of the model’s ability
to reconstruct memory items from degraded probes. In par-
ticular, we are exploring the way that the inhibitory mecha-
nism described here influences the content of retrieved (re-
constructed) traces.
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