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Abstract 

Finding efficient patterns of connectivity in sparse associative 
memories is a difficult problem.  It is, however, one that real 
neuronal networks, such as the mammalian cortex, must have 
solved.  We have investigated computational models of sparsely 
connected associative memories and found that some patterns of 
connectivity produce both good performance and efficient use of 
resources.   This could illuminate how real biological systems 
solve the problem. .  Our major finding is that a Gaussian 
distribution of connection lengths, with a relatively small variance, 
gives networks with high performance and minimal wiring. 
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Introduction 
In recent years much has been discovered about the 

pattern of connectivity of the neurons in real neuronal 
networks.  A good deal of this research has explored the 
way that specific neuronal circuits operate and how 
functional areas in the brain are connected.  Another 
approach, however, has been to examine the connectivity 
matrix at the level of individual neurons or of functional 
areas, and to look for patterns of connectivity familiar in 
other contexts.   This ties in with the large amount of current 
interest in small-world and scale-free networks.  In this 
paper we look at this second issue in the context of 
associative memory networks.  We summarize some of what 
is currently known about the connectivity matrix in real 
neuronal systems and show how the search for optimal 
patterns of connectivity in artificial associative memory 
networks may shed light on some of the issues that real 
neuronal systems must deal with.  Our major finding is that 
a Gaussian distribution of connection lengths, with a 
relatively small variance, gives networks with high 
performance and minimal wiring. 

Connection Strategies 
The connectivity in real neuronal systems, such as the 

mammalian cortex, is quite different from that found in 
most artificial neural networks.   Real neuronal systems 
have vast numbers of neurons connected to only a fraction 
of the other neurons.  For example the human cortex has 
about 1011 neurons with each connected to roughly, on 
average, 10,000 other neurons (Braitenberg & Schüz, 1998).  

In such sparse networks the connection strategy employed 
has to balance two competing goals.  Firstly the total 
amount of neuronal fiber should be minimized, both because 
it is biologically expensive and because increasing length 
implies increasing difficulty in finding physical paths for the 
fiber, in the brain.  Secondly, however, information needs to 
travel efficiently throughout the system for fast global 
computation to take place.  The connectivity satisfying both 
goals is therefore highly likely to be have been optimized by 
evolution and will be far from random.   

Non-Random Graphs 
Before looking at some of what is currently known about 

the actual connectivity strategy employed in real systems, 
we examine what is known about connection graphs in 
general. 

There is a long history of research into the properties of 
random graphs, graphs in which the connectivity matrix is 
randomly configured, often with a specific probability of 
connectivity (Bollobas, 2001).  Recently, however, there has 
been an explosion of interest in networks with non-random 
connectivity graphs, such as small-world and scale-free 
networks.   

The seminal paper of Watts and Strogatz (Watts & 
Strogatz, 1998) formalised the notion of a small-world 
network.  The idea was inspired by work in the Social 
Sciences showing that there appeared to be only roughly 6 
degrees of separation (by acquaintance) between any two 
people in North America (Milgram, 1967); this despite the 
fact that most people have a cliquish group of 
acquaintances, in the sense that any two of their 
acquaintances are also likely to be acquaintances.   The 
small-world effect is therefore characterised as a network 
with short path lengths (the minimum number of arc 
traversals to get from one node to another), between any 
pair of nodes.  The simplest sort of network that displays 
this characteristic is a random network.  In a regular random 
network of N nodes, with each node having k connections, 
the number of first order acquaintances is k, second order is 
about k2, third order k3 and so on.  So in general the number 
of degrees of separation, D, to reach all N nodes in the 

network is given by setting 

! 

k
D

= N , which gives 

! 

D =
lnN

ln k
, 

so that D increases logarithmically with the size of the 
network – the small-world effect.  However, random 
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networks are not cliquish and require a relatively large 
amount of wiring.  Watts and Strogatz gave a mechanism 
for constructing networks that showed the small-world 
effect, from local networks.  Their idea was to begin with a 
local network and then to rewire a small proportion, p, of 
the connections to random targets. Even at very low levels 
of rewiring, the mean path length between any pair of nodes 
drops to a value comparable to that of a random network; 
the rewired connections act as shortcuts through the 
network.  We refer to networks constructed in this way as 
small-world networks. 

