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Abstract

Finding efficient patterns of connectivity in sparse associative
memories is a difficult problem. It is, however, one that real
neuronal networks, such as the mammalian cortex, must have
solved. We have investigated computational models of sparsely
connected associative memories and found that some patterns of
connectivity produce both good performance and efficient use of
resources.  This could illuminate how real biological systems
solve the problem. . Our major finding is that a Gaussian
distribution of connection lengths, with a relatively small variance,
gives networks with high performance and minimal wiring.
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Introduction

In recent years much has been discovered about the
pattern of connectivity of the neurons in real neuronal
networks. A good deal of this research has explored the
way that specific neuronal circuits operate and how
functional areas in the brain are connected. Another
approach, however, has been to examine the connectivity
matrix at the level of individual neurons or of functional
areas, and to look for patterns of connectivity familiar in
other contexts. This ties in with the large amount of current
interest in small-world and scale-free networks. In this
paper we look at this second issue in the context of
associative memory networks. We summarize some of what
is currently known about the connectivity matrix in real
neuronal systems and show how the search for optimal
patterns of connectivity in artificial associative memory
networks may shed light on some of the issues that real
neuronal systems must deal with. Our major finding is that
a Gaussian distribution of connection lengths, with a
relatively small variance, gives networks with high
performance and minimal wiring.

Connection Strategies

The connectivity in real neuronal systems, such as the
mammalian cortex, is quite different from that found in
most artificial neural networks.  Real neuronal systems
have vast numbers of neurons connected to only a fraction
of the other neurons. For example the human cortex has
about 10'"" neurons with each connected to roughly, on
average, 10,000 other neurons (Braitenberg & Schiiz, 1998).

In such sparse networks the connection strategy employed
has to balance two competing goals. Firstly the total
amount of neuronal fiber should be minimized, both because
it is biologically expensive and because increasing length
implies increasing difficulty in finding physical paths for the
fiber, in the brain. Secondly, however, information needs to
travel efficiently throughout the system for fast global
computation to take place. The connectivity satisfying both
goals is therefore highly likely to be have been optimized by
evolution and will be far from random.

Non-Random Graphs

Before looking at some of what is currently known about
the actual connectivity strategy employed in real systems,
we examine what is known about connection graphs in
general.

There is a long history of research into the properties of
random graphs, graphs in which the connectivity matrix is
randomly configured, often with a specific probability of
connectivity (Bollobas, 2001). Recently, however, there has
been an explosion of interest in networks with non-random
connectivity graphs, such as small-world and scale-free
networks.

The seminal paper of Watts and Strogatz (Watts &
Strogatz, 1998) formalised the notion of a small-world
network. The idea was inspired by work in the Social
Sciences showing that there appeared to be only roughly 6
degrees of separation (by acquaintance) between any two
people in North America (Milgram, 1967); this despite the
fact that most people have a cliquish group of
acquaintances, in the sense that any two of their
acquaintances are also likely to be acquaintances.  The
small-world effect is therefore characterised as a network
with short path lengths (the minimum number of arc
traversals to get from one node to another), between any
pair of nodes. The simplest sort of network that displays
this characteristic is a random network. In a regular random
network of N nodes, with each node having £ connections,
the number of first order acquaintances is k, second order is
about &%, third order &’ and so on. So in general the number
of degrees of separation, D, to reach all N nodes in the
network is given by setting k” =N, which gives D = lln—]Z,

n
so that D increases logarithmically with the size of the
network — the small-world effect. However, random
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networks are not cliquish and require a relatively large
amount of wiring. Watts and Strogatz gave a mechanism
for constructing networks that showed the small-world
effect, from local networks. Their idea was to begin with a
local network and then to rewire a small proportion, p, of
the connections to random targets. Even at very low levels
of rewiring, the mean path length between any pair of nodes
drops to a value comparable to that of a random network;
the rewired connections act as shortcuts through the
network. We refer to networks constructed in this way as
small-world networks.

