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Abstract 
Behavioral studies (e.g., Anderson, Bjork, & Bjork, 1994) 
suggest that competition between relevant and irrelevant 
memory information is resolved in part through the inhibition 
of competing irrelevant information, an effect dubbed Re-
trieval-Induced Forgetting (RIF). Green and Kittur (2004) 
outlined MNEM, a model of human memory that exhibits 
many retrieval dynamics observed in empirical studies (e.g., 
spacing and practice effects, forgetting over time, spontane-
ous recovery, serial position effects), but did not account for 
RIF. In this paper, we describe a modified version of MNEM 
that incorporates an inhibitory mechanism and simulates some 
basic RIF effects. Prior work that implicates a feature-specific 
inhibitory mechanism provides a context for the model and 
simulations. 
 
Keywords: memory, modeling, similarity, retrieval, inhibi-
tion, forgetting 

Introduction 
This article describes a computational memory model that 
incorporates an inhibitory mechanism. We begin by describ-
ing retrieval-induced forgetting (RIF) and discussing one 
proposed form of an inhibitory mechanism (feature-based 
inhibition) that is suggested by behavioral data. We then 
describe our model, simulation results consistent with em-
pirical findings, and our ongoing work on this project. 

Retrieval-Induced Forgetting 
Many details of an average day are only subtly different 
than details of the day before. For instance, you may park 
your car in the same lot every day. The location of your car 
within that lot probably varies from day to day. With many 
memories linked to your car’s location in the lot, how are 
you able to recall the current spot? To retrieve today’s park-
ing spot, your memory system must discriminate that target 
memory from many related, competing memories. Research 
has suggested that such discrimination is facilitated by the 
inhibition of competing memories, and that such inhibition 
has lasting effects. 

Anderson, Bjork, and Bjork (1994) demonstrated that 
retrieving a memory results in reduced subsequent recall for 
related memories. Their participants were required to study 
a set of category-exemplar pairs (e.g., Fruit-Apple, Fruit-
Orange, Tool-Hammer, Tool-Wrench). The study phase 
provided equal encoding for all items. During a retrieval 
practice phase, half of the exemplars in half of the catego-
ries were practiced in a category-and-stem-cued recall task 
(e.g., Fruit-Or____ cued Orange). Thus, there were prac-

ticed items in practiced categories (target items), unprac-
ticed items in practiced categories (competitor items), and 
unpracticed items in unpracticed categories (unpracticed 
items). After a delay, there was a category-cued recall test 
for all items. 

Results indicated that target items were recalled better 
than unpracticed items. Competitor items were recalled less 
often than unpracticed items. The latter result is surprising 
given that competitors were categorically related to targets; 
a spreading activation model would have predicted better 
recall for competitors than for unpracticed items. Anderson, 
Bjork, and Bjork (1994) explained this result in terms of an 
inhibitory mechanism. They postulated that during retrieval 
practice, competitors became active and competed with tar-
gets for retrieval. To facilitate retrieval of targets, competi-
tors were inhibited, and inhibition had a lasting negative 
impact on the availability of competitors. This effect is 
called Retrieval-Induced Forgetting (RIF). 

Similarity and the Pattern Suppression Model  
Anderson and Spellman (1995) posited that RIF effects 
might rely on inhibition of one of two types: the associative 
link between a category cue and an exemplar might be 
weakened or the exemplar representation itself could be 
weakened. To choose between these hypotheses they used 
new, unstudied cues (called independent probes) during the 
test phase of RIF experiments to probe memory for studied 
items. For example, when Fruit-Apple was a competitor 
item, later recall of Apple could be tested with an independ-
ent probe (Red-Ap_____). RIF effects were observed even 
when independent probes were used to test memory for 
studied items, ruling out inhibition of the associative link as 
an explanation. 

