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Abstract

Speech segmentation is the problem of finding word
boundaries in spoken language when the underlying vo-
cabulary is still unknown. Here we show that a system
with no phonemic knowledge can find word boundaries.
The system first subdivides an utterance by recursively
clustering similar parts of the signal together until the
cepstral coefficient variance is low within each new seg-
ment. These segments are then used as inputs to a
perceptron-like algorithm that finds repeated segments
across utterances. With only a few sample utterances,
and no previous linguistic knowledge, the system can
find the words that were repeated across utterances and
identify new utterances that contain those words. The
findings show that the assumption of a phoneme classifi-
cation module is not necessary for a “minimum descrip-
tion length” (Brent & Cartwright, 1996; de Marcken,
1996) explanation of word segmentation.

Introduction

The problems of infant speech segmentation and word
discovery have inspired many different modeling ap-
proaches, but some of the most promising have operated
under the principle of “minimum description length”
(MDL). Minimum description length approaches com-
bine aspects of exemplar and prototype theory to cre-
ate a hierarchical language model that extends from
phonemes all the way up to the phrase level (de Marcken,
1996; Brent & Cartwright, 1996). Essentially, a mini-
mum description length approach attempts to compress
all the utterances it has encountered so far by adding
entries to a lexicon for any item that is repeated so often
that it warrants a kind of “mental shorthand.” The new
entry is only added if the cost of storage is less than the
cost of representing each instance of the item individu-
ally. Shorthand can be used within the lexicon as well,
making for hierarchical compression: a phrase is repre-
sented as a sequence of words, which are in turn repre-
sented as a sequence of morphemes or syllables, which
are in turn sequences of phonemes. In MDL models,
word discovery is only a special case of recognizing com-
mon subsequences of input.

One gap in the minimum description length ap-
proaches proposed so far is that they have all treated
the segmentation problem as if it were being solved for
sequences of symbols (Brent, 1999). Usually, these sym-
bols represent transcriptions of either syllables (Brent &
Cartwright, 1996; Brent, 1999) or the phonemes from
which the syllables are constructed (de Marcken, 1996).

Using transcriptions of speech is convenient for the mod-
eler, but they come at the price of assuming a “perfect”
input processing module that can cluster and classify the
raw audio signal, turning a noisy signal into a flawless
symbolic representation.

This initial classification of phonemes or syllables can
be difficult. Extensively trained neural networks can still
perform quite poorly in classifying phonemes (Roy &
Pentland, 2002). A phoneme can be so influenced by the
surrounding phonemes that the signal resembles a differ-
ent phoneme entirely; for example, the waveform of the
/1/ in “king” can more closely resemble that of the /u/
in “moves” than the /1/ in “bishop,” on account of the
nasality of the /y/ sound that follows (Jelinek, 1997).
Professional speech recognition software solves the dif-
ficult phoneme-recognition problem by using contextual
information to distinguish between words — for instance,
by noting that the probability of I need is much higher
than that of I neat (Jurafsky & Martin, 2000). Such
contextual information is certainly not available to an
infant if phoneme learning precedes word learning.

Transcriptions can also omit important information
that is available from the audio signal. For instance,
while it is a commonly accepted maxim in word seg-
mentation models that the spaces we perceive between
words are simply an illusion, stops such as /t/ and /k/
literally stop the flow of air briefly, making them natural
delimiters. The knowledge that such consonants tend to
delimit words and syllables may be captured by adding
“phonotactic constraints” to a segmentation algorithm,
but this can obscure the difference between rules that
must be learned and rules that follow naturally from the
structure of the signal. Another cue for segmentation
lost in phonetic annotation is syllable stress, which may
play an important role in segmenting English (Jusczyk,
1999; Cutler & Norris, 1988). The rule that each word
in English can have at most one primary stress can do
much of the work in segmenting child-directed speech,
allowing easier segmentation of utterances with many
strongly stressed syllables (Yang, 2004).

Though the minimum description length approaches
proposed so far have all been demonstrated on phonetic
transcriptions, there is no reason why they cannot be
extended all the way down to the sub-phoneme level.
The system presented here uses a minimum description
length approach to cluster the audio signal into self-
similar parts. These parts are then shown to be usable
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to find words in utterances, assuming the existence of
external cues that indicate which utterances contain a
target word. Since this approach works with the au-
dio signal itself, several sources of information such as
volume, phonotactic information, and coarticulation are
naturally factored into the system’s segmentation deci-
sions. The system shows how a simple compression rule
can take the place of multiple cue-specific rules, and sug-
gests a synthesis between MDL approaches and auditory
cue-based explanations of infant word segmentation.