The cliquishness of a network can be formalised by its 
clustering coefficient, the average fraction of pairs of 
neighbours of a node, which are also neighbours.  Networks 
that show the small-world effect, but which also have high 
clustering coefficients have been shown to be remarkably 
common.  Some examples include (Newman, 2000): 
networks of movie actors, where neighbours are defined by 
having been in the same movie, power grid networks, the 
Internet and from our point of view most interestingly, real 
neuronal networks. 

Other interesting networks that show the small-world 
effect are so called scale-free networks (Barabasi et al., 
1999; Keller, 2005).  These are network models where the 
distribution of connections follows a power law (that is the 
frequency of nodes with connectivity k falls off as 

! 

k
"# ).  

This degree distribution is surprisingly close to that of the 
distribution of links in the World Wide Web.  Some nodes 
end up with very high levels of connectivity, and act as 
network hubs, that facilitate short path lengths.  Such 
networks can arise due to a preferential growth process in 
which nodes that are already well connected are favoured by 
new connections. 

Connectivity in Real Neuronal Networks 
The neuronal network of the nematode worm C. Elegans 

has been completely mapped.  It consists of 302 neurons and 
around 1000 connections   A recent analysis (C Cherniak, 
1994) of the optimality of the positioning of the neurons (for 
the given connectivity and physical position of actuators and 
sensors in the worm) with respect to the total length of 
wiring (the sum of the length of neuronal fibre) has shown 
that no better positioning can be found by exhaustive search; 
a remarkable triumph for evolutionary optimisation.  The 
network also displays short path lengths, an average of 2.65 
steps between any two neurons, and a relatively high 
clustering coefficient of 0.28 (as against 0.05 in an 
equivalent random network).  In (Shefi et al., 2002) cultured 
in-vitro neuronal networks are studied.  They vary in size 
from N = 104 to N = 240.  Once again the networks show 
the small-world effect and are relatively highly clustered. 

Larger neuronal networks found in more sophisticated 
animals are not as well understood.  Nonetheless several 
studies have been undertaken into the positioning and 
connectivity of the neuronal systems.  Analysis of the 
mammalian cortex has been undertaken at two levels of 
granularity, firstly at the level of the positioning and 

connectivity of distinct functional areas such as V1 or V2 in 
the visual cortex.  And secondly at the level of individual 
neurons.  In the first case it has been shown that once again 
positioning is highly optimised to minimise connection 
length (Christopher Cherniak et al., 2004; Hilgetag & 
Kaiser, 2004; Laughlin & Sejnowski, 2003).  It has also 
been shown that the connectivity gives both a small-world 
effect and a high clustering coefficient (Sporns & Zwi, 
2004).  The question of whether these neuronal systems 
show the characteristics of scale-free networks is still open, 
with opinions differing. (Eguiluz et al., 2005; Sporns & 
Zwi, 2004). 

At the level of individual neurons the connectivity 
pattern is so complex that only generalised statistics can be 
produced.  These show that in the mouse cortex, for 
example, there are about 1.6 million neurons, with each 
connected to, on average, about 8000 other neurons 
(Braitenberg & Schüz, 1998).  The density of connectivity is 
impressive, with approximately a billion synapses in each 
cubic millimetre of cortex.  Most of the connections are 
local, with the probability of any two neurons in the same 
area being connected falling off in a Gaussian like manner 
(Hellwig, 2000), see Figure 1.  It is thought extremely 
unlikely that these intra-area connections are highly 
structured (Braitenberg & Schüz, 1998) as they are added at 
the rate of about 40,000 a second as the cortex matures.  
Cortical connectivity is of particular interest, as it is likely 
that one major function of the cortex is to act as a very large 
associative memory (Braitenberg & Schüz, 1998). 
 

 
 
Figure 1:  The probability of a connection between any pair 
of neurons in layer 3 of the rat visual cortex against cell 
separation.  The horizontal axis is marked in µm. Taken 
with permission from (Hellwig, 2000). 

Associative Memory Model 
In the work presented here we investigate how the 

connectivity in a simulated associative memory is affected 
by the spatial organization of the connections.  The model is 
a variant of the standard Hopfield network.  The networks 
are (for the most part) large and sparse, with 5000 units, 
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each with incoming connections from 50 other units.  Each 
unit is a simple perceptron, which fires when its net input is 
greater than zero.  The connectivity is not required to be 
symmetric, and in fact it is unlikely that any two units will 
be connected in both directions.  The networks are presented 
with training sets of random bipolar (± 1) 5000-ary vectors 
to learn.  The training is done using simple perceptron 
learning, an iterative procedure guaranteed to converge on a 
solution if one exists.  The network dynamics we employ is 
random asynchronous updates without replacement.  A full 
description of the technical aspects of the network can be 
found in (Davey & Adams, 2004).   