Anderson and Spellman (1995) concluded that inhibition 
acted directly on the representations of competitor items. 
They suggested that the inhibitory mechanism underlying 
RIF might act on individual features (sub-symbolic ele-
ments) of memory representations and proposed the pattern 
suppression model (PSM) in which the featural representa-
tion of a memory item is suppressed. The PSM postulates 
that features that are activated during retrieval but that are 
not components of the target are inhibited. Because com-
petitor items are activated during retrieval many of their 
features are subject to inhibition, leading to RIF effects. The 
PSM also predicts that the featural overlap (similarity) of 
targets and competitors should affect the magnitude of RIF 
(see Figure 1). 

In Figure 1a, the competitor Banana has many features 
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Figure 1. The Pattern Suppression Model predicts that 

moderate target-competitor similarity (1a) will yield more 
RIF than high similarity (1b). [Figure reprinted with permis-

sion from Anderson, M.C., Green, C. & McCulloch, K.C. 
(2000). Similarity and inhibition in long-term memory: A 
two-factor theory. Journal of Experimental Psychology: 

Learning, Memory, & Cognition, 26(5), 1141-1159]. 
 

which are not components of the retrieved target Orange. 
These features are inhibited during retrieval of Orange and 
later recall of Banana suffers. In Figure 1b, the competitor 
Tangerine overlaps Orange on many features, and these are 
strengthened rather than inhibited. As a result, subsequent 
RIF is diminished for Tangerine (see Anderson, Green, & 
McCulloch, 2000). 

Anderson and McCulloch (1999) and Anderson, Green, 
and McCulloch (2000) tested and confirmed the predictions 
of PSM regarding similarity and RIF. Using the same RIF 
paradigm as Anderson, Bjork, and Bjork (1994), they 
showed that emphasizing common features of targets and 
competitors at study reduced RIF, while emphasizing 
unique features at study increased RIF. The work by Ander-
son and colleagues suggests that inhibition acts upon sub-
symbolic features and the total inhibition of a representation 
is a function of the sum of inhibition across all its features. 

The central motivation for the work presented here was 
the formal assessment of feature-based inhibition as a basis 
for RIF, and thus the viability of Anderson and Spellman’s 
theoretical ideas about feature-based inhibition in RIF. 
Anderson, Green, and McCulloch (2000) offer an account of 
how such a mechanism would work based on Anderson and 
Spellman’s (1995) PSM. Taking the PSM as a theoretical 
starting point, we implemented a feature-based inhibitory 
mechanism in the MNEM model (Green & Kittur, 2004). 

The MNEM Model 
The Memory Need Expectation Model (MNEM; Green & 
Kittur, 2004) was conceived as an implementation of Bjork 
and Bjork’s (1992) New Theory of Disuse (NTD). NTD 

postulates that memory items are associated with two 
strengths: a storage strength, corresponding to the total level 
of learning of the item, and a retrieval strength, correspond-
ing to the accessibility of the item. Storage strength only 
increases, decelerating as it grows. Gains in storage strength 
are also a function of retrieval strength such that highly ac-
cessible items benefit less from practice than items with low 
accessibility. Retrieval strength fluctuates up and down as a 
function of both current retrieval strength (highly accessible 
lose accessibility quickly) and storage strength (well-learned 
items lose accessibility slowly). 

MNEM borrows some basic operations and representa-
tional conventions (including approaches to trace compari-
son and composition) from Hintzman’s (1984, 1986, 1988) 
MINERVA2 model. However, MNEM and MINERVA2 are 
distinct in important ways, including the method by which 
they predict the accessibility of memory items. More detail 
regarding the MNEM model and its relation to MINERVA2 
is presented in Green and Kittur (2004). 

General Architecture 
MNEM has two modules: a working memory (WM) and a 
long-term memory (LTM). WM consists of a single-item 
buffer.1 It holds an item that is to be encoded into LTM, and 
also receives the information retrieved from LTM.  

LTM is a collection of stored memory traces. The capac-
ity of LTM is assumed to be unlimited (at least, very large). 