Methods

Acoustic Data

For our experiments, the auditory data is not pro-
cessed in the time domain, but in the “cepstral” domain
(Schroeder, 1999). Since the audio signal can be seen as
the result of a source signal coming from the vocal tract
convolved with the filter action of the mouth and tongue,
the goal of the cepstral transformation is to extract the
part of the signal corresponding to the mouth and tongue
while throwing out the variability of the individual vo-
cal tract. This is accomplished by taking the log of the
Mel-transformed frequency domain representation, then
taking another Fourier transform. Under these transfor-
mations, convolution in the time-domain becomes mul-
tiplication in the mel frequency domain, which then be-
comes addition by the logarithm, and the final Fourier
transform preserves this additivity while separating the
two parts of the signal. The parts of the cepstrum rele-
vant to phonetic information can then be characterized
by a feature set called the “Mel-Frequency Cepstral Co-
efficients” (MFCCs).

Note that these coeflficients do not represent any
language-specific features. They are a more or less ar-
bitrary decomposition of the signal into coefficients that
could be used to reconstruct the spectral envelope that
characterizes the shape of the mouth (though the first
coefficient does correspond to overall power or volume).
However, this representation does throw out the pitch
and timbre information. Though we can justify this neu-
rologically with the finding that pitch appears to use a
different neurological pathway from other aspects of lan-
guage (Baum & Pell, 1999), in truth we use the cepstral
domain here mostly because automatic speech recogni-
tion methods have had better success with it than not.

For this study, 13 cepstral coefficients were used, a
common convention that corresponds roughly to the de-
grees of freedom of the human mouth (Schroeder, 1999).
The coefficients were estimated for 10ms intervals, using
freely available MATLAB code (Ellis, 2005).

As a final, additional feature set, approximations to
the derivative and second derivative of each cepstral
coefficient were added, bringing the total number of
features to 39. The approximations used for these
“delta” and “double-delta” coefficients were taken from
the Sphinx speech recognition system (Walker et al.,
2004): the “delta” feature for cepstral coefficient C; at
time ¢ is given by the difference C;(i + 2) — C;(i — 2),
and the double-delta coeflicient is given by the formula
(C;(t+3)—-C;(i—1)) = (C;(i+1) — Cj(i — 3)). (Neuro-

logically, auditory “edge” detectors have been proposed
for spectral information (Fishbach, Nelken, & Yeshurun,
2001), but the authors know of no studies that have at-
tempted to find neurons responsive to the cepstrum or
its derivatives.)

Clustering

After preprocessing, an utterance is recursively clustered
as follows. First, the loudest 10ms sample of the utter-
ance is chosen as a seed for a new cluster. The selected
vector of cepstral coefficients and their derivatives serves
as the first data point in the new cluster’s multivariate
normal distribution. All the remaining samples of the
utterance are treated as samples of a single multivariate
background distribution. To ensure that the probabil-
ity density function of this distribution is always well-
defined, only the diagonal of the covariance matrix is
used.

A cluster is grown by tentatively adding the time slice
immediately preceding it and the time slice immediately
following it to both the cluster’s distribution and the
background distribution. (This ensures that the distri-
butions are not too heavily biased toward their existing
states, and also results in each cluster having at least
three points for calculating variance.) The probability
density function (pdf) of each distribution is evaluated
at both of these new points. If a time slice is determined
to be more likely to have been generated by the tentative
cluster than the background distribution, the slice per-
manently remains in the new cluster and is removed from
the background distribution. Otherwise, it is removed
from the cluster and remains in the background distri-
bution. This process continues until the cluster ceases
to grow.

This process produces the maximum likelihood clus-
tering of the data under two assumptions. The first is
that the data was generated from two multivariate nor-
mal distributions, one of which contains the loudest time
slice. This normality is only an approximation, but it is
one that has proven successful in the past (Wilpon, Ra-
biner, Lee, & Goldman, 1990). The second is that all
examples of the louder distribution are contiguous.

Once this initial clustering has been performed, the
clustering can be performed recursively on each of the
three new segments of speech. Should this recursion oc-
cur indefinitely, each individual time slice would eventu-
ally receive its own cluster. Obviously, this would not
achieve any compression of the data, and the Minimal
Description Length principle (Rissanen, 1972; Griinwald,
2005) dictates that good learning implies good compres-
sion and vice versa. Instead, a stopping criterion is re-
quired, so that the algorithm does not make useless dis-
tinctions.