The cliquishness of a network can be formalised by its
clustering coefficient, the average fraction of pairs of
neighbours of a node, which are also neighbours. Networks
that show the small-world effect, but which also have high
clustering coefficients have been shown to be remarkably
common. Some examples include (Newman, 2000):
networks of movie actors, where neighbours are defined by
having been in the same movie, power grid networks, the
Internet and from our point of view most interestingly, real
neuronal networks.

Other interesting networks that show the small-world
effect are so called scale-free networks (Barabasi et al.,
1999; Keller, 2005). These are network models where the
distribution of connections follows a power law (that is the
frequency of nodes with connectivity k falls off as k™).
This degree distribution is surprisingly close to that of the
distribution of links in the World Wide Web. Some nodes
end up with very high levels of connectivity, and act as
network hubs, that facilitate short path lengths. Such
networks can arise due to a preferential growth process in
which nodes that are already well connected are favoured by
new connections.

Connectivity in Real Neuronal Networks

The neuronal network of the nematode worm C. Elegans
has been completely mapped. It consists of 302 neurons and
around 1000 connections A recent analysis (C Cherniak,
1994) of the optimality of the positioning of the neurons (for
the given connectivity and physical position of actuators and
sensors in the worm) with respect to the total length of
wiring (the sum of the length of neuronal fibre) has shown
that no better positioning can be found by exhaustive search;
a remarkable triumph for evolutionary optimisation. The
network also displays short path lengths, an average of 2.65
steps between any two neurons, and a relatively high
clustering coefficient of 0.28 (as against 0.05 in an
equivalent random network). In (Shefi et al., 2002) cultured
in-vitro neuronal networks are studied. They vary in size
from N = 104 to N = 240. Once again the networks show
the small-world effect and are relatively highly clustered.

Larger neuronal networks found in more sophisticated
animals are not as well understood. Nonetheless several
studies have been undertaken into the positioning and
connectivity of the neuronal systems. Analysis of the
mammalian cortex has been undertaken at two levels of
granularity, firstly at the level of the positioning and

connectivity of distinct functional areas such as V1 or V2 in
the visual cortex. And secondly at the level of individual
neurons. In the first case it has been shown that once again
positioning is highly optimised to minimise connection
length (Christopher Cherniak et al, 2004; Hilgetag &
Kaiser, 2004; Laughlin & Sejnowski, 2003). It has also
been shown that the connectivity gives both a small-world
effect and a high clustering coefficient (Sporns & Zwi,
2004). The question of whether these neuronal systems
show the characteristics of scale-free networks is still open,
with opinions differing. (Eguiluz et al., 2005; Sporns &
Zwi, 2004).

At the level of individual neurons the connectivity
pattern is so complex that only generalised statistics can be
produced. These show that in the mouse cortex, for
example, there are about 1.6 million neurons, with each
connected to, on average, about 8000 other neurons
(Braitenberg & Schiiz, 1998). The density of connectivity is
impressive, with approximately a billion synapses in each
cubic millimetre of cortex. Most of the connections are
local, with the probability of any two neurons in the same
area being connected falling off in a Gaussian like manner
(Hellwig, 2000), see Figure 1. It is thought extremely
unlikely that these intra-area connections are highly
structured (Braitenberg & Schiiz, 1998) as they are added at
the rate of about 40,000 a second as the cortex matures.
Cortical connectivity is of particular interest, as it is likely
that one major function of the cortex is to act as a very large
associative memory (Braitenberg & Schiiz, 1998).
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Figure 1: The probability of a connection between any pair
of neurons in layer 3 of the rat visual cortex against cell
separation. The horizontal axis is marked in um. Taken

with permission from (Hellwig, 2000).

Associative Memory Model

In the work presented here we investigate how the
connectivity in a simulated associative memory is affected
by the spatial organization of the connections. The model is
a variant of the standard Hopfield network. The networks
are (for the most part) large and sparse, with 5000 units,

1193



each with incoming connections from 50 other units. Each
unit is a simple perceptron, which fires when its net input is
greater than zero. The connectivity is not required to be
symmetric, and in fact it is unlikely that any two units will
be connected in both directions. The networks are presented
with training sets of random bipolar (+ 1) 5000-ary vectors
to learn. The training is done using simple perceptron
learning, an iterative procedure guaranteed to converge on a
solution if one exists. The network dynamics we employ is
random asynchronous updates without replacement. A full
description of the technical aspects of the network can be
found in (Davey & Adams, 2004).

