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Abstract

An unusual category learning asymmetry in infants was
observed by Quinn et al. (1993). Infants who were initially
exposed to a series of pictures of cats and then were shown a
dog and a novel cat, showed significantly more interest in the
dog than in the cat. However, when the order of presentation
was reversed — i.e., dogs were seen first, then a cat and a
novel dog — the cat attracted no more attention than the novel
dog. A series of experiments and simulations seemed to show
that this asymmetry was due the perceptual inclusion of the cat
category within the dog category because of the greater
perceptual variability of dogs compared to cats (Mareschal &
French, 1997; Mareschal et al., 2000; French et al., 2001,
2004). In the present paper, we explore whether this
asymmetric categorization phenomenon generalizes to the
auditory domain. We developed a series of sequential auditory
stimuli analogous to the visual stimuli in Quinn et al. Two
experiments on adult listeners using these stimuli seem to
demonstrate the presence of an identical asymmetric
categorization effect in the sequential auditory domain.
Furthermore, we simulated these results with a connectionist
model of sequential learning. Together with the behavioral
data, we can conclude from this simulation that, as in the infant
visual categorization experiments, purely bottom-up processes
were largely responsible for our results.

Introduction

A number of years ago, Quinn, Eimas & Rosencrantz (1993)
and Eimas, Quinn, & Cowan demonstrated an unexpected
asymmetry in category acquisition in young infants. When 3-
to 4-month-old infants were shown different photographs of
either cats or dogs they were able to form perceptual
categories of either groups of pictures. Infants who were first
shown a number of different photographs of cats and are then
a picture of a dog along with a picture of a novel cat will be
more attentive to the dog than to the novel cat. This was
interpreted as showing that the infants had formed a Cat
category that excluded dogs. However, infants who were first
shown different photographs of dogs and then a picture of a
cat along with a novel dog were not preferentially attentive to
either picture. This surprising finding was interpreted as
showing that infants had formed a Dog category that included
cats. In other words, infants show an exclusivity asymmetry
in their development of some perceptual categories. Thus, the
Dog category does not exclude cats whereas the Cat category
excludes dogs.

Between 1997 and 2004, a number of papers were
published that attempted to explain and expand on these
findings. (Mareschal & French, 1997; Mareschal et al., 2000;
French et al., 2001, 2004; etc.) These experiments seemed to
demonstrate that the key relationship that produced these
results was that the smaller variability of the Cat category

compared to the Dog category, meant that, perceptually, the
latter category largely subsumed the former. This meant that
bottom-up, purely perceptual mechanisms were enough to
explain the categorization asymmetry observed by Quinn and
colleagues.

The authors manipulated the variability of the Dog and Cat
categories by selecting, in one experiment, a set different
races of dogs with little variability and a set of cats with a
much greater variability. In this way, even though the high-
level categories (i.e., Dog and Cat) remained unchanged, their
low-level perceptual variability had been reversed. The
connectionist model that had been developed and which
relied only on the statistical distributions of the features of the
two categories, predicted a reversal of the original
asymmetric categorization. This is, indeed, what the authors
found. As a result, the authors were able to conclude that the
infants were relying exclusively on statistical (i.e., bottom-up)
properties of the stimuli in their category discrimination.

The acoustic domain

This ability of young infants to discriminate between two
categories of complex visual stimuli in a purely bottom-up
manner -- i.e., in the absence of any conceptual knowledge of
the stimuli -- led us to wonder if there might be an analogous
phenomenon in the acoustic domain.

Although the perception of music relies on many different
perceptual dimensions, such as timbre, loudness, rthythm, and
pitch, one of the most salient features of music is that of pitch.
Pitch perception is, indeed, fundamental to melody in music.
When memorizing a tune, people do not represent the melody
as a series of independent pitches, but process each pitch
relative to the others. This leads to the fundamental notion of
musical interval. The “sequential distance” between two
notes can be measured by the chromatic interval (Krumhansl,
1990) seems to be the basic unit in the memorization of
melodies. Plantinga & Trainor (2005) showed that infants
store melodies in terms of relative pitches and not absolute
pitches.

Asymmetric effects in music perception

In perception of musical style, Bigand & Barrouillet (1996)
claimed that (non-musician) participants who were
familiarized with selections of Baroque music (narrow
category, Bach) and then tested on a novel Baroque piece
versus a selection of early 20" century tonal musical (e.g.,
Debussy), showed an significantly increased interest in the
early 20" century selection. On the other hand, when
participants were familiarized with selections of early 20™
century music and then tested on a novel selection of early
20™ century music versus a Baroque piece, there was no
increased interest in the Baroque piece.
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In light of these results and the asymmetric visual
categorization asymmetry observed in infants, we decided to
attempt to explore this phenomenon in a controlled acoustic
environment using artificially produced musical stimuli
presented to non-musician participants.