By the Minimal Description Length principle, an ideal
stopping criterion would determine the cost, in bits, of
specifying a new multivariate distribution and all of the
data points belonging to it versus the cost of specify-
ing all of those time slices in an already defined distri-
bution. (Bits are here being used in their information-
theoretic capacity; it does not limit the argument to ma-
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chine learning.) Since good compression implies good fu-
ture learning (Griinwald, 2005), the strategy that takes
fewer bits to specify would be better for future language
learning.

Determining the true cost in bits of a new multivari-
ate normal distribution is difficult. While it is possible
to choose an arbitrary representation for the distribu-
tions and count the bits they use, this is not necessar-
ily the most efficient encoding, which should take into
account the probabilities of each distribution’s parame-
ters. Specifically, the desirable mathematical properties
of minimal description length representations are only
guaranteed to hold when the cost of a given distribution
D, in bits, is equal to 1/P (D), where P(D) is the prob-
ability of that distribution. The total cost of the encod-
ing is then the sum of 1/P(D;) for all distributions D;
plus the sum of 1/Pp;)(S;) for each sample S;, where
Pp(;)(S5) is the probability a sample S; according to its
assigned distribution D(j). (Even this “two-part encod-
ing” is not necessarily optimal; see (Griinwald, 2005) for
details.) Though it is easy to calculate this second part
of the equation, the cost of encoding a sample given a
distribution, it is hard to determine the probabilities of
the distribution parameters themselves.

Instead, the algorithm takes a shortcut here and uses
a variance threshold. Specifically, when the variance in
the first cepstral coefficient (volume) for a given segment
is below a manually defined threshold, recursion stops.
The reason that this approximates an MDL criterion is
that with a low variance, each individual segment can
be encoded using fewer bits. By varying the threshold
at which a new distribution is generated, the algorithm
can mimic a higher or lower cost in bits of generating a
new distribution, assuming that this cost is roughly uni-
form for most real-life distributions. Limiting the model
to a single parameter, volume variance, rather than a
function of all 39 variances, is a tradeoff that reduces
the number of model parameters that the modeler must
adjust in exchange for giving up some small amount of
expressiveness. Volume variance is the most useful of
the 39 features from a practical point of view because
volume changes from phoneme to phoneme and from syl-
lable to syllable. Vowels are louder than the consonants
that delimit them, and syllables can be stressed or un-
stressed. The overall approach is thus similar in spirit
to previous minimal description length approaches to the
word segmentation problem (de Marcken, 1996; Brent &
Cartwright, 1996; Brent, 1999), but it attempts to find
a minimal representation of the audio signal, instead of
a string of symbols. In the long term, existing entries
in the lexicon for distribution parameters would reduce
the encoding length of most new incoming audio data,
with only unusual sounds requiring full encoding. The
means of these distributions in the lexicon could serve
as prototypes for phonemes, and also serve as symbols
in an MDL-based lexicon for words.

See Appendix A for transcriptions of the output pro-
duced by the self-similarity clustering step.

Learning across utterances

The clustering method outlined above segments an in-
dividual utterance into a tree structure based on self-
similarity. Later utterances are divided into their own
trees, but these need to be matched to earlier utterances
to find repeated words. Matching currently occurs at
the leaves of the recursion tree, corresponding roughly
to the phoneme level.

To find segments that are similar within two different
utterances, pairwise comparisons are made between seg-
ments in the two utterances to find matches for the new
clusters among the old ones. This is done by taking the
mean of a new cluster to be a sample point, and com-
puting the probability density function of each cluster in
the reference utterance for that point. The distribution
with the highest probability density function is the most
likely match. This match is then compared to the null
hypothesis that the new cluster matches no previously
established point, which is represented by a multivari-
ate distribution of all data from both utterances. If the
probability of the old cluster exceeds that of this null
hypothesis, the new cluster is classified as an instance
of the old one. (A lexicon independent of all utterances
would have been more elegant than pairwise comparisons
between utterances, but this would have brought up en-
coding representation issues we do not wish to deal with
here.)

