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Abstract

Team communication provides a rich source of discourse,
which can be analyzed and tied to measures of team
performance. Our goal is to better understand and model
the relationship between team communication and team
performance to improve team process, develop
collaboration aids, and improve the training of teams. In
the present work, we use Latent Semantic Analysis (LSA)
for automating the analysis and annotation of team
discourse. We describe two approaches to modeling team
performance. The first measures the semantic content of a
team’s dialogue as a whole to predict the team’s
performance. The second categorizes each team member’s
statements using an established set of discourse tags and
uses them to predict team performance. In three
experimental settings we demonstrate the ability of these
approaches to model performance and generalize to new
datasets.

Introduction

Evaluating teams of decision-makers in complex
problem-solving environments requires effective models
of individual and team performance. Without these
models, current methods of assessing team and group
performance rely largely on global outcome metrics,
which often lack information rich enough to diagnose
failures or suggest improvements in team cognition or
process. Modeling and assessment of teams has been
hindered by the fact that the richest source of data, the
verbal communication among team members, is difficult
to collect and analyze. Prior attempts at annotating the
content of communication have relied on tedious manual
techniques or have only employed limited data such as
frequencies, pattern analyses and durations of
communications. With the advent of NLP, AI and
machine-learning techniques that can measure the
semantic content of communication discourse, novel
methods for the analysis and modeling of team
communication can be applied.

A team’s verbal communication data provides a rich
indication of cognitive processing at both the individual
and the team level. This can be tied back to both the
team’s and each individual team member’s abilities and
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knowledge. The manual analysis of team communication
has shown promising results, see for example, Bowers et
al. (1998). This analysis, however, is quite costly, where
coding for content can take upwards of 28 hours per 1
hour of tape (Emmert, 1989) and can be subjective. Thus,
there is a need for techniques to automatically analyze
team communications to categorize and predict
performance.

The ultimate goal is to be able to automatically analyze
a team’s communication and incorporate that analysis into
models that can provide feedback during or after training,
as well as predict performance. This work extends
approaches to computational analysis of language, while
also providing techniques to improve modelling of teams
and measuring performance.

A number of Al, statistical and machine learning
techniques have been applied to discourse modeling,
generally for the purpose of improving speech recognition
and dialogue systems. However, few have focused
directly on just the content of the discourse of teams.
Recent methods include decision trees (Core 1998),
statistical modelling based on current utterance and
discourse history (Chu-Carroll 1998), and hidden Markov
models. For example, in the work by Stolcke et al.,
(2000), they were able to predict the tags assigned to
discourse within 15% of the accuracy of trained human
annotators, while Kiekel et al., (2004) developed markov
models of communication patterns among team members
that predicted overall performance.

In this work we generate predictive models using
Latent Semantic Analysis (LSA) to measure free-form
verbal interactions among team members. Because LSA
can measure and compare the semantic information in
these verbal interactions, it can be used to characterize the
quality and quantity of information expressed. LSA
analysis can be used to determine the semantic content of
any utterance made by a team member as well as to
measure the semantic similarity of an entire team’s
communication to another team.

This paper extends research on automated techniques
for analyzing the communication and predicting team
performance using corpora of communication of teams
performing simulated military missions (see Kiekel et al.,
2002; Martin & Foltz, 2004). We focus on two
applications of this approach in order to test how well



these methods generalize to different data sets and
parameter conditions. The first application predicts team
effectiveness based on an analysis of the entire discourse
of the team during a mission. The second application
predicts categories of discourse for each utterance made
by team members and uses the tags to predict
performance. Testing  generalizability  permits
characterizations of the robustness of the methods. We
look at two levels of generality. At the lower level, we
consider the range of situations for which a given
communications model can produce meaningful
predictions. At the higher level, we consider the range of
team communication scenarios that LSA based techniques
can successfully model. We illustrate the applicability of
the approach across a number of datasets. We conclude
with a discussion of how these techniques can account for
the role of communications in teams. Overall we
illustrate how NLP, Al, and machine learning techniques
can be used to automatically model and predict team
performance using realistically sized data sets of team
communication.

