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Abstract

We present the beginnings of an account of how
representations and processes developed for the purposes of
reflective reasoning provide a basis for reflexive reasoning as
well. Specifically, we show how the symbolic-connectionist
representations that underlie the DORA model (Doumas &
Hummel, 2005), and the comparison based routines that
DORA exploits in the service of addressing reflective
problems, such as analogy making and the discovery of novel
relations, can be extended to address reflexive reasoning
phenomena.  We use the reflexive reasoning routines
developed in DORA to simulate findings demonstrating that
reflexive processes operate when subjects solve real-world
mathematics problems.

Keywords: Reflexive reasoning, reflective reasoning, relational
reasoning, representation.

Reflective and Reflexive Reasoning

Relational processing plays a central role in human
perception and thought. It permits us to perceive and
understand the spatial relations among an object’s parts
(Hummel, 2000; Hummel & Biederman, 1992; Hummel &
Stankewicz, 1996), comprehend arrangements of objects in
scenes (see Green & Hummel, 2004, for a review), and
comprehend abstract analogies between otherwise very
different situations or systems of knowledge (e.g., between
the structure of the solar system and the structure of the
atom; Gentner, 1983; Gick & Holyoak, 1980, 1983;
Holyoak & Thagard, 1995). Relational thinking is powerful
because it allows us to generate inferences and
generalizations that are constrained by the roles that
elements play, rather than strictly the properties of the
elements themselves. For example, in the analogy between
the an atom and a solar system the sun is similar to the
nucleus of the atom, not because of its literal features, but
because of their shared relations to planets and electrons,
respectively. Moreover, given that gravity causes the earth
to revolve around the sun, you can infer that some force
might also cause electrons to revolve around atoms. This
kind of inference is effortful and requires reflective thought
(Hummel & Choplin, 2000; Hummel & Holyoak, 2003).

While relational reasoning is reflective, in that it is
effortful and deliberate, many of the inferences we routinely
make are so effortless that we are hardly even aware of the
fact that we are making them. For example, if you are told
that Susan went to the movie theater you might infer that
Susan saw a movie. Moreover, you probably assume that
Susan is human and a female (as opposed to, say, a male
raccoon). This kind of inference is made so automatically
that it is often referred to as reflexive (e.g., Shastri and
Ajjanagadde, 1993).

In the study of human cognition, reflexive and
reflective inference have, for the most part, been examined
separately. For example, reflexive inference is often studied
in the context of reading and story comprehension (e.g.,
Kintsch & van Dijk, 1978; Shastri & Ajjanagadde, 1993; St.
John, 1992; St. John & McClelland, 1990), while reflective
inference is emphasized in studies of problem solving and
higher level reasoning (e.g., Anderson & Lebiere, 1998;
Byrne & Johnson-Laird, 1989; Forbus, Gentner, & Law,
1995; Gentner, 1983, 2003; Holyoak & Thagard, 1989,
1995; Newell, 1990). Consequently, most computational
models of reflexive reasoning are not suited to account for
reflective processes (e.g., Shastri & Ajjanagadde, 1993; St.
John, 1992), and models of reflective reasoning are not
suited to account for more reflexive inferences (e.g.,
Falkenhainer et al., 1989; Forbus et al., 1995; Holyoak &
Thagard, 1989).

While reflexive and reflective processes do seem to
follow different kinds of computational constraints (Shastri
& Ajjanagadde, 1993), in many cases, these two types of
processes interact and need to be integrated in the
performance of a single task. For example, a mathematical
solution that requires a reflective rule-based reasoning often
involves retrieval of arithmetic facts (e.g., 3 + 5 = 8). The
activation of such facts is highly reflexive (e.g., LeFevre,
Bisanz, & Mrkonjic, 1988; Niedeggen & Rosler, 1999).
For this reason, it might be limiting to view reflective and
reflexive reasoning as isolated phenomena. After all, both
occur within the same cognitive architecture, and both
processes should operate on the same set of mental
representations (Hummel & Choplin, 2000).