In the case of learning a specific word for an object,
associative learning can take place between the stimulus
of the object and certain combinations of speech clusters.
To achieve this associative learning, the present imple-
mentation used Winnow (Littlestone, 1988), an online
learning algorithm that performs well when the num-
ber of input variables is large. Winnow is an online
perceptron-like algorithm that attaches linear weights to
nonnegative input stimuli and “fires” if the sum of the
weighted inputs passes a threshold. If a false positive
occurs, the weights of all positive inputs are halved; if a
false negative occurs, the weights of all positive inputs
are doubled. Since Winnow is an online algorithm, it
does not require multiple passes through the data. It is
only necessary to process each utterance once.

The Winnow weights can be interpreted as the
strength of association between the segments found by
the segmentation algorithm and some external cue that
the system determines to be a referent for the sentence.
For example, we assume that when the system hears
“This is a dog” that somebody is directing the system’s
attention toward an actual dog, or at least is clearly
talking about a dog, so that the segments found in the
sentence can be associated with that external stimulus.
When Winnow fails to predict the referent of an utter-
ance (e.g., somebody is clearly talking about a dog but
the utterance was not identified as containing a word
about a dog), weights between the target concept and all
segments contained in the utterance are boosted. Like-
wise, if Winnow expects a certain referent given the seg-
ments in the sentence, but there is no external confir-
mation (e.g., the concept of “dog” was excited but the
speaker was clearly talking about something else), the
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weights to the excited segments are halved. For each tar-
get concept, there is an instance of Winnow attempting
to learn the word for it. (We set aside for more knowl-
edgeable scholars the question of if and how an infant
decides a concept needs a word.)

In the results that follow, we abstract away the ex-
ternal referents, and assume that the system has access
to reliable external cues that indicate which sentences
contain a word related to a target referent. This means
utterances are labeled only as positive or negative ex-
amples for concepts and the words that correspond to
them.

Note that though this approach uses “utterances” as
a basis for learning, it does not require that the system
be able to segment sentences from one another. The as-
sumed paradigm here is that of examples of speech sepa-
rated by relatively long gaps. If the speech separated by
these gaps includes more than one sentence, this does not
matter much, except that very long utterances will end
up conveying very little useful information. At any rate,
the emphasis here on “utterances” is more an artifact of
programming convenience than any theoretical justifica-
tion. The method should be extendable to a real-time
system that acts on a stream of input.

The system currently has no principled method of rep-
resenting cluster order; during production, it simply uses
the order in which the reference clusters were first en-
countered. In principle, lexicon entries would contain
such information, but in this experiment this function-
ality simply wasn’t implemented.

Experimental Results

Thirty training utterances were recorded from a single
speaker at 22050 Hz. Ten target words for segmentation
were contained in three utterances each. For each target
word, the utterances containing the word were treated
as positive examples for Winnow, while the other utter-
ances were negative examples. The list of utterances is
given in Appendix A.

Winnow initialized weights to all segments to 1, and
used a threshold of 1 instead of the standard n/2 to in-
crease the usefulness of negative examples. A volume
variance threshold of 50 was used for segmentation re-
cursion.

The three positive examples were each presented to the
system twice, while the twenty-seven negative examples
were each presented once. The goal was to determine
whether the system could learn to segment the target
words with a relatively small number of utterances, as a
child might.

To probe the system’s representations, “best guesses”
were generated for each target word by concatenating
cepstral sequences corresponding to the clusters with
the highest weight until their combined weight passed
the Winnow threshold. The cepstral sequences were not
generated randomly from the cluster distributions, but
preserved from the first utterance in which the cluster
appeared. These cepstral sequences were then trans-
formed into spectral envelopes imposed over a white
noise source, using software from (Ellis, 2005) to regen-

Target | Guess Target | Guess
bal bal kiz i

buk buk pen mair
kar kar fon main
tfeir Ois...err || fu Ju
dogi gi spun spu

Table 1: Transcriptions of the “best guesses” generated
for each target word by Winnow.

Recall || Precision
Recursive clustering 40% 50%
Non-recursive clustering 20% 33%
Hidden Markov Model 60% 32%

Table 2: Recall and precision for each of the methods
implemented.

erate the speech signal. Table 1 shows the transcription
of the system’s output.

To test the system’s ability to detect words in new ut-
terances, the Winnow-trained word detectors were then
employed on utterances that either contained the target
word but were new to the system, or contained none of
the target words. Each target word was contained in one
test sentence, and five sentences that did not contain any
target words were tested for each target word.