Such a network can store up to 2k patterns (where k is 
the number of incoming connections that each unit has), and 
this figure is independent of the specific pattern of 
connectivity (Davey et al., 2005).  However, storing 
patterns is not the only functional requirement of an 
associative memory.  The other requirement is that the 
patterns in the training set should be recoverable from noisy 
versions of themselves: they should be attractors in the state 
space of the network.  As the results presented later show, 
the pattern of connectivity has a major bearing on this 
aspect of the network performance.    

The metric that we use to measure the performance is the 
Effective Capacity of the network, EC (Calcraft, 2005). The 
Effective Capacity of a network is a measure of the 
maximum number of patterns that can be stored in the 
network with reasonable pattern correction still taking 
place.  We take a fairly arbitrary definition of reasonable as 
correcting the addition of 60% noise to within an overlap of 
95% with the original fundamental memory.  Varying these 
figures gives differing values for EC but the values with 
these settings are robust for comparison purposes.  For large 
fully connected networks the EC value is about 0.1 of the 
conventional capacity of the network, but for networks with 
sparse, structured connectivity EC is dependent upon the 
actual connectivity pattern. 

Connectivity in the Model 
In our model we need the units to have a geometry, so 

that there is a distance defined between any pair of units.  
We take the simplest approach (as in the original small-
world model (Watts & Strogatz, 1998) and place the units in 
a 1-D ring.  The distance between any two nodes on the ring 
is simply the minimal number of steps along the ring to get 
from one to the other. 

As already explained there are 2 contrasting patterns of 
connectivity in such a network: only local connections and 
random connectivity – see Figure 2. 

The local network has minimal total wire length but 
performs poorly.  In our 5000 unit network with 50 
connections per unit, the mean connection length is 13.  The 
Effective Capacity is, however, only 5.9 patterns.  The 
explanation for this is that in a local network it is very 
difficult for a successful global computation to take place.  
The locality of the connectivity localizes information.  The 
corresponding random network has much more wire, a mean 

length 1250, but the performance is much better, an EC of 
23 patterns.  The question then arises as to whether there is 
an intermediary distribution of connections that has the 
performance of a random network, but with significantly 
reduced wire. 
 

 
 
Figure 2:  Three types of connectivity, left a locally 
connected network, center a locally connected network with 
some random connections and right a randomly connected 
network. 
 

One obvious contender is a small-world network, as 
described earlier.  Figure 3 shows the frequency of 
connections at varying lengths for a local network, a small-
world network and a random network. 
 

 
Figure 3:  A histogram of the frequency of occurrence of 
connections at varying lengths in a local network, a small-
world network and a random network. 
 

Other patterns are of course possible and two of the most 
interesting that we have looked at are a Gaussian pattern of 
fall off and a truncated uniform distribution with a limit to 
the length of all the connections (L Calcraft et al., 2006).  
Two examples of such distributions are given in Figure 4. 

 
Figure 4:  A histogram of the frequency of occurrence of 
connections at varying lengths in a network with a Gaussian 
pattern of fall off with standard deviation 40 and a truncated 
uniform distribution, with length limit of 75. 
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Results 
We have three types of connectivity pattern to evaluate: 

small-world networks with varying rewiring (which at the 
two extremes are local and random), Gaussian fall off with 
varying standard deviations, and truncated uniform 
distributions with varying maximum allowed connection 
distance.  In order to perform a meaningful comparison we 
plot the performance of a large number of such networks, 
with varying characteristics, as shown in Figure 5.  The 
results are rather unexpected. The first observation to be 
made is that all the network architectures reach optimal 
performance (an EC of about 23) using less wire than the 
mean length of 1250 needed by the random network.  It is 
also apparent that the small-world networks need much 
rewiring to achieve this, p = 0.6.  This still saves wire, as 
40% of connections remain local.   

The other two distributions, however, perform almost 
identically and much better than the small-world networks.  
They both reach optimal performance with mean wire 
lengths of only 150 per unit.  This corresponds to a 
Gaussian distribution with standard deviation of 130 and a 
truncated uniform distribution with length limit of 250.  The 
degree of locality of the most parsimonious networks is 
surprising – these distributions contain no connections that 
could be described as distal 

The almost identical performance of the latter two types 
of network is remarkable: with the same wiring resource 
they produce networks with very similar effective capacity.  