Experiment 1

The aim of this experiment was to assess an effect of interval
distribution in the formation of melodic categories. To this
end, we compared the exclusivity of auditory sequential
categories formed during exposure to exemplars of melodies,
statistically controlled in terms of their interval distributions.
In this experiment we attempted to reproduce the category
inclusion and distribution relationships that produced the
asymmetric categorization results in Quinn et al., 1993 (see
Figure 1).

cats

dogs

Figure 1: General inclusion and variability of the feature
distributions for Dogs and Cats in Quinn et a/., 1993.

Participants

51 undergraduates psychology students from the University
of Burgundy, all non-musicians, took part in the experiment.

Material

For each participant, two sets of melodies were created, one
following a narrow distribution, the other a broad probability
distribution of the occurrence of 11 different musical intervals
(see Figure 2). Each melody was built with 5 consecutive
intervals (e.g. 6 pitches), randomly chosen according to one
of the distributions. Each set consisted of 72 sequences. The
start note of the melodies was counterbalanced between the
12 possible pitches (yielding 6 different melodies per start-
note). Each participant was randomly assigned one of the two
distributions.

Even though specific intervals associated with each
probability used in both the training and test phases are varied
over participants, the probability of occurrence of these
intervals followed one the two distributions shown in Figure 2
(i.e., either narrow or broad). This was done to
counterbalance the effect of prominence of some particular
intervals in the process of melodic categorization.
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Figure 2: Probabilities of occurrence of 11 musical intervals,
for the narrow (gray) and broad (black) conditions.

Probability of occurence

Melodies were synthesized with a MIDI synthesizer software
(using the piano bank). Each tone was randomly played for
either 250 or 500 ms, giving more “musicality” to the pitch
sequences (in order to alleviate listener fatigue). A
further feature that is of particular importance in melodic
perception is the contour, or the pattern of ups (+) and downs
(-) of pitches from one note to the other (see Dowling &
Harwood, 1986). The contour of each melody was random,
and there was no repetition of contour/interval patterns within
the same set of melodies.

Procedure

Each participant was exposed to 84 pitch sequences. The first
60 sequences — which constituted the training phase — were
exemplars drawn from one of the two distributions. The 24
remaining items — which constituted the test phase — were
composed of 12 new items from the training distribution, and
of 12 items from the other distribution. These last 24 items
were randomly ordered.

A presentation program was written within MATLAB
programming language. Melodies were played through
headphones. At the end of the pitch sequence, participants
were then asked if they thought they had previously heard the
melody during the training session. The inter-trail interval
between the subject's answer and the sounding of the next
melody was 2 seconds.

Results

For each participant, the correct-response rate (percentage of
correct recognition of the participant's training distribution)
during the test phase was computed. Single-group t-tests were
used to compare the performance of each group to chance
levels (50%).

The broad group performance (50%) was not significantly
different from chance, t(24)=0, p=1, whereas the nrarrow
group's performance (55.6%) was significantly above chance,
t(25)=2.42, p=0.023. This suggests that the narrow group
learned aspects of the interval statistics of the narrow items,
allowing them to recognize new melodies from this
distribution appropriately.
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Figure 3: Mean endorsement rate during test phase for the
broad group (left) and the narrow group (right). Error bars
represent standard errors.

We then analyzed the endorsement rate (i.e., percentage of
accepted test items) for both groups, for new broad and new
narrow items (Figure 3). A 2x2 mixed-ANOVA
(broad/narrow training condition x broad/narrow test items)
revealed a significant main effect of test items (F(1,49)=4.51,
p<.05). In other words, as in the Quinn ez al.’s (1993) Dog-
Cat studies, participants familiarized with the narrow (i.e.,
low-variability) stimuli excluded more contrasting items (in
this case, new broad items), whereas participants familiarized
with the broad (i.e., high-variability) category rejected narrow
items at no better than chance.  This mirrors the
inclusion/exclusion relationships observed in Quinn et al.
(1993)’s stimuli.

Experiment 2

In light of the results of the first experiment, we decided to
tighten the constraints on the statistical properties of the
sequences of notes comprising the melodies for the broad and
narrow categories. This was done in order to determine if it
was possible to enhance the effects found in the first
experiment. In addition, during training, we decided to use a
more incidental memory task.