Table 2 shows recognition results for three variants of
the algorithm. The recursive variant is the one described
above. In the non-recursive variant, the clustering step
is performed only once, so that the sentence is divided
into only three segments. The non-recursive method was
implemented to check whether fine distinctions in sound
were actually necessary for recognition, or if the over-
all vowel sound of the target word would be sufficient
for classification; as the results show, the recursive de-
composition does aid recognition. Finally, the hidden
Markov model (HMM) implementation used the clusters
generated from the self-similarity step to generate hid-
den Markov models (Jurafsky & Martin, 2000) for each
statement, then used the model that best described all
three positive examples as a model for the target word.
The added complexity of performing expectation max-
imization and the Viterbi algorithm did not appear to
afford much benefit over the simpler maximum likelihood
matching described above.

Discussion

The present work combines several previous approaches
to automated word segmentation. First, the clustering
method presented here to find segments is somewhat
similar to a method used by Tim Oates’ system PE-
RUSE to find recurring segments of audio (Oates, 2002),
though PERUSE was not an online algorithm. The min-
imum description length literature, on the other hand,
has always used phonemes as its atomic units, and built
syllables, words and phrases from these (de Marcken,
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1996; Brent & Cartwright, 1996). Finally, the Winnow
algorithm is here used to simulate association between
words and external concepts. Though no previously pro-
posed algorithm has used Winnow specifically, others
have shown that mutual information between phonemes

and visual cues can aid segmentation (Roy & Pentland,
2002).

The Winnow algorithm here acts as a somewhat
temporary measure that takes the place of a more
MDL-based word learning approach. In theory, exter-
nal meaning should be representable in an MDL fash-
ion, as should the higher levels of organization beyond
phonemes (de Marcken, 1996). However, no MDL word
segmentation algorithm to date has been an “online al-
gorithm,” as the major MDL approaches to date have
required multiple passes through the data (de Marcken,
1996; Brent & Cartwright, 1996). The Winnow per-
ceptron algorithm is interesting because it is an online
algorithm that works very quickly to perform the nec-
essary associations, and it provably functions well when
irrelevant features abound (Littlestone, 1988). Its lack
of a hidden layer also makes it more neurally plausible
than most neural networks, since the backpropagation
algorithm is not required.

The minimum description length approach to word
segmentation is attractive because it can take into ac-
count many disparate psychological findings and theories
(Brent, 1999). Though infants have been interpreted
as remembering phoneme transition probabilities (Saf-
fran, Aslin, & Newport, 1996), the same results may
be explained by positing the formation of lexicon en-
tries for the more common phoneme pairs. The existence
of “episodic” memories for words (Goldinger, 1998) can
be explained as the brain’s attempt to retain all possi-
ble information for compression; while a prototype ef-
fect would result from encoding the mean of many clus-
tered words or sounds, individual instances should still
be retrievable if it only requires a few more bits to spec-
ify an instance — though if memory is scarce, the brain
may maintain a low error rate by discarding these few
bits. Unusual words or phrases may be more cheaply
encoded in their entirety; hence the episodic memory for
the particular prosodic affect that accompanies Rosebud
or Stella (Goldinger, 1998).

One of the original hopes of this project was that
the recursion tree might also provide a natural struc-
ture for higher level MDL learning, with syllables clus-
tered naturally into words by sound similarity and coar-
ticulation effects. For instance, the self-similarity al-
gorithm clusters “night rate” as [nait|ret, separating
“night” from “rate” and then subdividing “rate” into
its constituent sounds, while “nitrate” is clustered as
naiftre]t. The transcriptions in Appendix A reveal that
obtaining higher structure from the auditory signal is
often not so simple, as words can be spread across sev-
eral subtrees. Still, in 25 of the 35 utterances, all parts
of the noun were clustered at the same level of recur-
sion, which would mean Winnow learning on the higher
nodes of the tree may have proven useful. Some interior
nodes contained two related subtrees and an unrelated

one, suggesting that a binary tree, rather than the cur-
rent ternary structure, may be more appropriate for such
learning.

Self-similarity segmentation tends to split stop
phonemes down the middle, where the airflow is stopped.
A human listener can clearly make out the phoneme both
before and after the break because of coarticulation ef-
fects, but only one side of the segmentation can be tech-
nically correct. The fact that the self-similarity algo-
rithm was successful at learning words with consonants
that were divided in this way suggests that some conso-
nants may be better thought of as auditory “edges,” a
point suggested by quantal theory (Stevens, 1989).

