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Abstract

This paper introduces the ARCADE (Automated Reading
Comprehension Assessment and Diagnostic Evaluation)
system which is an automated psychometric diagnostic
reading comprehension assessment tool based upon
contempory theories of reading comprehension. ARCADE
attempts to identify the presence of particular components of
a reader’s understanding of a text from open-ended free
response data. An empirical evaluation of the ARCADE
system showed that ARCADE could use student free response
data to cluster students along meaningful dimensions of
comprehension. In addition, directions for future research on
the ARCADE project were clearly identified.

Introduction

There are a number of ways to define reading
comprehension assessment. A strength of standardized
assessment tests is that they provide reliable assessments of
reading achievement through the use of psychometric
modeling methodologies for equating items and estimating
subject-specific ability parameters. However, standardized
assessments of reading comprehension have limited validity
because they are based on a one-dimensional ability scale of
measurement for the purposes of quantitative analysis. That
is, such tests focus upon whether an examinee's reading
comprehension answer is correct or incorrect and report an
examinee’s performance as a single score.

In contrast, cognitive, discourse, and educational research
indicates the importance of distinguishing among different
levels of comprehension. At the basic level, comprehension
focuses on what the text actually says (the literal meaning or
textbase). At more complex levels, comprehension focuses
on thinking and reasoning that integrate text information
with information in other texts and with appropriate prior
knowledge (Coté, Goldman, & Saul, 1998). When readers
understand texts at complex levels, they have understood
the meaning - what the text said and its relation to referents
in the world, and have constructed one (or more)
interpretations of the text. Together, meaning and
interpretation constitute the reader’s situation model.
Especially for diagnostic purposes, it would be very
desirable if reading comprehension assessments captured
these multiple dimensions of understanding. By providing
profiles of readers that reveal both meaning and interpretive
understanding, such assessments would provide valuable
information that classroom teachers could use to inform
differentiated instruction and improve student learning.

The goal of ARCADE (Automated Reading
Comprehension Assessment and Diagnostic Evaluation) is

to instantiate a computationally aufomated and
psychometrically valid multidimensional diagnostic reading
comprehension assessment that can create profiles of
readers based on the quality of their understanding.
ARCADE assesses complex comprehension by identifying
the presence of meaning (textbase elements) and interpretive
(integrated knowledge elements) components of a reader’s
situation model. It does so by drawing on discourse analytic
and computational modeling techniques to infer these
components from readers free responses to questions about
what they have read.

ARCADE System Methodology

Data-Informed Situation Model Specification

There are a number of challenges associated with the
analysis of free response data, especially that generated by
children and adolescents. The first is a computational one:
existing natural language understanding systems (without
substantial modifications) will have considerable difficulty
processing the raw text of children’s free responses which
often contain misspellings, ungrammatical sentences, odd
referential relationships, and ill-formed ideas. A second
challenge concerns the “standard” against which children’s
responses are compared. It is common practice in discourse
and educational research to compare the semantic content of
the text input — of what the text said, to that in the free
responses (Goldman & Wiley, 2004). In doing so, human
coders are faced with complex semantic decisions about
statements in free responses that do not appear to “match”
text input. Many of these “nonmatching” statements reflect
inferences based on what was in the text and many reflect
inferences that integrate readers’ prior knowledge. Still
other “nonmatching” statements, may, in fact be entirely
consistent with the explicit semantic content of the text but
have been expressed in a novel manner by the children.
Thus, “nonmatching”  statements are particularly
challenging when the text is lengthy or leaves open a
number of interpretive possibilities for several reasons.

First, readers frequently summarize the meaning of
multiple sentences from the input text in summarizing
sentences that are not good matches to any of the sentences
from the input text. Second, there is a wide range of prior
knowledge inferences that readers could make for any given
text. The challenge is specifying which of these is warranted
by the text based upon personal experiences outside the
text, and which are simply not consistent or plausible given
the information in the text. Third, presented text information
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accomplishes some particular function (or functional node)
in the text (e.g, conveys setting information, establishes
character(s)’ goals, relates the consequence of a series of
actions). In a free response a reader might accomplish these
functions by including information that was in the text or by
including inferred information that accomplishes the same
function. In the latter case, it is redundant for the reader to
also include the information that was presented; however,
the function has been filled by the inference and a coherent
situation model can be formed. (If the inferred information
is not warranted by the text, one might say a distorted
situation model results.) Inferences, especially knowledge-
based inferences, introduce wide variation in the content of
readers’ free responses. Thus, it can be difficult to estimate
the content and extent of readers’ situation models.