1245



In this paper we provide initial ideas about how a
representational architecture that can support structured
relational (i.e., heavily reflective) reasoning might also
provide a basis for more reflexive forms of reasoning. This
work follows from initial ideas presented by Hummel and
Choplin  (2000). We show how the same basic
representations and processes that underlie DORA
(Discovery Of Relations by Analogy; Doumas & Hummel,
2005; Doumas, Hummel & Sandhofer, submitted), a model
built to handle heavily reflective reasoning processes such
as relational reasoning and inference, and the discovery and
predication of relational concepts, can also provide the basis
for an account of reflexive reasoning.

The DORA Model

DORA is a symbolic connectionist network that learns
structured representations of relations from unstructured
inputs. DORA is an extension of Hummel and Holyoak’s
(1997, 2003) LISA model of relational reasoning. Like
LISA, DORA dynamically binds distributed (i.e.,
connectionist) representations of relational roles and objects
into explicitly relational (i.e., symbolic) structures. The
resulting representations enjoy the advantages of both
connectionist and traditional symbolic approaches to
knowledge representation, while suffering the limitations of
neither (see Doumas & Hummel, 2005). DORA'’s basic
representational scheme is adapted from LISA. In DORA,
propositions are encoded in LTM by a hierarchy of structure
units (Figures 1). Predicate and Object (PO) units (triangles
and large circles in Figure 1) locally code for specific roles
and fillers. While LISA must use different types of units to
code for roles and their fillers, DORA uses the same types
of units to code both roles and fillers and differentiates
between roles and fillers via its binding mechanism (see
below; though for the purposes of clarity, in figures we use
triangles for POs representing roles and circles for POs
representing fillers). For example, the proposition bite
(Fido, Brian) would be represented in part by PO units
representing the relational roles biter and bitten, and the
fillers Fido and Brian. POs are connected to semantic units
(smaller circles in Figure 1) that code their semantic features
and represent both objects and relational roles in a
distributed fashion. For example, the PO unit representing
Fido would be connected to a set of semantic units denoting
Fido’s features (e.g., “dog”, “male”, “fierce”) and the PO
unit representing Brian to a set of semantic units denoting
Brian’s features (e.g., “cat”, “male”, “tabby”). Similarly,
the biter and bitten roles would be connected to the
semantic units denoting their features. Role-binding units
(RBs; rectangles in Figure 1) bind roles to objects in LTM.
Bite (Fido, Brian) requires by two RBs, one binding Fido to
biter, and one binding Brian to bitfen. At the top of the
hierarchy, proposition (P) units (oval in Figure 1) binding
sets of RBs into whole relational propositions. In Figure | a
P unit binds the RBs representing biter+Fido to bitten+Brian,
thus encoding the relational proposition bite (Fido, Brian).

bite{Fido, Brian)

P unit

biter+Fido RB units

PO units

QCQOOCOOOOOU O O O semantic units
Figure 1. A proposition in DORA. Triangles are used to
denote roles and circles to denote objects for clarity. In
DORA, the same types of units code both roles and fillers.

In this representation, the long-term binding of roles to
their fillers is captured by conjunctive RB and P units. This
is sufficient for storage in LTM, however, when a
proposition enters WM, its role-filler bindings must also be
represented dynamically on the units that maintain role-filler
independence (i.e., POs and semantics). In DORA, roles are
dynamically bound to their fillers by systematic asynchrony
of firing (see also Love, 1999). When a proposition enters
working memory (i.e., becomes active), bound objects and
roles fire in direct sequence, carrying the binding
information in the proximity of firing and the role/filler
distinction in the order of firing (e.g., with fillers following
the roles to which they are bound). To illustrate, in order to
bind Fido to the biter role and Brian to the bitten role (and
so represent bite (Fido, Brian)), the units corresponding to
the biter role fire directly followed by the units
corresponding to Fido, then the units for the bitten role fire
directly followed by the units for Brian. A system that is
sensitive to couplets (or pairs) of activation can use this
information to represent the bindings of Fido to the biter
role and Brian to the bitten role. As a result, DORA (as
opposed to LISA) uses the same pool of semantic units to
represent both predicates and objects (Doumas & Hummel,
2005).