Latent Semantic Analysis

LSA is a fully automatic corpus-based statistical
modeling method for extracting and inferring relations of
expected contextual usage of words in discourse
(Landauer, Foltz and Laham, 1998).

In LSA a training text is represented as a matrix, where
each row represents a unique word in the text and each
columns represents a text passage or other unit of context.
The entries in this matrix are the frequency of the word in
the context. A singular value decomposition (SVD) of the
matrix results in a 100-500 dimensional "semantic space",
where the original words and passages are represented as
vectors. The meaning of any passage is the average of the
vectors of the words in the passage (Landauer et al.,
1997). Words, utterances, and whole documents can then
be compared against each other by computing the cosine
between the vectors representing any two texts. This
provides a measure of the semantic similarity of those two
texts, even if they do not contain words in common.

LSA has been used for a wide range of applications and
for simulating knowledge representation, discourse and
psycholinguistic phenomena. These approaches have
included: information retrieval (Deerwester et al., 1990),
automated essay scoring (Landauer et al., 2001), and
automated text analysis (Foltz, 1996). More recently
Serafin and Di Eugenio (2004) used LSA for dialogue act
classification, finding that LSA can effectively be used
for such classification and that adding features to LSA
showed promise. In addition, Martin and Foltz (2004)
found that LSA predicted overall team performance
scores as well as effectively classified speech acts.

Experiment 1

Three corpora of team transcripts were collected as a
result of three different experiments that simulate
operation of an Uninhabited Air Vehicle (UAV) in the
CERTT (Cognitive Engineering Research on Team
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Tasks) Lab's synthetic team task environment (CERTT
UAV-STE) (see http://www.certt.com). CERTT's UAV-
STE is a three-team-member task in which each team
member is provided with distinct, though overlapping,
training; has unique, yet interdependent roles; and is
presented with different but overlapping information
during the mission. The overall goal is to fly the UAV to
designated target-areas and to take acceptable photos at
these areas. To complete the mission, the three-team
members need to share information with one another and
work in a coordinated fashion. Most communication is
done via microphones and headsets, although some
involves computer messaging.

Table 1. Corpora Statistics

Corpus Transcripts Teams | Missions | Utterances
AF1 67 11 7 20245
AF3 85 21 7 22418
AF4 85 20 5 22107
The three corpora are labelled by experiment name:

AF1, AF3, and AF4. Each corpus consists of a number of
team-at-mission transcripts, where mission duration is
approximately 40 minutes. Some statistics are shown in
Table 1. All communication was manually transcribed.

To train LSA, we added 2257 documents to the
transcripts of all of the corpora to create a semantic space.
These documents consisted of training documents and
pre- and post-training interviews related to UAVs. Unless
otherwise noted all results reported were computed using
300 dimensions, although results were robust across a
range of dimensions.

Predicting Team Performance

Throughout the CERTT UAV-STE experiments an
objective performance measure was calculated to
determine each team’s effectiveness at completing the
mission. The performance score was a composite of
objective measures including: amount of fuel/film used,
number/type of photographic errors, time spent in
warning and alarm states, and un-visited waypoints. This
composite score ranged from -200 to 1000. The score is
highly predictive of how well a team succeeded in
accomplishing their mission. We used two approaches to
predict these overall team performance scores: correlating
entire mission transcripts with one another and by
correlating tag frequencies with the scores.

Prediction Using Whole Transcripts Our first approach
to measuring content in team discourse is to analyze the
transcript as a whole. Using a k-nearest neighbor method
that has been highly successful for scoring essays with
LSA (Landauer et al., 1998), we used whole transcripts to
predict the team performance score. We generate the
predicted team performance scores as follows: Given a
subset of transcripts, S, with known performance scores,
and a transcript, t, with unknown performance score, we
can estimate the performance score for t by computing its



similarity to each transcript in S. The similarity between
any two transcripts is measured by the cosine between the
transcript vectors in the semantic space. To compute the
estimated score for t, we take the average of the
performance scores of the 10 closest transcripts in S,
weighted by cosines. A holdout procedure was used in
which the score for a team’s transcript was predicted
based on the transcripts and scores of all other teams (i.e.
a team’s score was only predicted by the similarity to
other teams). Tests on the AF1 corpus showed that the
LSA estimated performance scores correlated strongly
with the actual team performance scores (r = 0.76, p <
0.01, r=0.63, p<.01 when correcting for the repeated
measure structure (see Martin & Foltz, 2004 for
additional details on the approach). Thus, the results
indicate that we can accurately predict the overall
performance of the team (i.e. how well they fly and
complete their mission) just based on our automatic
analysis of their mission transcripts.