In the face of these challenges and complexities,
ARCADE relies on human analysis of the text semantics in
conjunction with readers’ free responses to construct a set of
abstract nodes that reflect functional elements of the
situation model. In this paper we describe the development
and testing of this process on one narrative story for which
fifth and seventh grade students provided free response data.
Subsets of the behavioral data were used to “train” the
computational model and other subsets were used to test the
performance of the model.

Behavioral Data

In the study reported here, students from the 5™ and 7"
grades from three schools SD (63 students), JX (43
students), and PA (62 students) read a narrative text that
was selected because it left a good bit of room for
interpretation and dealt with issues and feelings that tend to
interest adolescents. The text, ”A Rice Sandwich” by Sandra
Cisneros (1984), is about a girl named Esperanza who
wants to be like the children at school who do not have to
go home for lunch.  Esperanza begs her mother to let her
eat at school, and her mother finally agrees. However, the
principal of the school still will not permit Esperanza to eat
in the cafeteria on a regular basis because she lives in the
wrong part of town, too close to the school. At the end of
the story, Esperanza does not want to eat in the cafeteria.
The text is not explicit about why Esperanza changed her
mind about eating in the cafeteria and there are several other
places where there is room for interpretation, increasing the
likelihood that readers would make knowledge-based
inferences. The actual text passage consisted of 53
sentences, 719 words, and had a Flesch-Kincaid Grade
Level readability index of 4.5 (approximately a 4™ or 5"
grade reading level).

After reading the text, the students were asked two
questions. The first question was: “Explain Esperanza’s
feelings about eating at school at the beginning and at the
end of the story.” The second question was: “Explain
Esperanza’s mother’s reaction when Esperanza tells her she
wants to eat at school.” Students were allowed to refer to
the text while composing their responses.

Text and Free Response Analyses

An abstract story grammar analysis based upon the text
was done to identify the major functional plot elements of
the story: Episodes, Initiating Events, Internal Responses
(including goals), Attempts, and Consequences. These plot
elements are consistent with a number of story grammar
analyses of stories (e.g., Mandler & Johnson, 1977; Stein &
Glenn, 1979).

These Abstract Story Grammar Categories (ASGC) were
instantiated by 12 different classes of semantic information
(e.g., emotions, cognitions, events), which we labeled as
abstract story grammar (ASG) nodes. Each of these nodes
might be manifest in students’ responses by specific
statements that were (i) very close matches to the presented
text or by logical connections or summaries of what was
presented, called Text-Based Inference (TBI) in this
feasibility study; and/or (ii) inferences based on prior
knowledge, called Knowledge-Based Inference (KBI).

GRADE 7 SUBJECT #3 Q2

KBI|[S.2] Esperanza's mother's reaction was that
she was shocked .

TBI[6.1] She didn't want more work at first

RN but

TBI[7.1] she din't so she reluctantly gave in .

KBI[4.1] She din't know why her daughter
wanted to eat at school

RN but

KBI[7.2] she could tell that she really wanted to

KBI[7.2] and a mother can't always say no .

KBI[7.2] Sometimes they just have ti give in

Figure 1: Each student’s free response data was modeled as
an ordered sequence of complex proposition nodes. The
notation KBI[5.2] means the second type of complex
proposition in the fifth ASGC category of type KBI.

The range of ASG nodes included in the situation model
was constrained by the behavioral data: If more than one
student response included a KBI that fulfilled one of the
ASG nodes, then it was included in the analytic template for
the story; otherwise, the ASG node was manifest only in
TBI nodes. Specific statements in the students’ free
responses were coded into complex propositions determined
to semantically fill either a TBI or KBI ASG node and
indexed accordingly. Figure 1 illustrates a typical analysis
of a student’s free response data. In addition, Figure 1 also
illustrates the complexity of this data set which contains
numerous ungrammatical sentences, misspelled words, and
novel ways of expressing the same idea. There were 55
complex propositions which could be assigned to a clause in
the student free response data.

