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Abstract

The ‘size principle’ emphasized in recent Bayesian models of
inductive generalization (Kemp & Tenenbaum, 2003; Sanjana
& Tenenbaum, 2003; Tenenbaum & Griffiths, 2001) is tested
in the domain of property induction. As predicted by the
model, the size principle is obeyed more frequently when a
strong sampling assumption is explicit than when sampling is
weak or unspecified, but it is not followed consistently. This
implies that, although people are sometimes sensitive to
sampling assumptions as specified by the Bayesian
framework, models based on a strong sampling assumption
may not provide general accounts of property induction.

Introduction

From the time of their introduction in the 16" century until
general acceptance in the 18" century, tomatoes were not
widely eaten in Mediterranean Europe. Due to their
morphological resemblance to the nightshade plant, they
were assumed poisonous and avoided. This is a striking —
if unsuccessful — example of a common strategy that
human beings utilize to make sense of the world: to induce
possession of a property by one category from another.
Human beings perform these inductions naturally, often
from few examples and even between categories that are
prima facie dissimilar. Understanding the nature of this type
of inference is a major project of cognitive science.

Empirical studies of property induction have been
conducted since the mid 1970s using argument strength
ratings for premise-conclusion pairs and blank predicates.
Figure 1 provides an example.

Salmon have sesamoid bones
Lions have sesamoid bones

Therefore Polar Bears have sesamoid bones

Figure 1: Property induction argument

A host of phenomena have been observed concerning how
people evaluate the strength of such arguments (reviewed by
Sloman & Lagnado, 2005). Several models have been
proposed to account for the phenomena. The models fall
into two camps and as such are revealing of a deeper
methodological divergence in cognitive science. On the one
hand are models directly motivated by empirical work and
aimed at the level of algorithm (Marr, 1982). The two best
known were proposed in the 1990s (Osherson et al., 1990;
Sloman, 1993) and rely on notions of similarity and feature
matching. These models tend to be good explanatory

accounts of the phenomena that have been studied but their
scope is limited.

On the other hand are models which come from the
tradition of rational analysis (Anderson, 1990). These
models seek to identify the computational problem the
system is trying to solve and propose an optimal solution. A
common theme of the models of this type has been that they
utilize the tools of Bayesian statistics. Heit (1998) was the
first to apply the Bayesian framework to property induction,
providing an account of several of the empirical phenomena.
More recently a family of models has emerged that has
advanced the project by introducing a principled likelihood
calculation based on sampling assumptions, proposing a
general method for generating a hypothesis space and
attempting to ground the prior distribution in domain
specific theories (Kemp & Tenenbaum, 2003; Tenenbaum
& Griffiths, 2001; Sanjana & Tenenbaum, 2003). I refer to
this family of models collectively as the Sampling Sensitive
Bayesian (SSB) model.

In this paper I evaluate the approaches by testing a key
prediction of the SSB model. The SSB model relies on a
likelihood calculation that is dependent on assumptions
about how the data are sampled. This implies that argument
strength judgments should be sensitive to variations in
sampling procedures. Specifically, the SSB model generally
assumes that human property induction is best described
using strong sampling (Kemp & Tenenbaum, 2003; Sanjana
& Tenenbaum, 2000) an assumption that examples are
drawn at random from the set of objects to which the
predicate applies. This assumption leads to a ‘size
principle,” a preference for smaller hypotheses over larger
ones given data that is consistent with both. If the size
principle holds, then given more examples within a range,
participants should be less willing to generalize outside of
that range, a tendency that should manifest itself as an
inductive non-monotonicity whereby adding similar
premises decreases property induction to a dissimilar
conclusion. This phenomenon is not predicted by either
Osherson et al’s (1990) Similarity/Coverage (SC) model or
Sloman’s (1993) Feature-Based (FB) model as neither of
these models is sensitive to variations in sampling
procedures.