Generalization of Team Performance scores for
Different Corpora While the results were successful for
the AF1 corpus, it is important to determine if similar
results hold for the other two corpora. In addition, it is
important to determine if the technique can operate
successfully by training the algorithm on the performance
scores of one corpus in order to predict performance
scores on another corpus. This approach is equivalent to
having collected N transcripts from teams flying UAVs
on a set of particular missions and then trying to predict a
new set of teams performing a different set of missions.
Thus, delimiting the bounds of generalization reveals how
robust such a system could be in more realistic contexts
where different teams may have to fly entirely novel
missions.

We tested the generalization for the AF3 set of
transcripts, by training our algorithm on the performance
scores of the AF3 experiment and predicting the
performance scores from the other experiment (AF4).
Using the 10 closest transcripts, as before, the LSA
estimated scores strongly correlated with the actual scores
or AF3, showing only a four percent degradation in
performance (r=0.72 to r=0.66). Thus, there was a high
level of generalization from one training corpus to
predicting the performance scores of another.

Automated Discourse Tagging

Another approach to utilizing the semantic content of
team dialogues to measure performance is to focus on the
dialogue in the transcripts at the turn level. We designed
an algorithm to learn from human coded content of the
communication data and then apply the tool to code new
communication data.

We used a tag set developed by Bowers et al. (1998) to
analyze airplane cockpit team communication. The set
consists of tags for acknowledgement, action, fact,
planning,  response,  uncertainty, and  non-task
communication. The frequency of the occurrence of these
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tags in team discourse has been shown to be predictive of
team performance.

The 67 transcripts in AF1 were manually coded. Of
these 12 were coded by two humans independently.
Working within the limitations of the manual annotations,
we developed an algorithm to code transcripts
automatically, resulting in some decrease in accuracy, but
at significant savings in time and resources.

We established a lower bound for coding performance
of 0.27 by computing the tag frequency in the 12 AFI
transcripts coded by two annotators. If all utterances were
coded with the most frequent tag, the percentage coded
correctly would be 27%.

Algorithm for Automatic Annotation We tested our
algorithm to automatically annotate the data, by
computing a "corrected tag" for all turns in the 12
transcripts coded by two human annotators. This was
necessary due to the only moderate agreement between
the humans. We used the union of the sets of tags
assigned as the "corrected tag". The union better captures
all likely code types within a turn. A disadvantage to
using “corrected tags” is the loss of sequential tag
information within individual turns. However the focus of
this study was on identifying the existence of relevant
discourse, not on its order within the turn.

Then, for each of the 12 team-at-mission transcripts, we
automatically assigned "most probable" tags to each turn,
based on the corrected tags of the "most similar" turns in
the other 11 transcripts, using Martin and Foltz
(2004)algorithms: LSA and LSA+.

The LSA algorithm uses only LSA to measure semantic
similarity to predict the most probable codes, while the
LSA+ algorithm adds two syntactic features (Martin &
Foltz 2004). Using LSA+ the performance was only 10%
and 15% below human-human agreement, depending on
which agreement measure is used. (see Table 2).

We used two measures of agreement: C-value
(Schvaneveldt, 1990) measures the proportion of inter-
coder agreement, without taking into account agreement
by chance and Cohen’s Kappa, does accounts for chance
agreement, as shown in Table 2.

Table 2. Kappa and C-Values.

Annotators-Agreement C-Value Kappa

Human-Human 0.70 0.62
LSA-Human 0.59 0.48
LSA+-Human 0.63 0.53

The results suggest that we can automatically annotate
team transcripts with tags. While the approach is not
quite as accurate as human coders, LSA is able to tag an
hour of transcripts in under a minute. As a comparison, it
can take half an hour or longer for a trained tagger to do
the same task.