DORA uses comparison-based intersection discovery to
isolate and explicitly predicate the shared properties of
compared objects and to bind these new predicates to fillers
to form bound role-filler pairs. DORA can then learn whole
relational representations by joining sets of role-filler pairs
(see Doumas & Hummel, 2005; Doumas et al., submitted).

DORA provides an account for a number of empirical
phenomena including the discovery of relational
representations that support analogical thinking (i.e.,
representations that are both structure sensitive and
semantically rich), children and adult’s learning of
dimensions and relational representations, the role of
comparison and progressive alignment in relation learning,
and the shape bias observed in early childhood
categorization (see Doumas & Hummel, 2005; Doumas et
al., submitted; Hummel & Doumas, 2005). DORA is a
model of reflective reasoning, however, as noted by
Hummel and Choplin (2000), the representational structure
of LISA (and, by extension, DORA) provides an interesting
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starting point for an account of reflexive reasoning as well.
In both DORA and LISA, propositions are retrieved into
WM from LTM via a form of guided pattern matching.
During retrieval and comparison, propositions are divided
into two mutually exclusive sets: a driver and one or more
recipients. Comparison is controlled by the driver.

As a proposition in the driver becomes active, it
generates a systematic pattern of activation on the semantic
units. During retrieval, propositions in LTM are allowed to
respond to this activation pattern via their shared semantic
connections. For example, if the proposition bites (Fido,
Brian) becomes active in the driver, units encoding biter
will become active, followed by units encoding Brian, and
so forth. As each PO unit becomes active, it activates a
subset of the propositions in LTM (those with shared
semantics). As propositions in LTM become active in
response to patterns of activation imposed by units in the
driver, they will themselves feed-back activation to the
semantic units. For example, as Fido becomes active in the
driver, it might activate other propositions about dogs in
LTM (recall that Fido is a dog). These propositions will, in
turn, pass activation to any semantic units to which they are
connected. The basic idea is to use the feedback from
structures in LTM (including both general schemas and
specific situations) to reflexively infer additional semantic
content of predicates and objects in the driver. As a PO in
the driver becomes active and excites a set of propositions
in LTM, the semantics that are activated by those LTM
representations can be inferred about the PO in the driver.

Consider a minimal case where Fido in the bite (Fido,
Brian) proposition was connected only to the semantic unit
“dog” (i.e., all DORA knows about Fido is that it is a dog).
When the biter role becomes active it activates a subset of
propositions in LTM about biting, and when Fido becomes
active, it activates propositions about dogs. The result is a
set of active propositions in LTM about biting dogs, which
activate a set of semantics connected to biting dogs. These
semantics can then be inferred about Fido (i.e., connected to
the Fido PO via simple Hebbian learning). The result is a
set of features of biting dogs reflexively inferred about an
object based on its relational context.

However, in order for this form of reflexive inference to
work, the amount of activation that propositions in LTM can
pass to semantic units must be limited. The reason is that,
left unchecked, spreading activation will simply activate all
propositions in LTM." There are a number of ways to limit
the spreading activation that results during reflexive
inference. One simple way, and one often imposed by the
constraints of the task at hand, is to use time. Often we
simply do not have the time to allow runaway activation
because we must make inferences quickly. Another way to
limit the effects of spreading activation is to tier or grade the
effect that LTM propositions have on the activation of the

! In short, as a result of one set of LTM propositions becoming active and
then activation their semantics, a new set of LTM propositions (those that
shared some semantic overlap with the active propositions) will become
active, and so forth.

semantics. For example, during reflexive inference the
activation of semantics can be graded as a function of when
they became active: Semantics that become active earlier
have more of an effect than semantics that become active
later during inference. In DORA this is accomplished by
scaling the activation of semantic units by an inverse
exponential function of the iteration they become active (i.e.,
scaled(a;) = a;e”, where a; is the activation of semantic unit i,
scaled(a;) is the scaled activation of unit Z, and ¢ is the time
that unit i became active). There is evidence for this type of
graded spreading activation from the literature on memory
(e.g., Anderson, 1974).