Memory Representations 
Memory Traces as Vectors Each memory trace in MNEM 
is an ordered vector of size n, with each element taking on a 
value of -1, 0, or +1. These values can be considered to in-
dicate the absence of a feature, no information about a fea-
ture, or the presence of a feature, respectively. This format 
is consistent with Anderson and Spellman’s (1995) descrip-
tion of simple feature list representations in the PSM. 
 
Trace Similarity The similarity of any two memory traces 
(A and B) can be calculated as follows: 

∑
=

=
n

jR

jBjA
N

BAS
1

)()()1(),( ,     (1) 

where n is the number of elements in the trace and NR indi-
cates the number of “relevant features” in the pair of traces. 
Relevant features are defined as features for which at least 
one of the two traces contains a non-zero value. If neither 
trace contains any information about a feature, then that 
feature is not counted as relevant. 
 
Trace Composition Two or more traces can be combined 
using a simple weighted average. Each feature in the com-
posite trace is the weighted average of the corresponding 
features in the traces being combined. That is, to combine m 

                                                 
1 MNEM makes no claims about the structure or function of hu-
man working memory: MNEM’s WM is used solely as a buffer for 
input to and output from LTM. 
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traces (T1 through Tm), feature j of the composite trace E, is 
calculated as: 

∑
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where wi is a weighting factor for trace Ti. Trace composi-
tion is used to keep track of traces that have recently been 
targets or competitors (discussed in detail later). 
 
Assumptions About Representation MNEM’s representa-
tional assumptions are minimal. In fact, we do not make 
strong claims about representation here. MNEM requires 
only that its representations be amenable to some systematic 
similarity metric (e.g., Eq. 1), and they be systematically 
combinable (e.g., Eq. 2). MNEM can be implemented with 
any representational scheme that meets these requirements.  

Encoding 
To encode an item, the content of the encoded trace is cop-
ied into a newly-created LTM trace. The learning rate pa-
rameter l (where 0 < l ≤ 1) indicates the independent prob-
ability that any one feature will be copied accurately into 
LTM during encoding. Features that are not encoded accu-
rately are encoded with zero value (i.e., MNEM loses in-
formation, but does not distort information). 

Each instance upon which an item is studied yields a new 
and independently-encoded LTM trace (MNEM is a “multi-
ple-trace” memory model). The encoding of a new trace is 
not affected by its similarity to items already in LTM. 
MNEM assigns each LTM trace a unique index which 
serves as a timestamp for encoding. This index is used (for 
now) in place of a more elaborate spatio-temporal tag for 
each trace. In related work, the authors are exploring how 
the addition of context elements to the memory trace itself 
may accomplish the work of tags or indices. 

Retrieval 
Retrieval comprises the activation of LTM traces, the mark-
ing of LTM traces as targets, competitors, or irrelevant 
traces, the calculation of retrieval strength, and (possibly) 
the construction of a composite trace from activated targets. 
Retrieval also includes the updating of the inhibitory mecha-
nism in MNEM (described later). 
 
LTM Trace Activation and Marking The activation of 
LTM traces involves the calculation of similarity scores for 
all LTM traces. The total similarity score for an LTM trace 
is a linear combination of its simple similarities (Eq. 1) to 
three other traces: the retrieval probe P; the recent targets 
trace (IT); and the recent competitors trace (IC).2 When a 
retrieval probe P is introduced to the system, each item T in 
LTM is given a total similarity score Stotal(T), defined as: 

),(),(),(),( CTtotal ITSITSPTSPTS βα −+= ,  (3) 

                                                 
2 IT and IC are described in detail in the section “Tracking Inhibi-
tion”. See Eqs. 9a, 9b, 10a, and 10b. 

where α and β are parameters that weight the relative contri-
butions of recent targets and recent competitors. That is, 
traces are activate more when similar to a current probe or 
recent targets, and less when similar to recent competitors. 