Participants

24 students from the University of Burgundy, all non-
musicians and having not participated to the experiment 1,
took part in the experiment.

Material

Melodies were generated by a Markov process, yielding
highly constrained Markov chains, where the probability of a
specific event 7, depends on the occurrence of a prior event.
We used a 1*-order Markov model, which can be represented
using a 2-dimensional transition matrix. The probability of a
given event depends only on the event immediately preceding
it.

Table 1: Transitional probabilities between pitches, for the
broad distribution (in black in figure 4).

To pitch

end 1 2 3 4 5 6

start | .1 25 15 15 2 2 1

Fr| 2 15 15 1 25 1 2

(r)n 2 1 1 15 15 2 2 25
pit

ch| 3 1 2 15 15 2 1 25

4 1 2 2 15 15 25 1

5 1 25 15 1 15 2 2

6 1 1 25 2 15 2 15

A sequence is built by selecting a start-note according to the
probabilities of the “start” row, selecting the second note
according to its probability of occurrence after the first note,
cycling throw the table until the “end” column is reached (see
table 1). The transitional probabilities between a note and the
6 possible following ones (plus the “end” code) followed
either a broad or a narrow distribution (Figure 4).
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Figure 4: Probabilities of occurrence of the 7 transitions, in
narrow (gray) and broad (black) conditions.

The transition matrices for the two categories were associated
with four different pitch-sets (notes 1-6 in Table 1) :
C4/DA4A/D#4/F4/GH4/A#4, D#4/F4/F#4/G#4/B4/C#4,
A3/B3/C4/D4/F4/G4 or F#4/G#4/A4/B4/D4/E4, to avoid
specific effects associated with one or the other pitch-set.
Note that the musical intervals between each adjacent notes is
identical across the 4 sets.

70 melodies were generated per condition, 60 of them
being used as exemplars in a training phase. In the test phase,
20 pairs of melodies were used, composed of the 10
remaining sequences of the training condition, and of 10
sequences of the contrasting distribution. Each pair consisted
of one melody from each set. The order within pairs was
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counterbalanced. The number of tones for each melody in
both group varied from 4 to 7 (Wurow S5 Woroad : 4.7). Tones’
duration and contour were controlled as in Experiment 1.

Procedure

Participants were seated in front of a computer. Melodies
were played through headphones. In a first phase, participants
were asked to listen to the melodies, and to report the total
number of pitches of each sequence. Feedback was given
after each answer, indicating whether or not their reply was
correct, and if not, reporting the right number of pitches. The
inter-trail interval between the subject's answer and the next
melody was 2 seconds. In a second phase, participants heard
pairs of melodies. They were then asked to select, for each
pair, the melody most similar to the ones they had heard in
the first phase. Both groups had 12 participants.

Results

First, the data obtained from the training phase was analysed.
The mean number of correct responses was calculated for
each participant. This score was high for both groups (broad
group : 88% (SD: 7.5), narrow group: 83.3% (SD: 11.1)).
The pitch-counting task was relatively easy for the
participants. The participants’ strategy seemed to generally be
to rehearse the melody, pitch by pitch, after hearing it. A 2-
tailed t-test conducted with groups as the independent
variable, and percentage of correct responses during the
training phase as dependent variable yielded no significant
effect, t(22)=1.21, p>.2, showing that melodies from both sets
were not processed significantly differently according to the
task (counting the tones).

The second set of analyses concerned the test phase. Here

again, our results closely resembled those of the infant
categorization experiments of Quinn ez al., (1993). The broad
group performance (49.2%) was not significantly different
from chance, t(11)=-0.3, p>0.7, whereas the narrow group's
performance (57.5%) was significantly above chance,
t(11)=3.95, p=0.023.
A 2x2 mixed-ANOVA (broad/narrow training condition x
broad/narrow test items) revealed an effect of test items
(F(1,22)=6.25, p=.02), but no significant main effect of
training nor a significant interaction (Figure 5).

These results suggest that participants in the narrow
condition learned the statistical distribution of the sequences,
in terms of musical intervals, allowing them to recognize new
melodies drawn from this distribution, whereas participants
within the broad condition performed at chance level.
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Figure 5 : Mean endorsement rate during test phase for the
broad group (left) and the narrow group (right). Error bars
represent standard errors.

Discussion

Experiment 2 confirmed and enhanced the effects observed in
the first experiment.