We are not claiming that either of these methods is the
only form of limiting activation spread during reflexive
inference (the two are, after all, not mutually exclusive).
We are simply using these methods as a demonstration that
it is that not difficult to avoid the spreading activation
problem that arises during reflexive inference, in a network
like DORA. What is interesting is that this account of
reflexive reasoning arises from the same processes and
representations that underlie DORA’s account of explicitly
reflective processes like analogy, relation discovery, and
relational inference.

Below, we use DORA’s reflexive inference algorithm
to simulate subjects N400 ERP responses. Because the N
400 response occurs between 300-500ms after the onset of
the stimulus, there is only a short amount of time during
which reflexive inference can occur.

Simulations

Bassok and her colleagues (e.g., Bassok et al., 1998)
have demonstrated that people are sensitive to the fit
between a mathematical operation and the elements upon
which the operation is performed. For example, people are
happy to add cars and trucks but refrain from adding cars
and mechanics.  Similarly, people are much happier
dividing cars among mechanics then cars among trucks.
Such “semantic alignments” make sense in light of the fact
that people frequently apply arithmetic operations to solve
real world problems (Bassok et al., 1998). Guthormsen and
colleagues (2004) used ERP methodology to test the fluency
of such alignments. Subjects watched aligned and
misaligned addition or division “applied” problems, such as
8 roses + 9 daises, flash across a computer screen in
sequence. For example, a subject would see the number 8§,
followed by the word roses, followed by +, followed by the
number 9, followed by the word daisies (each number, word,
or symbol was presented for 650ms). The subject’s task
was to solve the problem and generate a numerical answer
with an object label. The ERP recording was locked to the
second (target) word.

Guthormsen and colleagues (2004) found that the N400
magnitude was significantly larger for target words that
created misaligned problems than for those that created
aligned problems. This pattern of brain responses is similar
(in its polarity, timing, and scalp distribution) to that
observed in language comprehension, when people integrate
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the meaning of consecutive words in a sentence; it is
commonly referred to as the N400 effect (Kutas & Hilyard,
1980). That is, presented with a word that does not fit the
mathematical operation (e.g., baskets in: 5 apples + 3
baskets), subjects demonstrated the same neural response
that is observed when people encounter words that are
difficult to integrate in a sentence (e.g., shoes in “he drove
to the shoes™). These findings provide strong evidence that
people integrate mathematical and conceptual knowledge in
“real time,” while reading the problem.

Our goal was to simulate the effects observed by
Guthormsen et al. (2004) using DORA’s reflexive inference
algorithm.  We constructed DORA’s LTM (i.e., the
knowledge structures that would drive reflexive inference)
to reflect the fact that people learn and use mathematics in
the context of solving real-world problems. To this end, we
randomly selected 22 addition and 22 division word
problems constructed by undergraduates in a different study
(Reaume & Bassok, 2005). In that study, students were
presented with simple addition or division arithmetic
problems (e.g., 2 +7=9; 12/ 3 = 4, respectively) and asked
to generate corresponding word problems. An example of an
addition word problem is: “You have 2 oranges and 7 apples,
how many fruit do you have in all?” An example of a
division word problems is: “Johnny has 12 puppies and
wants to put them in 3 baskets, how many puppies should he
put in each basket?” These word problems reflected
people’s experience with real world situations in which
simple arithmetic operations might be used, and with word
problems they encountered in school.