To identify the source of this divergence I first present the
similarity and feature-based models. I then present the SSB
model and show how the size principle emerges from the
model and why it does not apply to other models. Lastly I
present an argument preference experiment designed at
testing for the size principle and discuss the implications of
the results.
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Similarity and Feature-Based Models

Similarity/Coverage The SC model is based on overall
similarity judgments and assumes static category structure.
Argument strength is assessed based on three factors. The
first is the maximum similarity between the set of premise
objects and the conclusion. The second is the similarity of
the premise set to all of the members of the immediately
super-ordinate category that contains both the premise and
the conclusion, referred to as coverage. The third is a free
parameter denoting the relative weight of similarity and
coverage for an individual subject. Thus, an argument is
considered strong to the extent that the premise objects are
similar to the conclusion and the premise objects cover the
super-ordinate category. The model accounts for a wide
variety of empirical phenomena and provides a strong match
to human data (Osherson et al, 1990).

Feature-Based The FB model (Sloman, 1993) is expressed
as an artificial neural network where input units represent
values over a set of features and the output unit represents
the presence or absence of some property. The activation of
the output unit is determined by two things: the feature
overlap of the premise and conclusion and the number (in
the binary case) or the ‘magnitude’ (more generally) of
salient features possessed by the conclusion. Thus an
argument is considered strong if there is a great deal of
overlap of the features of the premise and conclusion and
the conclusion has few additional features. The FB model is
not based on a notion of similarity. To the extent that
similarity is based on feature overlap the model’s feature
matching rule may approximate similarity, but the basis for
generalization is featural, not similarity based. This is an
important distinction from the SC model which gives
computational primacy to the similarity calculation.
Nonetheless, the empirical predictions of the FB model are
similar to the SC model. One important exception is that the
FB model never predicts non-monotonicity, that adding
premises decreases argument strength, despite experimental
evidence for it.

Sampling Sensitive Bayesian Model

The SSB model recasts the computational problem in
statistical terms: Given data in the form of one or more
premise objects that are examples of some concept, what is
the probability that the conclusion object also belongs to
that concept? The concept corresponds to the full set of
objects to which the predicate applies (e.g. animals that
have sesamoid bones).

The solution is offered by Bayes’ rule which stipulates
how to update hypotheses in the light of data. The first step
is to identify a hypothesis space, a set of groupings of
objects which could conceivably correspond to the concept.
A prior distribution is assigned to the hypotheses which
denotes how likely each hypothesis is a priori. Next, using
Bayes’ rule, the probability distribution is updated to take
into account the data. Finally the status of the conclusion
object with respect to the concept is calculated by adding up

the posterior probabilities of the hypotheses to which the
conclusion belongs. Thus, an argument is considered strong
to the extent that the conclusion is a member of hypotheses
that have high posterior probability of corresponding to the
concept. Note that unlike the SC and FB models,
generalization is not based on comparing the premise to the
conclusion directly, but rather is mediated by the concept
corresponding to the true set of objects to which the
predicate applies.

Hypothesis Space and Prior The goal in specifying a
hypothesis space is to identify those groupings of objects
that humans would consider candidates for correspondence
with the concept. This is a difficult task since objects are
grouped differently based on domain. Sanjana and
Tenenbaum (2003) propose a similarity-based hierarchical
clustering approach where clusters and unions of clusters
supply the hypothesis space. This is a reasonable and
computationally tractable solution but it is imperfect since
overall similarity ratings may often misrepresent the way
objects are grouped depending on the predicate. For
instance, a bat might be considered more similar to a bird
overall, but biologically more similar to a whale. The source
of the prior distribution is also a difficult issue as prior
knowledge varies across domains and individuals. Sanjana
and Tenenbaum (2003) posit a prior distribution motivated
by rational principles such as preference for simplicity and
recent work has attempted to ground the prior in domain-
specific theories (Kemp & Tenenbaum, 2003). Resolving
these difficulties remains a major task for proponents of the
Bayesian framework.

Calculating the Posterior Distribution Bayes’ rule
specifies that the posterior distribution over hypotheses is
proportional to the prior distribution multiplied by the
likelihood of the data given each hypothesis

p(hd)ec p(d[h)p(n) (1)

where p (h | d) is the posterior probability that a hypothesis
(h) corresponds to the set of objects that belong to the
concept given some data (d), p(h) is the prior probability
assigned to the hypothesis and p (d | h) is the likelihood of
observing the data under that hypothesis.