LTM traces are designated as targets if their total similar-
ity score exceeds the criterion parameter st. Traces with 
scores falling between st and the criterion parameter sc are 
designated competitors. Traces with scores below sc are 
considered irrelevant to the current retrieval. The activation 
of LTM results in each LTM trace being assigned to exactly 
one of these sets based on its total similarity score. 
 
Calculating Retrieval Strength (RS) According to NTD, 
the probability of retrieving an item (its retrieval strength) is 
a function of how well-learned it is (its storage strength), 
and the time elapsed since it was last study or retrieved. 

MNEM uses the average spacing and the cumulative simi-
larity score of traces designated as targets in LTM to calcu-
late an item’s storage strength (SS). For a memory probe P, 
MNEM calculates the average retention interval RI(P) be-
tween targets in LTM: 

∑
=

−−=
mN

i
ii

m

MindexMindex
N

PRI
2

1 )]()([
)(

1)( .  (4) 

Mi is the ith LTM trace marked as a target and Nm is the total 
number of LTM traces marked as targets.3 (The index() op-
erator simply indicates that the model is using the LTM in-
dex for a trace and not the trace itself). 

MNEM also calculates the sum of all targets’ total simi-
larity scores as an indicator of the overall similarity of the 
probe item to items in LTM.4 That is, the base rate BR(P) 
for an item P is calculated as: 

∑
=

=
m

i
itotal PMSPBR

1
),()( ,     (5) 

where Stotal(Mi, P) is the total similarity score of the ith 
marked item in LTM (Eq. 3). 

The product of RI(P) and BR(P) corresponds to SS (which 
increases with the frequency or spacing of study events). 
Retrieval strength is defined as a ratio of storage strength to 
the interval elapsed since the last study event occurred. The 
interval elapsed since the last study event, or current interval 
CI(P), is defined: 

)()()( maxMindexPindexPCI −= ,    (6) 

where index(Mmax) indicates the index of the most recently 
encoded target trace. Also, index(P), the index for the probe 
item, is simply set to the current time step (which is equal to 
the number of traces in LTM plus one: Nltm + 1). 

So, for a probe P, retrieval strength RS(P) is defined: 

                                                 
3 When only a single trace in LTM is marked, the average retention 
interval is defaulted to a value of one. 
4 In this respect, MNEM’s new base rate calculation is similar to 
MINERVA2’s intensity calculation (Hintzman, 1984). 
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To accurately compare retrieval strengths across items, 
the raw retrieval strength RS(P) from Eq. 7a is converted to 
normalized retrieval strength RSN(P): 

)1)(log(
)1)(log()(

max +
+

=
PRS

PRSPRSN
,     (7b) 

where RSmax(P) is the maximum retrieval strength that P 
could attain (retrieval strength at immediate recall). 
 
Retrieved Information Retrieval strength is a measure of 
the probability of retrieving LTM information given a probe. 
However, memory also involves the reconstruction of the 
remembered content. MNEM reconstructs content by creat-
ing a composite of the target traces in LTM. Eq. 2 describes 
a general weighted-average method for combining traces, 
and MNEM implements this method using the target traces’ 
total similarity scores as weights: 

∑
=

=
m

i
iitotal jTPTS

m
jE

1
)(*),(1)( .    (8) 

We do not address reconstructed memory content in the 
simulations reported here. 