To construct DORA’s LTM, we first listed the objects
involved in the mathematical operations (i.e., what was
being added/divided). Then, we had two undergraduate
research assistants create lists of features describing each of
these objects. Each of the 44 word problems (22 addition
and 22 division) was input into DORA’s LTM as a single
proposition (see Figure 2). Each proposition consisted of
the objects involved in the mathematical operation (e.g.,
added (roses, tulips), divided (apples, baskets)). Each object
was attached to the features the undergraduate coders had
used to describe it. Each mathematical operation was tied to
semantics describing the operation itself (i.e., “division”,
“dividend”, “divisor”).

divide (apples, baskets)

R

apples

dividend (apples) divisor (baskets)

dividend divisor baskets

Figure 2. Example of a proposition in DORA’s LTM.

To simulate a trial in Guthormsen et al.’s (2004)
experiment we presented DORA with one of the words in its
LTM (i.e., a word it knew) by placing a representation of
that word in the driver as a PO unit attached to a single
semantic unit (the semantic unit named the object; e.g., if
the word was “apple” the PO unit was attached to the
semantic “apple”). This corresponded to the first word
subjects in Guthormsen et al.’s (2004) experiment saw. We
then allowed DORA'’s reflexive inference algorithm to run
by allowing the PO in the driver to activate propositions in
LTM, and allowing these propositions to feedback
activation to the semantics (see Figure 3a). For example, if
the word was “apple”, a PO attached to the semantic “apple”
was activated in the driver, it began to activate propositions
in LTM about apples. We then placed a representation of
either addition or division in the driver.” Addition was
represented by a PO unit attached to the semantics,
“addition”, “addend1”, and “addend2”, and division by a PO
unit attached to the semantics, “division”, “dividend”, and
“divisor”. Of course we are not claiming that these are the
“right” semantic primitives of the relations addition and
division. Rather, our claim is that relations and their roles
are coded by distributed sets of features. The labels we
attach to these features are arbitrary and mean nothing to
DORA. They are only used to help interpret the model’s
behavior.

Again, we allowed DORA’s reflexive inference
algorithm to run by allowing the PO in the driver to activate
propositions in LTM, and allowing these propositions to
feedback activation to the semantics (Figure 3b). For
example, when the addition semantics became active they
began to activate propositons in DORA’s LTM about
addition. ~As a result of activating the initial word
representation (e.g., apple), and the representation of the
mathematical operation (e.g., addition) propositions in LTM
about performing the given mathematical operation on the
object tended to become most active, and thus activate
semantics about objects that commonly entered the specific
mathematical operation with the specific object. Continuing
our example, if apple was activated followed by addition,
then propositions about adding apples tended to become
active in LTM, which tended to activate the semantic
features of objects that were frequently added to apples
(namely, “fruit”).

We used the set of semantics that had become active as
a measure of what DORA expected to see when the second
word appeared. The second word was also a word from
DORA’s LTM (i.e., one it already knew). The difference
between the semantics that had become active during
reflexive inference and the semantics of the second word
was used as a measure of DORA’s “surprise” given the

We did not present DORA with numbers on these trials because it was
not our goal to simulate the mathematical reasoning subjects performed.
Rather, we were concerned with whether DORA’s reflexive inference
algorithm would lead it to expect a certain semantic category given a
semantic prime (a word) and a specific mathematical operation (addition or
division).
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Figure 3. A graphical depiction of a simulation trial in DORA. (a) The first word is activated in the driver. Propositions in LTM become active in
response to the active driver unit. Active propositions in LTM activate their semantic units. (b) The mathematical operation becomes active. More
propositions LTM become active in response to the active driver unit. The active propositions in LTM feedback activation to their semantic units. The
pattern of activation on the semantic units after (b) was taken as a measure of the properties DORA "expected" to be attached to the second word. Darker =
more active units.

second word. The less over-lap between the semantics that
had become active by reflexive reasoning and the second
word, the greater the “surprise”.