Thus, given a hypothesis space and a prior distribution, all
that is needed to calculate the posterior distribution is the
likelihood, the probability distribution over hypotheses of
observing the data given that each hypothesis is true and
therefore corresponds to the concept. Calculation of the
likelihood depends on how the data are sampled. Two
sampling procedures are considered, weak and strong. Weak
sampling implies that an example is sampled independently
of the concept and then given a label specifying whether or
not it belongs to the correspondent set of objects. Given
weak sampling and data in the form of positive examples of
the concept, the likelihood of observing the data given a
hypothesis is 1 if the example belongs to the hypothesis and
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0 otherwise and as such is a binary indication of whether the
example is consistent with the hypothesis.

1 ifdeh

0 otherwise

p(dh) = { @

To clarify why this is so, take the scenario of a scientist
trying to identify the group of animals that have property
‘X’. To simplify the example suppose that there are twenty
types of animals in the world, and one example of each
type. All of the animals are vertebrates, but just five are
mammals. Also assume that the scientist’s hypothesis space
consists of just two hypotheses, that all vertebrates have
property ‘X’, and that just mammals have it. To test these
hypotheses, he chooses an animal from the set of twenty at
random and tests it for the property. The animal that he
selects happens to be a lion and he finds that it does indeed
have property ‘X’. This is an instance of weak sampling.
The data consists of an example (lion) and a label (‘has
property ‘X’’) and the probability of the data is irrespective
of the size of the hypothesis. If the larger hypothesis is true
and all vertebrates have property ‘X’, the probability that
the lion would be observed to have property ‘X’ is 1.
Likewise, since lions are mammals, if the smaller
hypothesis is correct, the probability that the lion would be
observed to have property ‘X’ is also 1. So given weak
sampling and data that is consistent with both hypotheses,
the likelihood does not favor one over the other.

Strong sampling implies that the example is sampled at
random explicitly from the set of objects to which the
predicate applies. This makes the data more informative
about the nature of that set since the probability of
observing that example is tied to the size of the hypothesis.
Specifically, the likelihood is the inverse of the size of the
hypothesis if the data is consistent with the hypothesis and 0
otherwise. In the case of more than one example drawn
independently, the likelihood becomes the inverse of the
size of the hypothesis raised to the number of examples

1
— ifdeh
p (| h)= 1" ifde (3)

0  otherwise

where | h | is the number of objects in the hypothesis and n
is the number of independently drawn examples. .

As an example of strong sampling imagine a slightly
different scenario. The scientist is assessing the same two
hypotheses but this time the animals have already been
tested for the property and those possessing it placed
together in a room. The scientist is allowed to randomly
observe one animal from the room at a time. The first
animal that he observes happens to be a lion. This is an
example of strong sampling. The example is sampled at
random from the set of objects that possess the property.
Unlike under weak sampling, the probability of the data is
not the same for the two hypotheses. Rather, if the smaller

hypothesis were true he would have had a one out of five
chance of observing a lion, whereas if the larger were true,
only a one out of twenty chance.

Size Principle Given the strong sampling assumption the
likelihood of a hypothesis decreases exponentially in
proportion to its size as new examples are encountered. As
posterior probability is proportional to likelihood, this
means that smaller hypotheses are favored over larger ones
given data that are consistent with both (assuming that the
larger hypothesis is not strongly favored a priori).
Intuitively, this reflects that given random sampling from
the concept, seeing a number of examples consistent with a
smaller hypothesis would be a coincidence if the larger
hypothesis were true and that the psychological plausibility
of this coincidence decreases exponentially as more
examples are added that are consistent with the smaller
hypothesis.

To see how this bears on induction we return to the strong
sampling scenario in which there are twenty animals, five of
which are mammals. If the scientist observes several
examples and each is a mammal, Bayes’ rule indicates that
he should give high posterior probability to the smaller
hypothesis relative to the larger one. The probability of
inducing a property to a conclusion is the sum of the
posterior probabilities of the hypotheses of which the
conclusion is a member. Since the non-mammals are only
members of one hypothesis and it has a low posterior
probability, the scientist should be reluctant to generalize
the property to the non-mammals. This tendency holds for
scenarios with more realistic hypothesis spaces and sets of
objects and can be stated more generally as an
unwillingness to induce a property to a conclusion outside
of a range given examples within that range.