Such a network can store up to 2k patterns (where £ is
the number of incoming connections that each unit has), and
this figure is independent of the specific pattern of
connectivity (Davey et al., 2005). However, storing
patterns is not the only functional requirement of an
associative memory. The other requirement is that the
patterns in the training set should be recoverable from noisy
versions of themselves: they should be attractors in the state
space of the network. As the results presented later show,
the pattern of connectivity has a major bearing on this
aspect of the network performance.

The metric that we use to measure the performance is the
Effective Capacity of the network, EC (Calcraft, 2005). The
Effective Capacity of a network is a measure of the
maximum number of patterns that can be stored in the
network with reasonable pattern correction still taking
place. We take a fairly arbitrary definition of reasonable as
correcting the addition of 60% noise to within an overlap of
95% with the original fundamental memory. Varying these
figures gives differing values for EC but the values with
these settings are robust for comparison purposes. For large
fully connected networks the EC value is about 0.1 of the
conventional capacity of the network, but for networks with
sparse, structured connectivity EC is dependent upon the
actual connectivity pattern.

Connectivity in the Model

In our model we need the units to have a geometry, so
that there is a distance defined between any pair of units.
We take the simplest approach (as in the original small-
world model (Watts & Strogatz, 1998) and place the units in
a 1-D ring. The distance between any two nodes on the ring
is simply the minimal number of steps along the ring to get
from one to the other.

As already explained there are 2 contrasting patterns of
connectivity in such a network: only local connections and
random connectivity — see Figure 2.

The local network has minimal total wire length but
performs poorly. In our 5000 unit network with 50
connections per unit, the mean connection length is 13. The
Effective Capacity is, however, only 5.9 patterns. The
explanation for this is that in a local network it is very
difficult for a successful global computation to take place.
The locality of the connectivity localizes information. The
corresponding random network has much more wire, a mean

length 1250, but the performance is much better, an EC of
23 patterns. The question then arises as to whether there is
an intermediary distribution of connections that has the
performance of a random network, but with significantly
reduced wire.

Figure 2: Three types of connectivity, left a locally
connected network, center a locally connected network with
some random connections and right a randomly connected
network.

One obvious contender is a small-world network, as
described earlier.  Figure 3 shows the frequency of
connections at varying lengths for a local network, a small-
world network and a random network.
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Figure 3: A histogram of the frequency of occurrence of
connections at varying lengths in a local network, a small-
world network and a random network.

Other patterns are of course possible and two of the most
interesting that we have looked at are a Gaussian pattern of
fall off and a truncated uniform distribution with a limit to
the length of all the connections (L Calcraft et al., 2006).
Two examples of such distributions are given in Figure 4.
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Figure 4: A histogram of the frequency of occurrence of
connections at varying lengths in a network with a Gaussian
pattern of fall off with standard deviation 40 and a truncated
uniform distribution, with length limit of 75.
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Results

We have three types of connectivity pattern to evaluate:
small-world networks with varying rewiring (which at the
two extremes are local and random), Gaussian fall off with
varying standard deviations, and truncated uniform
distributions with varying maximum allowed connection
distance. In order to perform a meaningful comparison we
plot the performance of a large number of such networks,
with varying characteristics, as shown in Figure 5. The
results are rather unexpected. The first observation to be
made is that all the network architectures reach optimal
performance (an EC of about 23) using less wire than the
mean length of 1250 needed by the random network. It is
also apparent that the small-world networks need much
rewiring to achieve this, p = 0.6. This still saves wire, as
40% of connections remain local.

The other two distributions, however, perform almost
identically and much better than the small-world networks.
They both reach optimal performance with mean wire
lengths of only 150 per unit. This corresponds to a
Gaussian distribution with standard deviation of 130 and a
truncated uniform distribution with length limit of 250. The
degree of locality of the most parsimonious networks is
surprising — these distributions contain no connections that
could be described as distal

The almost identical performance of the latter two types
of network is remarkable: with the same wiring resource
they produce networks with very similar effective capacity.