Tracking Inhibition 
To implement a PSM-like inhibitory mechanism in MNEM, 
we modified the similarity calculation used to mark LTM 
traces (resulting in Eq. 3). This requires tracking the content 
of recent targets and competitors. Each retrieval event is 
associated with a set of targets and a set of competitors. The 
traces in each of these sets are combined into single vectors. 
Targets from the most recent retrieval are represented by a 
trace RT, where each feature of RT is a weighted average of 
the corresponding features in each of the m LTM traces 
marked as targets (a version of Eq. 2): 

∑
=

⋅=
m

i
iitotalT jTPTSjR

1

)(),()( ,     (9a) 

Competitors from the most recent retrieval are represented 
by a trace RC, where each feature of RC is a weighted aver-
age of the corresponding features in each of the k LTM 
traces marked as competitors: 

∑
=

⋅=
k

i
iitotalC jCPCSjR

1
)(),()( ,    (9b) 

RT and RC describe the features of targets and competitors 
from the most recent retrieval event. The “running count” of 
such features from several recent retrieval events is tracked 
in traces IT and IC. Each time a new retrieval event occurs, 
the entries of IT and IC are updated with the contributions of 
RT and RC: 

1
)()()(

+
+

=
p

jRjpIjI TT
T ,      (10a) 

where p is a parameter controlling how quickly the vector 
representing recent targets changes. And likewise: 

1
)()()(

+
+

=
q

jRjqIjI CC
C ,      (10b) 

where q is a parameter controlling how quickly the vector 
representing recent competitors changes.5 
 In summary, each retrieval event is associated with a set 
of competitor traces, and these are combined into a trace RC 
via weighted averaging. The model tracks a trace IC, which 
is a simple composite (straight average) of the traces RC 
over the most recent q+1 retrievals. In subsequent retrieval 
events, IC is used to mark LTM, and then modified by the 
that marking. The same procedure holds for recent targets 
(tracked with traces RT and IT). 
 An aspect of our implementation that bears additional 
mention is the special status of the inhibitory mechanism: it 
is not emergent from the basic dynamics of the model, but 
instead involves special structures and processes on top of 
the MNEM architecture. At first glance, this may seem in-
elegant. However, there is behavioral evidence that the in-
hibitory mechanism underlying RIF can be willfully in-
voked, and may therefore be related to special executive 
processes not solely related to memory (Anderson & Green, 
2001). 

Simulation of RIF with Similarity Effects 
Simulations based on the Anderson, Green, and McCulloch 
(2000) experiments were run. Each simulation involved four 
items (two members of each of two categories). One item 
was a target (practiced item from a practiced category), one 
a competitor (unpracticed item from a practiced category), 
and two were unpracticed items (from an unpracticed cate-
gory). During the study phase, each item was studied three 
times with equal spacing between study events. In the re-
trieval practice phase, the target item was tested and re-
studied three times (we assumed successful retrieval prac-
tice and the equivalent of another study exposure resulting 
from that practice). RSN for all four items was tracked from 
the beginning of study until well after the end of retrieval 
practice (including time when testing would occur). 

The items were 30-element traces. Elements one through 
ten corresponded to a category label and elements 11 
through 30 corresponded to exemplar descriptions. Items 
from different categories were orthogonal. Items within a 
category were not orthogonal: they had identical category 
label features but differed (to varying degrees) in the fea-
tures of the specific exemplars. During the retrieval practice 
and to assess retrieval strength6, we used test probes with  
                                                 
5 IT and IC equate to averages of the RT and RC vectors calculated 
over the most recent p+1 and q+1 retrievals, respectively. 
6 We have included in MNEM a function that evaluates RSN 
for a test item without affecting the state of the model. 
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Category A, Exemplar a1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Category A, Exemplar a2 1 1 1 1 1 0 0 0 0 0 -1 1 1 1 1 -1 1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

Category A, Exemplar a1 (test probe) 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Category B, Exemplar b1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Category B, Exemplar b2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 -1 -1 -1 1 1 -1 1 -1 1

Category B, Exemplar b1 (test probe) 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0

Category Features Exemplar Features

 
 

Figure 2. Examples of items used in simulations. The first ten elements of each trace describe features of the item’s category, 
and the remaining twenty elements describe features of the exemplar itself. Items from different categories are orthogonal. At 

test, most of the exemplar features were removed to mimic a category-and-stem-cued recall method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. RSN for target, competitor, and unpracticed items at four levels of target-competitor similarity. The magnitude of 
RIF was affected by the similarity of target items to competitor items. High similarity (upper-left panel) protected competitor 
items from RIF relative to moderate similarity. RIF increased as similarity decreased (upper-right and lower-left panels), until 

competitors became very dissimilar at which point RIF began to decrease again (lower-right panel). 
 