In property induction tasks the size principle should
manifest itself as a non-monotonicity whereby adding
similar examples decreases the strength of an argument
whose conclusion is dissimilar. This phenomenon is not
predicted by either the SC or FB models. The SC model
predicts non-monotonicity only in the case where adding a
premise changes the super-ordinate category which is not
the case for premises within a range and a conclusion
outside of that range. The FB model never predicts non-
monotonicity because adding premises can neither decrease
feature overlap nor decrease the magnitude of the
conclusion. More generally, the Bayesian model is sensitive
to sampling because the sampling procedure determines
what can be inferred about the relationship between the
hypothesis space and the concept. Since the FB and SC
models do not rely on the notion of a hypothesis space nor
of a concept, phenomena that stem from variations in
sampling assumptions cannot be accommodated by the
theories.

Bayesian Model Claims It is helpful to view the assertion
of a size principle in the SSB model as amounting to two
related claims. The first claim is that judgments of argument
strength should be sensitive to sampling procedure. This
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claim is essential to the Bayesian model as it does not rest
on a specific modeling assumption but on the general
framework of the model.

The second claim is that a strong sampling assumption is
appropriate for describing the property induction task at
issue. The status of this claim is controversial. Heit (2001)
maintains that a non-monotonicity associated with adding
premises is inconsistent with many of the findings in the
literature; however, there is some evidence in favor of this
phenomenon. Sanjana and Tenenbaum (2003) report a non-
monotonic effect consistent with the size principle in a
property induction experiment, but the effect is small and
their experiment departs from the standard property
induction paradigm in several ways. Medin et al. (2003)
also predict non-monotonicity with addition of similar
premises but without relying explicitly on sampling. Rather,
they hypothesize that participants assume that the premises
are chosen so as to be informative of the category to which
the predicate pertains. Adding premises that share a property
will increase the association between that property and the
predicate and weaken an argument if the conclusion does
not possess the property. This is similar to the notion of
strong sampling in that it implies that the experimenter
purposefully chose the premises from the subset of objects
to which the predicate applies. Medin et al. do report some
non-monotonicities from adding premises, but the
phenomenon does not hold across all their test items.

Experiment

To evaluate the two claims of the Bayesian model I
conducted an experiment aimed at identifying if and when
the size principle is manifested in property induction. I
asked participants to choose between one-premise and three-
premise arguments given different cover stories which
implied different sampling procedures.

The first claim was tested by contrasting judgments of
groups given either weak sampling or strong sampling
instructions. According to the SC and FB models, changing
sampling assumptions should not alter judgments of
argument strength. The SSB model, however, is sensitive to
sampling and predicts non-monotonicities with strong
sampling but not with weak sampling. To  evaluate the
second claim, the third group was given instructions that
were vague about the sampling procedure as in the
conventional task, enabling insight into people’s default
assumption.

Method

Participants Participants were 41 Brown University
graduate and undergraduate student volunteers assigned
randomly to three groups, 14 to the ambiguous condition, 13
to weak sampling, and 14 to strong sampling.

Procedure All participants were given the same 10
scenarios to judge. Four were test items and six were
dummy scenarios created randomly to eliminate any
demand characteristic. As in Figure 2, each scenario

consisted of two arguments, labeled ‘A’ and ‘B’, and
participants had to choose which was stronger on a scale of
one to seven. The arguments consisted of premises that
attributed some blank biological property to one, two or
three animals and a conclusion attributing that property to
raccoons. For the test items one argument contained three
premises which were all animals very similar to one another
and the other contained just one of those animals.