Figure 2 shows the ASGCs and the TBI and KBI ASG
nodes assigned to each ASGC which were obtained as a
result of semantic analyses of the text and student response
data. As shown in Figure 2, the human coding analysis of
the behavioral data yielded 12 ASGCs, 12 TBI ASG nodes
associated with each of the 12 ASGCs, and 9 KBI ASG
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nodes associated with 9 of the ASGCs. Note that three of
the ASGCs were not assigned KBI ASG nodes since
examples of such KBI ASG nodes were not present in the
student free response data. In addition, Figure 2 illustrates a
representative data analysis regarding how the complex
propositions in Figure 1 are represented as ASG nodes. For
example, the complex propositions KBI[7.1] and KBI[7.2]
are treated as members of an equivalence class of complex
propositions which is labeled KBI[7]. The KBI[7]
equivalence class corresponds to a particular KBI ASG
node. Figure 2 also illustrates how the presence and
ordering of the ASG nodes in Figure 1 is identified by an
ASCG analysis. Specifically, ASG nodes present in the
strudent’s response data in Figure 1 are drawn as circles
composed of dots (e.g., KBI[4], KBI[5]) while ASG nodes
not present in the student’s response data are drawn as
circles composed of solid lines (e.g., TBI[3], TBI[4]).
Semantic  connections between adjacent complex
proposition nodes in the student response data (Figure 1)
which involve KBI nodes are classified as KBI connections
and are represented by thick solid arrows in Figure 2 (e.g.,
connection from KBI[4] to KBI[5]). Semantic connections
between adjacent complex proposition nodes in the student
response data (Figure 1) which only involve TBI nodes are
classified as TBI connections and are represented by thin
solid arrows (e.g., connection from TBI[6] to TBI[7]). This
type of analysis allows the student response data to be
assessed in terms of the degree to which TBI semantic
structure and KBI semantic structure influence the
organization of student response data.

[ 1. INTERNAL RESPONSEE |
[2. GOAL E EAT AT-SCHOOL]

‘ 3. E ATTEMPT ASK MOTHER

D

[4. GOAL MOTHER PREVENT (GOALE ) | 'KBI[4] .
\ 5. MOTHERS’S REACTION TO E’S REQUEST‘ ‘ 'K‘B-I[:S]..

[6. MOTHER’S ATTEMPT TO MEET GOAL | 'TBI[6] .

[ 7. CONSEQUENCE MOTHERS ATTEMPT ,.TBI[7] KBI[7] .

8. NUN SENDS E TO MS| (TBI[8]

KBI[8]
[9. E ATTEMPT ASK MS |
[ 10. ATTEMPT MS TO KEEP E FROM EATING IN CANTEEM

[ 11. CONSEQUENCE MS ATTEMPT |

[12. REACTION — INTERNAL RESPONSE(E) - NEGATIVE]

Figure 2: The Abstract Story Grammar Categories (ASGCs)
shown here were derived from semantic analysis of the text
and student response data. This figure also illustrates how
the ASGCs are used to identify sequential structure in
student response data presented in Figure 1.

ARCADE System

The ARCADE system is intended to automatically
implement the process sketched in the previous section.
Within the ARCADE framework, students would answer
open-ended questions about a text which has been analyzed

using an ASCG. The ARCADE system would then estimate
for each student the relative impact of TBI and KBI
influence factors based upon an analysis of the presence and
ordering of the ASG nodes in the student’s response data.
The current implementation of ARCADE involves two
stages. In the first stage, the ASMURF (Annotated Semantic
Markov Utterance Random Field) system (Golden, 2006a)
is used to identify a sequence of complex propositions for
each student’s response as in Figure 1. In the second stage
of analysis, Golden’s (1998, 2006b) KDC (Knowledge
Digraph Contribution) analysis is used to compute the
relative impact of TBI and KBI factors. Once these factors
are assessed for each student, this information is available to
provide feedback to classroom teachers in the form of
suggested teaching strategies for specific groupings of
students whose response data has similar TBI and KBI
characteristics.

Automatic Semantic Annotation of Response Data

The ASMURF system was used to identify complex
proposition sequences in the free response data for the
purposes of automatically implementing the analysis in
Figure 1. The essential idea of the ASMURF methodology
is easy to explain. Key words (and misspelled words) are
annotated as particular word-senses or “word-concepts”.
Then subsequences of word-senses corresponding to exactly
one mental or physical action are annotated as particular
“simple  propositions”.  Subsequences of  “simple
propositions” are annotated as particular “complex
propositions”. Finally, equivalence classes of complex
propositions were defined and labeled as ASG nodes. After
semantic annotation was completed, first-order, second-
order, and third-order statistical correlations between the
various semantic annotations and words are learned. These
estimated correlations are then used to automatically parse
and semantically annotate novel word sequences.