The material used in these experiments was “music-like,”
rather than “musical,” because although the stimuli were
constructed with musical pitches, they could not have been
encountered in a natural musical environment. So, it seems
unlikely that top-down knowledge could have been
responsible for the asymmetry we observed. However, to
confirm that these results do not come from any influence of
top-down musical knowledge, we tried to produce the results
with a bottom-up connectionist model of sequence
processing.

Simulation

The aim of the following simulation is to show that a purely
bottom-up cognitive model, without any prior knowledge, can
explain the results of our experiments. The main difference
with the Quinn et al's visual stimuli resides in the sequential
aspect of our auditory material. In fact, any attempt to
simulate the asymmetric effect shown in experiments 1 and 2
must accommodate the sequential properties of the material.
In order to model the process underlying the results described
above, we used Simple Recurrent Network (SRN; Elman,
1990). These artificial neural networks are frequently used to
encode sequential dependencies between elements of a
sequence (see Cleeremans, 1993; Dienes 1993).

Procedure

The material used to train the networks is identical to that of
Experiment 2, except that only one pitch-set was used, instead
of 4. We used a localist coding scheme, i.e. each note of a
sequence is coded by a unique bit in a 7-elements vector (1
bit per note + a “start/end” bit). Two groups of 20 SRNs were
used, each being exposed to exemplars from either the narrow
distribution, or the narrow one.

Each network was randomly initialized. Networks were
composed of 7 input nodes, 3 hidden nodes and 7 output
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nodes. Hidden nodes used a sigmoid transfert function,
whereas output nodes used a linear activation function.

During the training phase, each item from a training set
was presented twice consecutively. Stimuli were presented
twice in order to simulate the strategy employed by
participants: rehearsing the melody after hearing it (see
Experiment 1). For each element of a sequence, the task of
the networks was to predict the next element of that
sequence. A mean square error (MSE) is computed for each
element, giving a measure of prediction accuracy (i.e the
distance between the output computed by the network in
response to an element and the actual desired output, that is,
the next element in the sequence). Weights were updated at
each time step, using a gradient descent with momentum
training algorithm. The learning rate was set to .1, the
momentum term to .4.

During the test phase, no weight change was allowed. Test
items were presented in pairs, the order of items within each
pair was random. The context units activation were reset to 0
between pairs, but not between items of a pair. This was
meant to reflect the 2-alternative forced choice procedure of
experiment 2. Within each test pair, the MSE was computed
for each item. The sequence associated with the lowest MSE
reflected the “choice” of the network. We then computed an
endorsement rate for each test item type, across all test pairs.

Results

Figure 6 shows the mean endorsement rate for the two
network groups, in response to new narrow and new broad
items.
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Figure 6: Mean endorsement rate during test phase for the the
broad and narrow trained-networks. Error bars represent
standard errors.

The simulation results closely resemble those of the
experiment 2; networks trained with exemplars drawn from
the broad category cannot distinguish new items from both
categories, whereas networks trained with items from the
narrow category produce more accurate predictions about the
element of the narrow sequences, yielding a higher
endorsement rate for new items from their own category than

from the other. Noting that these networks do not have any
prior knowledge of the material we used, we can conclude
that a simple connectionist model, which processes stimuli in
a purely bottom-up fashion, is sufficient simulate our
behavioral results.

Conclusions

These preliminary results suggest that the categorization
asymmetry in young infants observed by Quinn ez al. (1993)
is not limited to the visual domain. Rather, it is probable that
this phenomenon also applies to auditory perception. Our
results point to the importance of bottom-up (statistical)
processing in the perception and categorization by non-
musicians of sequential auditory stimuli.

Meulemans and Van der Linden (1997) have shown that,
in an artificial grammar learning task, participants exposed to
a small subset of a grammar were sensitive to the similarity of
the test items with the training items, whereas with longer
exposure, this similarity effect disappeared. The similarity
was measured as the mean probability of occurrence in the
training set of the bigrams (2 consecutive elements in a
sequence) and trigrams (3 consecutive elements) composing a
test item. This implies that the statistical distribution of the
different bigrams and trigrams in the training set had an effect
on the ability of the participant to discriminate sequences
from their own category (grammar) from distractors. This
suggests that the asymmetrical effects we described in our
experiments could be eliminated by the acquisition of
syntactic rules governing the elements of musical pitches.

Finally, these results are limited to a single auditory
dimension (pitch intervals). It will also be necessary to
investigate the influence of the myriad other dimensions of
musical perception (e.g., duration, timbre, rthythm, etc.) and
the interaction among these various dimensions.
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