To shed some light on this Figure 6 gives the actual 
distributions of connection length when the EC has the 
value of 20.  The major difference between the small-world 
network and the other two is that it has connections at all 
lengths, whereas the other two distributions are still fairly 
local.  The conclusion appears to be that these networks can 
function well without distal connections and show dramatic 
performance improvement as a completely local constraint 
is relaxed a little.  The detailed pattern of connectivity 
(Gaussian or truncated uniform) does not appear to be 
important. 

Convergence Times 
Nevertheless there may be a hidden cost in the absence 

of distal connectivity.  The time required for the memory to 
relax to a stable configuration, under the network dynamics, 
could be significantly increased: information could take 
longer to move between distant parts of the network.  Our 
early results are interesting and suggest that under low 
loading all three network types have similar convergence 
times, but that under stress the truncated uniform 
distribution falls behind the Gaussian network.  Here the 
presence of some connections of greater length maintains 
good convergence properties.  A fuller analysis of this issue 
is currently being undertaken. 

When considered together these two sets of results 
suggest that a Gaussian distribution with relatively small 
variance is a good choice for optimal performance. 

 

 
 
Figure 5: Three different types of network with different variations of wiring.   All the networks have 5000 units each with 50 
incoming connections.  The Gaussian networks have differing standard deviations, from 50 to 500.  The Small-World 
network has rewiring p = 0 at the left, and then in increments of 0.1 to a random network p = 1 on the right.  The Truncated 
Uniform has varying length restrictions, 50 on the left up to 500 at the rightmost point, in increments of 50. There is a very 
close fit between the performance of the Gaussian networks and the Truncated Uniform networks, for a given mean wiring 
length. 
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Figure 6:  A plot of the distribution of connections in a Gaussian distribution with standard deviation 78, a small-world 
network with p = 0.4 and a Truncated Uniform distribution with maximum connection length of 150.  All the networks have 
5000 units each with 50 incoming connections and an Effective Capacity of 20.   
 

Evolved Networks 
The final investigation we have undertaken takes a quite 

different approach to finding optimal patterns of 
connectivity.  Rather than imposing a specific distribution 
we use a genetic algorithm (GA) to find a configuration that 
maximizes performance whilst minimizing the mean wiring 
length.  Due to the computational complexity of this task we 
are not able to use networks of the size used earlier.  The 
maximum size network we have been able to evolve is 400 
units, with 20 connections per unit. The connection matrix 
that constitutes the genome is therefore 160,000 bits.  The 
population size was 50. The fitness function plateaus after 
about 60,000 generations, a runtime of several months.  Full 
details of the algorithm, the representation used and other 
similar results can be found in (Adams et al., 2005).   

The fittest network found by the GA has a mean 
connection length of about one half of an equivalent random 
network, but has pattern correction capability no worse than 
a random network.  The final pattern of connectivity found 
is shown in Figure 7.  The distribution is somewhat similar 
to a Gaussian distribution.  However caution should be 
taken in any direct comparisons between the evolved 
network and those presented earlier, with specific 
distributions of connection length.  This is because of the 
order of magnitude difference in the size of the networks 
and the difference in sparseness. 

Discussion 
In a computational device such as the mammalian 

cortex, information must pass efficiently through the system 
if it is to be integrated at a global level.  This puts huge 
demands on the connectivity in the system, for it is 
extremely costly to have many long range connections.  In 
the simple model of associative memory presented here, a 
preference was clearly demonstrated for a Gaussian like 
probability distribution in both the designed and evolved 
networks.  Moreover in the large and very sparse networks 
good performance was obtained with highly (but not 
completely) local connectivity.  This is very interesting and 
unexpected.  An important issue raised by this fact is to 
determine the relationship between the size of the network, 
the degree of sparseness and the actual variance required for 
the most parsimonious network.  This is an analysis we have 
yet to undertake. 

Of course the model presented here has several 
shortcomings as a realistic model of the cortex, and 
addressing these will be interesting areas of future work.  
Specifically it is of interest to see if our results are robust to 
models in which: 
• The artificial neurons are placed in 2 dimensional layers 
• More realistic integrate and fire units are used 
• Signal propagation time is taken into account 
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Figure 7:  The pattern of connectivity found by a GA attempting to minimize wiring length and maximize performance.  The 
network has 400 units each with 20 incoming connections.  This distribution was found after 60,000 generations. 
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