Predicting  Performance from  Tags  While
demonstrating that the method is able to tag, it is critical
to determine the relationship of the type of utterances to
performance. We computed correlations between the



team performance score and tag frequencies in each team-
at-mission transcript.

The tags for all utterances in the 67 AF1 transcripts
were first generated using the LSA+ method. The tag
frequencies for each team-at-mission transcript were then
computed by counting the number of times each
individual tag appeared in the transcript and dividing by
the total number of individual tags occurring in the
transcript.

Our results indicate that frequency of certain types of
utterances correlate with team performance. The
correlations for tags predicted by computer are shown in
Table 3.

Table 3. Tag to Performance Correlations.

TAG PEARSON SIG.
CORR. 2-Tailed
Acknowledgement 0.335 0.006
Fact 0.320 0.008
Response -0.321 0.008
Uncertainty -0.460 0.001

We see that the automated tagging provides useful
results that can be interpreted in terms of team processes.
Teams that tend to state more facts and acknowledge
other team members more tend to perform better. Those
that express more uncertainty and need to make more
responses to each other tend to perform worse. These
results are consistent with those found in Bowers et al.
(1998), but were generated automatically rather than by
the hand-coding done by Bowers. The results therefore
illustrate a direct link between the types of language used
and team performance.

Generalization Experiments

While the above results show that the approach can
provide accurate predictions of team performance, it is
important to test the generalization to different team tasks.
In this section, we present results from two additional data
sets: Navy TADMUS and Air Force Research Labs
WCAS.

We obtained 64 transcribed missions from the Navy
Tactical Decision Making Under Stress (TADMUS)
dataset collected at the Surface Warfare Officer’s School
(SWOS) (See Johnston, Poirer and Smith-Jentsch, 1998).
In the scenario, a ship’s air defense warfare (ADW) team
performs the detect-to-engage (DTE) sequence on aircraft
in the vicinity of the battle group, and report it to the
Tactical Action Officer and Bridge. Associated with the
transcripts were a series of Subject Matter Expert (SME)-
rated performance measures (see Table 4).

As in Experiment 1, we developed a semantic space of
information relevant to the domain and then computed
predicted scores for each of the SME ratings. Unlike
Experiment 1, we combined the LSA k-nearest measure
with a series of other natural language measures that have
been successfully used in characterizing essay quality
and account for effects of word order (See Landauer,
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Laham & Foltz, 2001). Using a stepwise regression
model, the system built a model that incorporated,
typically the 4 to 6 best measures. The correlation of the
model’s predicted scores to the SME scores using a Jack-
knife correlation which predicts each score for each
transcript on the basis of the other 63 transcripts is shown
in Table 4.

Table 4. Model correlations to SME ratings

SME measure Jack-knife Corr.
to SME ratings
Leadership (guidance + priority) 0.73
Brevity 0.58
Clarity 0.68
Completeness of reports 0.63
Passing information 0.61
Proper phraseology 0.78
Seeking sources 0.57
Situation update 0.45
Providing and requesting 0.62
backup/assistance
Error correction 0.57
Providing guidance 0.61
Stating priorities 0.73
Anti-Air Warfare Team Observation 0.61
Communication 0.59
Information Exchange 0.50
Supporting Behavior 0.61

The results show significant correlations to all SME
ratings and they show that the approach to predicting
team performance generalizes to highly different types of
team communication data.

In another experiment in cooperation with the Air Force
Research Lab (AFRL) in Mesa, Arizona, we analyzed
engagement transcripts recorded from F-16 simulators.
We analyzed communication transcribed from radio audio
using automatic  speech-to-text software. All
engagements were air-to-air scenarios against an enemy
threat involving a team of four F-16s and an airborne
warning and control system aircraft (AWACS). AFRL
provided subjective SME team performance ratings
corresponding to 230 engagement transcripts.