Identifying Situation Models

The KDC system implements the analysis in Figure 2 by
taking the complex propositions identified by ASMURF,
mapping them into ASG nodes, and then looking for the
presence or absence of the ASG nodes and how they are
ordered. This produces a mapping of the free response data
into a TBI influence measure reflecting the structure of the
original text and a KBI influence measure reflecting the
integration of prior knowledge.

KDC analysis not only matches sequences to graph
structures such as that depicted in Figure 2 but also
computes the unique maximum likelihood estimates of the
link strengths in these graphs under the specific probabilistic
modeling assumptions of KDC analysis (Golden, 2006b).
Briefly, KDC may be viewed as a type of constrained
multinomial logistic regression where the “beta weights” of
the regression model correspond to link strengths. Thus,
statistical model selection test and hypothesis testing
procedures are available for psychometric analysis purposes
within the KDC framework.
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Identifying Student-Specific Situation Models

The estimation of the group-specific situation model is
analogous to the estimation of item parameters in item-
response theory (IRT) from group data. Like IRT, student-
specific parameters can be estimated as well. However,
unlike IRT, the concept of “ability” is absent from the
ARCADE comprehension theory. Rather, the latent student-
specific parameters are called “contribution weights” which
represent the influence of the TBI and KBI dimensions of
comprehension. For example, a student whose production
data consists entirely of TBI ASGC propositions would
have his (or her) TBI contribution weight estimated to be
equal to zero. Golden (2006b) shows using theorems
developed by Golden (2003) that not only are these
parameter estimates generally uniquely determinable from
the data but these parameter estimates are also maximum
likelihood estimates whose asymptotic distributions can be
characterized.

Results and Discussion

ASMUREF Proposition Detection Performance

In order to quantify the performance of the ASMURF
system, the recall and false alarm performance of the
ASMUREF system was evaluated on both training and test
data sets. The ASMURF system computes a confidence
level indicating its belief in the correctness of its choice of
complex proposition. If the confidence level for a particular
complex proposition semantic annotation exceeds the
system’s identification threshold value 0, then the system
reports the presence of that complex proposition. By
systematically varying 0, a response operating characteristic
(ROC) curve for the ASMURF classifier system can be
constructed.

The ROC curve displays the probability of correct
identification of a proposition in a student’s response given
the human semantic annotator says that proposition is
actually present (“recall rate”) for a particular value of 6 and
the probability of false identification of a proposition in the
student’s response given the human semantic annotator says
that proposition is not present (“false alarm rate”) for a
particular value of 6. From the ROC curve, an optimal
threshold value 6" may be computed which simultaneously
maximizes recall rate while minimizing false alarm rate. In
addition, a commonly used statistic in characterizing
information retrieval systems called the “precision” was
computed. The “precision” is the probability that the
ASMURF system correctly identifies a proposition in a
student’s response given the number of propositions the
human semantic annotator says which are present in the
student’s response.

Both training and test data were parsed into clauses
corresponding to complex propositions by the human
semantic  annotators for evaluating the system’s
performance at decomposing complex propositions into
simple propositions and semantically annotating the
resulting decomposition.

Given the ASGC developed using the entire data set, the
ASMUREF system was trained on the SD data set and the

optimal threshold 0" for the SD data set was computed,.
Given 0, the recall and false alarm rate using this training-
set derived optimal threshold could then be computed for
the training data (SD) and the test data (PA, JX). This
procedure was then repeated by training on the PA data and
testing on the SD and JX data as well as training on the JX
data and testing on the SD and PA data. These results were
then averaged to obtain recall, false alarm, and precision
rates with standard errors.

The recall rate on the training data (62% * 2.2%) was
comparable to the recall rate on the test data (60% =+ 1%) .
This means that when a human coder decided a particular
complex proposition was present in a particular student’s
free response, ASMURF would correctly decide that
complex proposition (out of a possible set of 55 complex
propositions) was present in the student’s free response data
about 60% of the time. The false alarm rate on the training
data (37% + 2.6%) was comparable to the false alarm rate
on the test data (37% £ 2.0%). This means that when a
human coder decided a particular complex proposition was
absent in a particular student’s free response data, ASMURF
would incorrectly decided that complex proposition was
present about 37% of the time. The precision rate on the
training data (69% £ 1.7%) was slightly greater than the
precision rate on the test data (60% £ 1.3%). This means
that the percentage of propositions correctly identified in a
student’s response by ASMURF (out of the set of complex
propositions identified as presented by the human coder in
that response) on a test data set was 60%. Note that the
roughly comparable performance levels on the training and
test data indicate that the system was not “over-fitting” the
data.