To shed some light on this Figure 6 gives the actual
distributions of connection length when the EC has the
value of 20. The major difference between the small-world
network and the other two is that it has connections at all
lengths, whereas the other two distributions are still fairly
local. The conclusion appears to be that these networks can
function well without distal connections and show dramatic
performance improvement as a completely local constraint
is relaxed a little. The detailed pattern of connectivity
(Gaussian or truncated uniform) does not appear to be
important.

Convergence Times

Nevertheless there may be a hidden cost in the absence
of distal connectivity. The time required for the memory to
relax to a stable configuration, under the network dynamics,
could be significantly increased: information could take
longer to move between distant parts of the network. Our
early results are interesting and suggest that under low
loading all three network types have similar convergence
times, but that under stress the truncated uniform
distribution falls behind the Gaussian network. Here the
presence of some connections of greater length maintains
good convergence properties. A fuller analysis of this issue
is currently being undertaken.

When considered together these two sets of results
suggest that a Gaussian distribution with relatively small
variance is a good choice for optimal performance.
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Figure 5: Three different types of network with different variations of wiring. All the networks have 5000 units each with 50

incoming connections.

The Gaussian networks have differing standard deviations, from 50 to 500. The Small-World

network has rewiring p = 0 at the left, and then in increments of 0.1 to a random network p = 1 on the right. The Truncated
Uniform has varying length restrictions, 50 on the left up to 500 at the rightmost point, in increments of 50. There is a very
close fit between the performance of the Gaussian networks and the Truncated Uniform networks, for a given mean wiring

length.
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Figure 6: A plot of the distribution of connections in a Gaussian distribution with standard deviation 78, a small-world
network with p = 0.4 and a Truncated Uniform distribution with maximum connection length of 150. All the networks have
5000 units each with 50 incoming connections and an Effective Capacity of 20.

Evolved Networks

The final investigation we have undertaken takes a quite
different approach to finding optimal patterns of
connectivity. Rather than imposing a specific distribution
we use a genetic algorithm (GA) to find a configuration that
maximizes performance whilst minimizing the mean wiring
length. Due to the computational complexity of this task we
are not able to use networks of the size used earlier. The
maximum size network we have been able to evolve is 400
units, with 20 connections per unit. The connection matrix
that constitutes the genome is therefore 160,000 bits. The
population size was 50. The fitness function plateaus after
about 60,000 generations, a runtime of several months. Full
details of the algorithm, the representation used and other
similar results can be found in (Adams ef al., 2005).

The fittest network found by the GA has a mean
connection length of about one half of an equivalent random
network, but has pattern correction capability no worse than
a random network. The final pattern of connectivity found
is shown in Figure 7. The distribution is somewhat similar
to a Gaussian distribution. However caution should be
taken in any direct comparisons between the evolved
network and those presented earlier, with specific
distributions of connection length. This is because of the
order of magnitude difference in the size of the networks
and the difference in sparseness.

Discussion

In a computational device such as the mammalian
cortex, information must pass efficiently through the system
if it is to be integrated at a global level. This puts huge
demands on the connectivity in the system, for it is
extremely costly to have many long range connections. In
the simple model of associative memory presented here, a
preference was clearly demonstrated for a Gaussian like
probability distribution in both the designed and evolved
networks. Moreover in the large and very sparse networks
good performance was obtained with highly (but not
completely) local connectivity. This is very interesting and
unexpected. An important issue raised by this fact is to
determine the relationship between the size of the network,
the degree of sparseness and the actual variance required for
the most parsimonious network. This is an analysis we have
yet to undertake.

Of course the model presented here has several
shortcomings as a realistic model of the cortex, and
addressing these will be interesting areas of future work.
Specifically it is of interest to see if our results are robust to
models in which:

»  The artificial neurons are placed in 2 dimensional layers
*  More realistic integrate and fire units are used
»  Signal propagation time is taken into account
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Figure 7: The pattern of connectivity found by a GA attempting to minimize wiring length and maximize performance. The
network has 400 units each with 20 incoming connections. This distribution was found after 60,000 generations.
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