 
intact category features, but without most of their exemplar 
features (see Figure 2). 
 The PSM predicts that the similarity of target and com-
petitor items will influence the magnitude of RIF. Competi-
tors that are very similar to target items will be protected 
from RIF. As target-competitor similarity decreases RIF 
should also decrease (but remain present as long as similar-
ity is greater than zero). Simulations were run in which tar-
get-competitor similarity was 0.4667, 0.3333, 0.2000, and 

0.0667. Other parameter settings were: l = 1.0, st = 0.50, sc = 
0.01, α = 0.5, β = 0.75, p = 3, q = 3. 
 The data are shown in Figure 3 and qualitatively match 
the results of Anderson, Green, and McCulloch (2000).7 The 
                                                 
7 MNEM predicts lower recall rates than observed in humans. This 
may be because humans have pre-experimental associations be-
tween categories and exemplars (non-zero guessing rates) and 
because human mental representations are richer than those used 
here. 
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magnitudes of simulated RIF effects changed with target-
competitor similarity. In the 0.2000 similarity simulation, 
competitor RSN is approximately 0.125 below the unprac-
ticed items’ RSN at time step 100 (20 time steps after re-
trieval practice has ended). This difference corresponds to 
RIF. As similarity is increased, RIF is reduced (virtually no 
RIF when similarity is set at 0.4667). Decreasing similarity 
also diminishes RIF. Figure 4 illustrates how the magnitude 
of RIF changes with the similarity of target and competitor 
traces. In addition, RIF effects diminished over time in our 
simulations. The three different curves show the magnitude 
of RIF effects at 100, 150, and 200 time steps. 
 Another notable feature of our data is the decrease in peak 
target RSN as retrieval practice proceeds through several 
repetitions. The decrease is counterintuitive in that the target 
is becoming less accessible with more retrieval practice. It is 
important to keep in mind that the data do not account for 
any contribution of WM to retrieval. Thus, one possibility is 
that reductions in the accessibility of a target LTM trace do 
occur as retrieval practice proceeds, but that these decreases 
are offset by substantial contributions of WM.  The (longer-
term) accessibility of target traces does increase with re-
peated retrieval practice (hence the difference between tar-
get and unpracticed items). 
 
 
 
 
 
 
 
 
 

Figure 4. The magnitude of RIF changed with target-
competitor similarity. High target-competitor similarity pro-
tected competitors from RIF. The magnitude of RIF dimin-
ished as the delay from retrieval practice increased, but RIF 

peaked at moderate similarity regardless of delay. 

Conclusions 
Our simulation results match those from behavioral experi-
ments, and demonstrate a computational instantiation of the 
PSM’s feature inhibition explanation of RIF. Admittedly, 
the simulations reported here do not thoroughly explore 
MNEM’s parameter space and different settings may yield 
results that less accurately resemble the human data. Simu-
lations with a wider range of parameters must be evaluated 
both to understand how sensitive these results are and to 
explore the predictions MNEM makes about the influence 
that noise, distortion, and the relative strengths of excitation 
and inhibition exert on RIF. One line of ongoing work with 
MNEM focuses on developing a better understanding of the 
way that parameter settings influence RIF and other mem-
ory dynamics in the model. 

We are also working on a more sophisticated approach to 
inhibition in which traces are less subject to rigid criteria in 
the search for target, competitor, and irrelevant LTM items. 

Another line of research is making use of the model’s ability 
to reconstruct memory items from degraded probes. In par-
ticular, we are exploring the way that the inhibitory mecha-
nism described here influences the content of retrieved (re-
constructed) traces. 
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