Just like the subjects in Guthormsen et al.’s experiment
DORA demonstrated greater surprise for mathematical
problem where the elements did not fit with the
mathematical operation (e.g., when apples were added to
baskets). Just as Guthormsen et al.’s subjects showed a
significantly higher N400 response (i.e., between 300 and
500 ms) in response to a word that did not fit with the
mathematical context than did subjects who were shown a
word that did fit the mathematical context, DORA was more
“surprised” by words that did not fit with a given
mathematical context, than by words that did. Specifically,
when elements did not fit, only 8% of the semantic features
attached to the second word were already active upon
presentation. However, when the second word did fit with
the mathematical operation, 31% of the semantic features
attached to the second word were already active upon
presentation. In other words, DORA reflexive inference
algorithm predicted the words that did fit, but did not
predict the words that did not. Exactly as we had hoped,
DORA provides an encouraging beginning for
understanding how a system built to model reflective
processes might be extended to address the problems of
reflexive inference.

Discussion

Using simple operations that were already in place for
the purposes of reflective reasoning, DORA has been able to
account for the reflexive reasoning phenomena observed by
Guthormsen and colleagues (2004). When DORA’s LTM
consists of math word problems generated by undergraduate

students, DORA reflects the same biases for the fit between
mathematical problems and real world -elements
demonstrated by adult reasoners. Just like the subjects in
Guthormsen et al.’s experiment, DORA was more
“surprised” when encountered mathematical word problems
where the elements did not fit naturally with the
mathematical operation, then when it encountered word
problems where the elements did fit naturally with the
mathematical operation. This suggests that the symbolic-
connectionist representational structure and the mapping
based reflexive inference routines that DORA performs in
the service of reflective tasks like analogical mapping,
memory retrieval, and relation discovery might provide the
beginnings of an account of reflexive inference as well. At
the very least DORA, following from Hummel and
Holyoak’s (1997, 2003) LISA model provides evidence that
the same representational structures and basic processes
might underlie and operate in the service of both reflective
and reflexive reasoning process.

As a theory of reflexive inference, however, DORA is
far from complete. We have demonstrated DORA’s ability
to account for simpler reflexive inferences, but it is not clear
whether DORA would scale up to account for more
complex reflexive inference. For example, as noted in the
introduction, if you are told that Susan went to the movie
theater you might infer she saw a movie. If DORA’s LTM
contained a number of propositions about seeing movies at
movie theaters it might be able to infer that Susan saw a
movie when she went to the theater, but it is not clear how
DORA could reflexively infer structured propositions such
as saw (Sally, movie) solely given feedback to semantic
units from LTM. However, DORA does suggests a
promising starting point for investigating the requirements
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that a representational system must meet in order to account
for both reflective and reflexive inference.

References

Anderson, J. R. & Lebiere, C. (1998).
components of thought. Mahwah, NJ: LEA.

Bassok, M, Chase, V. M, & Martin, S. A. (1998). Adding
apples and oranges: Alignment of semantic and formal
knowledge. Cognitive Psychology, 35, 99-134.

Byme, R. M. J., & Johnson-Laird, P. N. (1989). Spatial
reasoning. Journal of Memory and Language, 28, 564-
575.

Doumas, L. A. A., & Hummel, J. E. (2005). A symbolic-
connectionist model of relation discovery. In B. G. Bara,
L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the
Twenty-Third Annual Conference of the Cognitive Science
Society, 606-611. Mahwah NJ: LEA.

Doumas, L. A. A., Hummel, J. E., & Sandhofer, C. M.
(submitted). A symobolic-connectionist model of
predication and relation discovery.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The
structure-mapping engine:  Algorithm and examples.
Artificial Intelligence, 41, 1-63.

Forbus, K. D., Gentner, D., & Law, K. (1995). MAC/FAC:
A model of similarity-based retrieval. Cognitive Science,
19, 141-205.