One SME evaluates an engagement, but different SMEs
were used over the time of our data. SME agreement data
was not available, although previous research on similar
data found SME agreement of 0.42. (See Krusmark,
Schreiber & Bennett, 2004)

As before, we created a semantic space of relevant text.
For team performance prediction, we used the same
language measures as the TADMUS experiment
augmented with speaker frequency counts and speaker
frequency ratios. Because we had utterance time stamps,
we also included aggregate time measures of average time
between utterances and the engagement time duration.
Predictive models were created in the same manner as in
the TADMUS experiment. Table 5 shows the resulting
correlations between our predictions of team performance
and the original SME ratings of team performance and
Table 6 shows correlations to objective measures.



Table 5. Correlations to subjective SME ratings

SME measure Corr
Planning operations 0.58
Rate the comm.. about the 0.50
targeting/sorting/shots

Aggregate score for overall situational 0.54
awareness

Aggregate score for overall communications 0.42
Aggregate score for overall engagement 0.44

Table 6 Correlations to objective indicators

Objective indicator Corr
Team identification number 0.80
Mission identification number 0.67
Day of week of engagement 0.63

These result show we could predict/identify which team
was performing the task based solely on our
communications analysis. The teams’ tasks vary in a
known way over the course of the week of the team’s
training and the results show we can often determine the
day of the week the engagement was performed using our
communications analysis alone.

As with the TADMUS results, these AFRL results
show significant correlations (p < 0.0001) with both the
SME and the objective indicators again demonstrating
that this approach generalizes to disparate team
communication data sets.

Conclusions

Overall, the results of the studies show that LSA-based
algorithms can be used to predict team performance both
through modeling team communications directly and via
tagging content. These results show that the approach
generalizes beyond specific corpora and training sets.
The results from the tagging portion of the study are
comparable to other efforts of automatic discourse
tagging using different methods and different corpora
(Stolcke et al., 2000), which found performance within
15% of the performance of human taggers. While LSA
relies only on a semantic model, ignoring word order and
other syntactic and discourse factors, Experiment 2 shows
that it can also be incorporated with additional statistical
measures of language (see also Serafin & Di Eugenio
2004).

In addition to being able to use the LSA-based
approach to discourse tagging, this study demonstrates
how it can be applied as a method for doing automated
measurement of team performance. The LSA-predicted
team performance scores correlated strongly with the
actual team performance measures. This demonstrates
that analyses of discourse can automatically measure how
well a team is performing on a mission. This has
implications both for automatically determining what
discourse characterizes good and poor teams as well as
developing systems for monitoring team performance in
near real-time.
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For example, we can now locate utterances in the
semantic space that correspond to places where teams
received high or low team scores. These can provide
indications of the types of language that are strongly
correlated with good and poor performance. It can further
identify potential knowledge gaps in teams. Because of
the highly interactive nature of the task, there are certain
pieces of knowledge that must flow between team
members at critical points. These techniques can identify
if this information has been conveyed. Typically,
modelling these tasks have heretofore relied on large
amounts of hand-coding and SME knowledge in order to
determine the types of knowledge and team processes
involved at any part of a large team interaction. The
results suggest that the current approach can be used in
combination with other modelling efforts of teams.

In terms of applying this research to team dialogues, the
automated modeling provide cost-effective and efficient
approaches for analyzing communications data. The
experiments reported here show that the LSA techniques
work with both transcribed and automated speech
recognition (ASR) output confirming, Foltz, Laham &
Derr (2003) which showed that LSA predictions derived
from ASR output was highly robust. With 40 percent
word error rates, LSA’s prediction ability decreased by
only 10-15%. Thus, these methods can yield information
on team communication patterns that are valid, reliable,
and useful to the assessment and understanding of team
performance and cognition--necessary prerequisites to the
development of team training programs and the design of
technologies that facilitate team performance. In
particular, application domains that are communications-
intensive and that require a high degree of team
coordination can especially benefit from these streamlined
methods for assessing team communication.

Research into modelling team cognition based on team
discourse is a new but growing area. However, until
recently, the large amounts of transcript data have limited
researchers from performing analyses of team discourse.
The results of this study show that applying Al and NLP
techniques to team discourse can provide accurate
predictions of performance. These automated tools can
help inform theories of the nature of communication in
team performance and also aid in the development of
more effective automated team training systems.
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