A. B.
Lions secrete uric acid
crystals

House Cats secrete uric
acid crystals

Lions secrete uric acid
crystals

Tigers secrete uric acid
crystals

Raccoons secrete uric Raccoons secrete uric

acid crystals acid crystals
1 2 3 4 5 6 7
Strongly Prefer A Strongly Prefer B

Figure 2: Example argument strength scenario

Instructions were varied across groups to reflect different
sampling assumptions. One group was given instructions
that implied strong sampling, one weak sampling and one
group was given ambiguous instructions. For the ambiguous
group the instructions replicated the ones used in Osherson
et al’s (1990) original study and asked participants to rate
which argument was stronger assuming that the statements
above the lines were facts and those below the lines
conclusions that follow from those facts.

For both strong sampling and weak sampling groups, a
cover story was used to explain how the facts were
generated. The story involved two students each writing a
paper about raccoons. Premises described facts the the
students had uncovered in their research and the conclusion
was the statement about raccoons that they were going to
put into the paper. Participants were asked to rate which
student was more justified in putting the conclusion into
their paper.

The difference between the instructions for the strong
sampling and weak sampling groups concerned the way the
students conducted their research. In the strong sampling
condition, the research was described as follows: “Albert
and Bob both used the same book for the research, a book of
biological facts. Each section of the book covers some
property (e.g. animals with Sesamoid bones) and each page
of the section contains a picture of an animal with that
property. Albert and Bob got their facts by randomly
flipping to pages in the appropriate section. So for example
if Albert says that Lions have Sesamoid bones and Wolves
have Sesamoid bones, he knows that because he looked in
the section on Sesamoid bones and then flipped at random
to a page and found a picture of a lion and then flipped at
random to another page and found a wolf.” In the weak
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sampling condition, the research was described as follows:
“Albert and Bob got their facts by choosing an animal and
finding out if that animal had some property (e.g. Sesamoid
bones) and then choosing another animal and checking for
the property and so on. The number of facts in each scenario
represents how many animals they looked at in that
scenario. So for example, if Albert says that Lions have
Sesamoid bones and Wolves have Sesamoid bones, he
knows that because he first looked at lions and found they
had Sesamoid bones, and then chose to look at Wolves and
found that they too had Sesamoid bones. Please note that in
a particular scenario the animals listed are the only ones that
were looked at.”

Model Predictions The SC and FB models make no
assumptions about sampling so make the same predictions
regardless of instructions. The SC model predicts that three-
premise arguments (option A in Figure 2) should be judged
stronger than the one-premise arguments (option B in Figure
2) because the premises were chosen so that the three-
premise arguments had higher similarity and coverage than
the one-premise arguments. In the case of the FB model, the
three-premise arguments should be judged stronger or
approximately the same. Adding premises so close within a
range may not increase feature overlap measurably, but the
one-premise arguments should never be favored. The SSB
model predicts that one-premise arguments should be
favored in the case of strong sampling due to the size
principle. For weak sampling, three-premise arguments
should be slightly favored because certain hypotheses, such
as the one-premise animal alone (e.g. just lions secrete uric
acid crystals), have been eliminated increasing the posterior
distribution of hypotheses that include the conclusion. There
is no prediction inherent in the Bayesian framework for the
ambiguous condition as the model can be accommodated to
weak or strong sampling depending on how the instructions
are interpreted. Kemp & Tenenbaum (2003) and Sanjana &
Tenenbaum (2003) assume strong sampling, but the SSB
model does not necessitate that assumption.

Table 1: Prediction whether three-premise arguments or
one-premise arguments should be judged stronger for each
model across the three conditions.

Ambiguous Strong Weak

Sampling Sampling

Similarity/ 3-Premise 3-Premise | 3-Premise

Coverage

Feature- 3-Premise 3-Premise | 3-Premise

Based or Equal or Equal or Equal

Bayesian Unspecified | 1-Premise | 3-Premise

Results

As predicted by the Bayesian Model, variation of sampling
assumptions yielded a statistically significant treatment
effect (one way ANOVA; F=5.97, p<.01). The direction of
the effect was also in line with the Bayesian model. The
strong sampling group displayed a greater preference for

one-premise arguments than did the weak sampling or
ambiguous groups and this result was significant (Figure 3).
Pairwise t-tests indicated a statistically significant difference
between the strong sampling group and the weak sampling
groups (1=2.68, p<.01), and between the strong sampling
and ambiguous groups (t=3.18, p<.01), but no difference
between the ambiguous and weak sampling groups.