Gentner, D. (1983).  Structure-mapping: A theoretical
framework for analogy. Cognitive Science, 7, 155-170.
Gentner, D. (2003). Why we’re so smart. In D. Gentner and
S. Goldin-Meadow (Eds.), Language in mind: Advances
in the study of language and thought (pp.195-235).

Cambridge, MA: MIT Press.

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem
solving. Cognitive Psychology, 12, 306-355.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction
and analogical transfer. Cognitive Psychology, 15, 1-38.
Guthormsen, A., Bassok, M., Osterhout, L. (2004,
November). ERP Measure of Conceptual Integration
Between Mathematical and Semantic Relations. Poster
presented at the 45th annual meeting of the Psychonomic

Society, Minneapolis, MN.

Holyoak, K. J., & Thagard, P. (1989). Analogical mapping
by constraint satisfaction. Cognitive Science, 13, 295-
355.

Holyoak, K. J., & Thagard, P. (1995). Mental Leaps:
Analogy in Creative Thought. Cambridge, MA: MIT
Press.

Hummel, J. E. (2000). Where view-based theories break
down: The role of structure in shape perception and
object recognition. In E. Dietrich and A. Markman (Eds.),
Cognitive Dynamics: Conceptual Change in Humans and
Machines. Hillsdale, NJ: Erlbaum.

The atomic

Hummel, J. E., & Biederman, I. (1992). Dynamic binding
in a neural network for shape recognition. Psychological
Review, 99, 480-517.

Hummel, J.E., & Choplin, J.M. (2000). Toward an
integrated account of reflexive and reflective reasoning.
In L.R. Gleitman & A.K. Joshi (Eds.), Proceedings of the
Twenty-Second Annual Conference of the Cognitive
Science Society (pp. 232—237). Mahwah, NJ: Erlbaum.

Hummel, J. E. & Doumas, L. A. A. (2005). Some
speculations on the development of the role of visual
invariants in shape perception. Paper presented at the
biennial meeting of the Society for Research in Child
Development.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed
representations of structure: A theory of analogical
access and mapping. Psychological Review, 104, 427-466.

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-
connectionist theory of relational inference and
generalization. Psychological Review.

Hummel, J. E., & Stankiewicz, B. J. (1996). Categorical
relations in shape perception. Spatial Vision, 10, 201-236.

Kintsch, W. & van Dijk, T. A. (1978). Toward a model of
text comprehension and production.  Psychological
Review, 85, 363-394,

Kutas, M., & Hilyard, S. A. (1980). Reading senseless
sentences: Brain potentials reflect semantic incongruity.
Science, 207, 203-205.

LeFevre, J-A., Bisanz, J., and Mrkonjic, L. (1988).
Cognitive arithmetic: Evidence for obligatory
activation of arithmetic facts. Memory & Cognition,
16(1), 45-53. Love, B. C. (1999). Utilizing time:
Asynchronous binding. Advances in Neural Information
Processing Systems, 11, 38-44.

Niedeggen, M., & Rosler, F. (1999). N400 Effects Reflect
Activation Spread During Retrieval of Arithmetic Facts.
Psychological Science, 10(3),271-276.

Reaume, G.& Bassok. M. (2005): Apples and Apples of
Alignment: The Interaction of Semantic and Formal
Knowledge in Simple Arithmetic. Poster presented at the
7th  annual meeting of NOWCAM, Bellingham,
Washington.

Shastri, L., & Ajjanagadde, V. (1993). From simple
associations to systematic reasoning: A connectionist
representation of rules, variables and dynamic bindings.
Behavioral and Brain Sciences, 16, 417-494.

St. John, M. F. (1992). The Story Gestalt: A model of
knowledge-intensive processes in text comprehension.
Cognitive Science, 16, 271-302.

St. John, M. F., & McClelland, J. L. (1990). Learning and
applying contextual constraints in sentence
comprehension. Artificial Intelligence, 46, 217-257.

1250