Comparison with prior word segmentation methods is
difficult because no previous method solved quite the
same problem. PERUSE (Oates, 2002) reported suc-
cessful segmentation of 65% of the most frequent words
it encountered, but it used an expectation maximiza-
tion procedure that required iterating repeatedly over
the entire data set, making it unlikely to scale. CELL
(Roy & Pentland, 2002), an online system, reported 54%
segmentation accuracy on its highest-ranked word can-
didates, compared to our algorithm’s 40% segmentation
accuracy for our ten target words, but CELL used an ex-
tensively trained and hand-modified phoneme classifier
as input to its segmentation module. To our knowledge,
no previous work has both avoided using a phoneme clas-
sifier and used a single-pass algorithm for segmentation.

The present data set is small, and is not entirely
representative of a broad range of words and circum-
stances. The utterances were only produced by one
speaker, tended to have the target word in the final
position, and only included one multisyllabic word and
no vowel-initial words in the production and recognition
tests. Future work will address these concerns; mean-
while, we hope that Appendix A will convince the reader
that even the samples used contained a fair amount of
diversity.

Another question that would be worthwhile to address
is whether this system will reproduce some of the com-
mon mistakes or biases of children learning new words.
For example, if unstressed syllables appear first in a sen-
tence’s final word, they may be incorrectly grouped with
the linking words and left unparsed until late in the re-
cursion. If the target word begins with a strong syllable,
however, the remaining weak syllable is left relatively
high in the parse tree. A learning algorithm that takes
tree distance into account should therefore display the
bias of children for learning words that begin with strong
syllables more easily than those that begin with weak syl-
lables, as has been observed in children learning English
at 7 1 months (Jusczyk, 1999).

Though attempting to explain infants’ word segmen-
tation abilities with one grand theory of everything may
be an impossible task, a minimal description length ap-
proach at all levels, from sentence to sub-phoneme, is
appealing in its elegance. Implementing it and deter-
mining what effects it does and does not explain may
be the best way to create a theory of word segmentation
that is itself both concise and general.
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Appendix A: Transcriptions of

Segmentations

The following are phonetic transcriptions of the initial seg-
mentations that the system performs on the 35 utterances in
the experiment before Winnow is applied, using only intra-
utterance self-similarity measures. Straight brackets indicate
the loudest part of the utterance, or top level of recursion;
parentheses indicate deeper levels of recursion. In places
where a phoneme sounds is split, the corresponding symbol
is repeated on either side of the split. All phonetic judg-
ments were made post hoc for transcription only; the system
segmented audio without a phoneme classifier.

dis(s (1z o) b)[bal].
yo wana p[pler wr (3o b)bal]?
tra(j) o (ka)tf do blbal]!

(test) 1(z) [Deer o](bal)?

dis iz o b[bulk.

s(i)? 1ts o b[bu]k!

yo wan[noe r(id) do (bu)k?
(test) 1z [deet o] b(bu)k?

dxts o (k)[kar]r.

s(i) 9o k[kar] ro(1)?

[yee], 1t(s o) k(ar)r!

(test) z (3 eerc o) k[kar|r?

dis(s (1)z o (tf))[en]r.

pi(p)pl s(sic) () tfferr]z.
wlerr]z (yor (tf))err?

(test) z [0 eec o] (tf)ewr?

1ts o d[dogi]!

dzet(s (r))(art), o d[dog]i!

yo wano (pet (do d))[do]gi?
(test) s (3 eer o) d[do]gi?
O[owz or mai] k(ki)z.

(yo wans) p[pler wi] dow(z k(i)z?
ar ([)[rh ae]v o lot o (k(i )z)
(test) (ar) dJowz mar k](i)z?
dats (mar) ple]n.

((si) 3o) plen]?

tr(ar) drram] s(em)6(1y) (w1)0
(test) 1z [0 eer o] pen?

0 &(tf) (mar) flo]n.

yo wane (¢ (a))[al] sam(wen on) m(ar) f(o)n?
(yee, yu) k (een)(pler wi)0 (mar) flo]n.

(test) 1z (dz) m[mai] f(o)n?

[0z](ts A [)u.

s(i) [8o Ju]u?

[yae], 1t(s (5) f)(u)u!
(test) 1z deet o [[u]?
[01s 18]z o (s)p(pun).
<()? {vu) it [z () o
o) Sp)(pn
(test) 1z [Ozec A} s
(test) 1z (deer €n) €
(test) 1z 8(dezr o) bla
(test) z [dezer o] ku

(test) 1z [0 eer o] h s?

(test) [1z 8 zer o] (k(1ci))?

(8a?) (pe)n.

(s)p(pun).
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