These performance level statistics are promising but
clearly indicate the need for additional development of the
ASMUREF system. Indeed, these statistics are consistent
with a qualitative analysis of the system’s processing
results. Many of the semantic annotations generated by the
system would not be considered sensible by a human judge.

KDC Models of ASG Node Presence and Order

The goal of the KDC analysis is to take the complex
propositions generated by the ASMURF analysis and
attempt to automatically identify ASGC connections as
illustrated in Figure 2.

To achieve this objective, the connection weights among
and between TBI ASGC proposition nodes and KBI ASGC
proposition nodes were simultaneously estimated using
maximum likelihood estimation under the KDC probability
modeling assumptions (see Golden, 2006b, for additional
details) using the SD data set with the regularization term
set to 100. As a result of this estimation process, a
connection weight matrix for the TBI dimension and a
connection weight matrix for the KBI dimension were
obtained.

Three variations of these connection weight matrices were
then considered: (1) the node presence model, (2) the node
order model, and (3) the node presence and order model.
The node presence model effectively measures the presence
or absence of TBI and KBI ASGC nodes in student free
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response data. The node order model effectively measures
the degree to which the order of TBI and KBI ASGC nodes
in the student free response data conforms to the
connections in the knowledge digraph specifications (see
Figure 2). The node presence and order model is a hybrid
model which incorporates both sources of node presence
and order. All three of the models are two parameter models
where one parameter (called the “TBI” contribution weight)
indicates the predictiveness of the TBI connection weight
matrix while the other parameter (called the “KBI”
contribution weight) indicates the predictiveness of the KBI
connection weight matrix.

Sophisticated model selection criteria were used for the
purpose of comparing competing KDC probability models
(see Golden, 2006b, for specific mathematical details).
Differences between model selection criteria were tested
using Golden’s (2003) DRMST (Discrepancy Risk Model
Selection Test). Using the Generalized Bayesian
Information Criterion (GBIC) for model selection, the node
presence and order model provided a better fit (GBIC fit =
2.13) than the node order model (GBIC fit = 2.37) (p <
0.05). In addition, the node presence and order model
provided a better fit (GBIC fit = 2.13 ) than the node
presence model (GBIC fit = 2.31) (p < 0.05). Similarly,
using a Generalized Akaike Information Criterion (GAIC),
the node presence and order model provided a better fit
(GAIC fit = 2.13) than the node order model (GAIC fit =
2.38) (p < 0.05). In addition, the node presence and order
model provided a better fit (GAIC fit = 2.13 ) than the node
quantity model (GAIC fit=2.31) (p < 0.05).

Thus these findings show that both the presence and the
ordering of ASG nodes in the student production data could
be predicted in part by the ASGC analysis. Moreover, these
results are consistent with numerous studies from the text
comprehension literature which demonstrate that the order
of propositions mentioned by subjects is often reflective of
the semantic organization of the subject’s situation model.

KDC Clustering of Students with Similar TBI and
KBI Comprehension Dimensions

The long-term goal of the ARCADE project is to develop a
system which can automatically process student free
response data and group students with similar situation
models and suggest appropriate instructional strategies for
each student group by understanding the type of situation
model shared by students within a group. For example,
optimized instructional strategies designed for students with
low KBI situation model components will look quite
different from optimized instructional strategies designed
for students with low TBI situation model components.

In order to evaluate the performance of the system from
an educational technology perspective, the node presence
and ordering model developed from the SD school data was
used to estimate a unique TBI and a unique KBI
contribution weight for the ASMURF annotated data for
each student from the PA and JX schools. The KDC
analysis program then uses a customized agglomerative

cluster analysis which works by merging subgroups to
minimize between-cluster variance.

The results of the cluster analysis are presented in Figure
3. Each student is represented by a circle in this cluster
analysis with a particular KBI and TBI contribution weight.
The cluster with the smallest circles corresponds to a group
of students with large KBI and relatively low TBI weights.
The cluster with the largest circles corresponds to students
with moderate KBI and TBI scores. The seven medium-
sized circles corresponds to students with relatively low
KBI scores but larger TBI scores.