7 —
6 4.8 4.9
5 4.1 _ =
4
3 -
2 -
1 ,
Strong Weak Ambiguous
Sampling Sampling

Figure 3: Average preference for three-premise arguments
on a 1-7 scale. A score of 7 implies that the three-premise
argument was strongly preferred; a score of 1 implies that
the one-premise argument was strongly preferred and a
score of 4 implies that the one-premise and three-premise
arguments were judged equally strong.

Though the strong sampling group showed a greater
preference for the one-premise arguments than the weak
sampling or ambiguous groups, all groups showed an
overall preference for three-premise arguments. In other
words, most participants regardless of group failed to
display the size principle. Participants in the strong
sampling group preferred the one-premise arguments 30%
of the time versus 43% for the three-premise arguments.
Weak sampling and ambiguous groups behaved similarly to
one another preferring the three-premise arguments
approximately 73% and 66% of the time respectively
(Figure 4).

100% -
75% A 42.9%
73.1% 66.1%
04
50% 26.8%
25% ~ 23.2%
30.4% 3.2%
. 0,
0% : 0 : 10.7% :
Strong Weak Ambiguous
Sampling Sampling

B One-Premise Preferred 0O Judged Equal

O Three-Premise Preferred

Figure 4: Percentage of scenarios in which three-premise
arguments were judged stronger, one-premise arguments
were judged stronger and arguments were judged equally
strong across all three conditions.
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Discussion

The majority of participants across all conditions displayed
a monotonic tendency given additional examples within a
range and a conclusion outside of that range. The exception
was that participants gave a significant percentage of non-
monotonic responses in the strong sampling condition.
These results indicate that both types of models, the
similarity and feature-based and the Bayesian, capture some
aspect of property induction since sensitivity to sampling is
predicted only by the Bayesian model, whereas a general
monotonic tendency fits better with the SC and FB models.
Both Heit (1998) and Kemp and Tenenbaum (2003) note an
empirical correspondence between the Bayesian model and
the similarity and feature-based models. They suggest that
the two types of models may be best viewed as
complementary rather than competitive. The SC model, for
example, may be a heuristic-based approximation of the
SSB model as implemented in human beings while the SSB
model provides a computational level explanation of why
the SC model should work. These results highlight an
empirical lack of correspondence and therefore imply a
somewhat different account.

There is a tension between positing a computational level
model and making empirical predictions. If the algorithm
that the system uses only approximates the optimal
computation then it does not follow that phenomena
predicted by the computational level model should be
observed. Of course, the SSB model is only testable to the
degree that it is committed to specific predictions. The SSB
model sets up the computation as a choice between
hypotheses that is sensitive to sampling. While this
characterization does provide new insights into the
inductive process, people do not fully conform to it. Dual
process theory (Evans & Over, 1996; Sloman, 1996;
Stanovich & West, 2000) provides a possible solution. The
size principle non-monotonicity may be attributable to an
effortful rule-based reasoning process, whereas the more
common monotonic response is a result of the intuitive
process. According to this account, The SC and FB models,
or some other relatively simple heuristic, represent an
intuitive associative process that occurs effortlessly and
sometimes leads to counter-normative results. The SSB
model, in contrast, provides the computational level account
of how the rule-based system goes about integrating
sampling information and other considerations into an
evaluation of candidate hypotheses. This would explain
both why some people were sensitive to the sampling
manipulation and why most people were not on the
assumption that only a minority put in the required effort
and had the necessary skills to solve the problem.

The second claim evaluated in this paper, that strong
sampling is appropriate for describing human property
induction, has little support in these data. Not only did few
people follow the size principle given explicitly strong
sampling, but ambiguous instructions almost invariably
resulted in monotonicity. It may well be that strong
sampling is the default assumption for other inductive tasks,

but for the types of stimuli used in this experiment, adding
premises within a range did not generally weaken property
induction to a conclusion outside of that range.
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