In order to evaluate the validity of the cluster analysis
results, the node presence and order model developed using
the SD school data was used to compute KBI and TBI
contribution weights for each student from the PA and JX
schools using the human annotated data as well as the
ASMURF annotated data. Thus, the effectiveness of the
ASMUREF system in generating semantic annotations which
are quantitatively equivalent (in contribution weight space)
to that of the human semantic annotators could be evaluated.

3.5

1‘%5 1‘ 1‘.5
TBI

Figure 3: Three clusters of students identified by
ARCADE. Students within a cluster are classified as having
similar situation models and are associated with circles of
the same radius.

Using the PA and JX student response data and the node
presence and order model developed using SD data, the
TBI contribution weights computed using ASMURF
annotated data were positively correlated with TBI
contribution weights using human annotated data (r(103) =
0.96, p < 0.05 for a no-intercept model). Similarly, the KBI
contribution weights computed using ASMURF annotated
data were positively correlated with KBI contribution
weights using human annotated data (r(103) = 0.98, p < 0.05
for a no-intercept model). Moreover, visual inspection of
scatter plots of the correlational data analyses showed that a
significant percentage of students had TBI/KBI scores
calculated using the ASMURF annotated response data
which were quantitatively similar to the human expert
annotated response data.

These results provide evidence that even though the
semantic annotation performance of the ASMURF system
in its current form needs additional work, the current
version of the ASMUREF system appears to be reasonably
effective at assessing contribution weights similar to those
calculated from expert human semantic annotators.
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Summary and General Discussion

In this paper we introduced an entirely new methodology
for complex reading comprehension assessment which is
based upon established findings from the existing scientific
text  comprehension literature.  Specifically, our
methodology is based upon the idea that the organization of
ideas in student free response data can provide important
clues regarding how a student understands a text.

Within the ARCADE framework, students are asked
open-ended questions about specific carefully chosen texts.
A subsample of the student responses is then semantically
annotated using an ASCG. This subsample of student
responses is also used to train a natural language
understanding system to identify TBI and KBI components
of the ASCG in student response data. The natural language
understanding system’s output is then a sequence of ASCG
propositions for each student. Statistical regularities in those
proposition sequences are then analyzed using the KDC
categorical time-series analysis in order to group students
whose patterns of responses to the open-ended questions
have similar structures.

It should be emphasized that our natural language
understanding system had to deal with many challenges
such as the ability to process misspelled words,
ungrammatical sentences, and inferences driven by prior
knowledge. In order to develop a system which could
achieve these objectives, we developed the ASMURF
system. Although the ASMURF system demonstrated the
ability to semantically annotate novel free response data in a
manner similar to human semantic annotators when using a
TBI/KBI performance measure, our long-range goal is the
development of a reading comprehension assessment system
which is capable of complex comprehension assessment.
Accordingly, further future research to improve the
performance of the ASMURF system is planned since its
semantic  annotations are  generally  semantically
implausible.

This unsatisfactory performance of the ASMURF system
is probably due to two factors. First, the ASMURF system
currently does not incorporate state-of-the-art or even
standard natural language parsing mechanisms such as a
part-of-speech tagger or a spell-checker. The incorporation
of such mechanisms is expected to improve the performance
of the system. Second, the process of semantically
annotating the free response data was relatively tedious
resulting in coding errors and thus corrupted training data.
This problem could be addressed by improving the user-
interface and the semantic annotation performance of the
ASMUREF system. If the ASMURF system can make better
suggestions to the human semantic annotator during the
coding process, this would reduce the coding errors.

Nevertheless, it was shown that when used in conjunction
with KDC analysis the current version of ASMURF may be
viewed as a version of other indirect methods for
comprehension assessment which are based upon word co-
occurence such as latent semantic analysis (Foltz, Kintsch,
& Landauer, 1998). In particular, it was demonstrated that
ASMURF appeared to pick up a sufficient number of
statistical regularities in order to meaningfully cluster
students along the TBI and KBI comprehension dimensions.

We find this result very encouraging and expect that by
incorporating state-of-the-art natural language machinery
into the ARCADE/ASMURF/KDC methodology developed
here that even further progress will be made towards the
development of a reading comprehension assessment tool
intended to assess complex comprehension processes for the
purposes of enhancing classroom instruction experiences.
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