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Abstract

Recent theoretical research has argued that multiple
psychological theories of categorization are mathematically
identical to inference in probabilistic graphical models (a
framework developed in statistics and computer science).
These results imply that the major extant psychological
theories can all be represented mathematically as special cases
of inference in (subclasses of) chain graphs, a particular type
of probabilistic graphical models. These formal results
suggest that people should be capable of learning significantly
more complicated category structures than can be expressed
in the standard psychological theories. In this paper, we
present an experiment in which people apparently failed to
learn the complex category, though a significant group of
participants seemed to have learned something about the
contrast category. Although inferences to cognitive failure are
notoriously problematic, these results suggest that the hyper-
general theory useful for the mathematical equivalencies does
not accurately describe human categorization.

Introduction

Much of the experimental research on category learning has
aimed to distinguish between various theories by presenting
people with categories that can be learned according to one
theory, but not another. After some learning period with the
categories, experimental participants are tested to determine
how closely their category representations match the true
category structure. In contrast, there has been relatively little
experimental research investigating the limits of category
learning: specifically, whether there are categories that can
be learned (in principle) by some statistical procedure, but
not by people. Most research on the limits of category
learning has focused on constraints from other cognitive
systems (e.g., memory bounds). In contrast, this paper is a
preliminary attempt to ask whether some category structures
are sufficiently complex (in a statistical sense) that people
are unable to learn them, even though they are sufficiently
structured that they are (in principle) learnable.

We first describe a set of theoretical and mathematical
results that connect psychological theories of categorization
with inference to model structure in the computational
framework of probabilistic graphical models. Those formal
results suggest that people might be able to learn categories
with a (previously unstudied) complex statistical structure.
We thus conducted a category learning experiment using
this statistical structure, and found suggestive evidence that
people were in fact unable to learn this category.

Theoretical Background

This section outlines the mathematical/theoretical results
that motivate the experiment reported later in the paper. The
central claim of this section is that most psychological
models of categorization can be represented as inference in
various types of probabilistic graphical models. Due to
space constraints, this exposition is necessarily at a high
level. The precise formulations of the frameworks, theories,
and equivalencies can all be found in the cited works.

Probabilistic Graphical Models

At a high level, probabilistic graphical models use a graph
to encode independencies in a probability distribution. This
compact encoding of the independence relations can then be
used to dramatically speed up inference, learning, and
prediction. The two most common types of graphical
models are Bayesian networks and Markov random fields.

Bayes nets (e.g., Pearl, 1988, 2000; Spirtes, Glymour, &
Scheines, 1993) represent a probability distribution using a
directed acyclic graph (where the variables are nodes in the
graph). For example, 4 > B < C encodes the independence
pattern in which 4 and C are unconditionally independent,
but no other pairs are independent (conditionally or
unconditionally). Bayes nets are widely used to model
causal relationships, and have more recently been used to
model people’s psychological representations of causal
structure (Gopnik, Glymour, Sobel, Schulz, Kushnir, &
Danks, 2004; Griffiths & Tenenbaum, 2005; Lagnado &
Sloman, 2004; Tenenbaum & Griffiths, 2001; Waldmann &
Martignon, 1998).

Markov random fields (Lauritzen, 1996) represent the
independence structure of a probability distribution using an
undirected graph. For example, 4 — B — C implies that “4
independent of C given B” is the only independence in the
probability distribution. Markov random fields have
frequently been used to model spatially correlated data (e.g.,
image data). They have not been widely used to model
cognitive phenomena, in part because the edges do not have
an obvious interpretation (in contrast with Bayes nets).

In general, we focus on probability distributions that can
be perfectly represented by some graphical model: that is,
cases in which the graphical model (whether Bayes net or
Markov random field) predicts all and only the
independencies that are found in the probability distribution.
The set of probability distributions that can be perfectly
represented by a Bayes net only overlaps with the set of
those that can be perfectly represented by a Markov random
field. That is, there are probability distributions that can
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only be perfectly represented in one of the two formalisms
(but also some that can be perfectly represented by both).

Finally, chain graphs (Lauritzen & Richardson, 2002;
Lauritzen & Wermuth, 1989) provide a unifying framework
for Bayes nets and Markov random fields, which are the two
most common types of graphical models. Specifically, chain
graphs can contain both directed and undirected edges in the
same graph, and so can perfectly represent a richer set of
probability distributions.

Standard Accounts of Categorization

Four significant (classes of) psychological theories of
categorization are: exemplar-based, decision bound,
prototype-based, and casual model theories. Exemplar-
based models (Kruschke, 1992; Medin & Schaffer, 1978;
Nosofsky, 1984, 1986) represent a category by a set of
exemplar instances, where each exemplar must previously
have been observed to be a member of the category. To
categorize some novel instance, one first computes the
“similarity” of the instance to each possible category. This
similarity is the weighted average distance in “similarity
space” between the novel instance and each exemplar in the
category. The similarities for each category are then
integrated into a probabilistic response using the Shepard-
Luce rule (Luce, 1963; Shepard, 1957).

Decision bound models (Ashby & Townsend, 1986)
represent categories as regions of “feature space,” and
categorization decisions are made by determining the region
in feature space in which some instance most likely resides
(given some model of perceptual noise). From a
mathematical point-of-view, decision bound models are
closely connected to exemplar-based models. Ashby and
Maddox (1993) extensively explored the formal connections
between exemplar-based categorization models and decision
bound models in general recognition theory. In general, they
found that there are strong equivalencies between these
model-types, and so for space reasons, we do not explore
decision bound models more closely in the remainder of this
paper.

Prototype-based models (Minda & Smith, 2001, 2002)
represent a category by a prototypical instance (i.e., a
specific point in the relevant feature space). Standard
prototype models are formally similar to exemplar-based
models with only one exemplar, though the prototypical
instance does not have to be observed. Probabilistic
categorization responses are then generated using the
Shepard-Luce rule. These models typically contain only
first-order (observed) features, and so have no interaction
terms. In order to capture the intuition that the prototype can
encode (in some sense) a “summary” of the observed data,
prototype models can also contain second-order features:
variables whose value is entirely determined by two first-
order features (as in Rehder, 2003a; Rehder, 2003b).

Finally, causal model theory (Rehder, 2003a, 2003b;
Rehder & Hastie, 2004) holds that some categories are
defined by causal structure: individuals are members of the
same category just when their observable features are
generated by the same underlying causal structure.
Formally, causal structures are represented using Bayes
nets, and the similarity (of a novel instance to a category) is

equal to the probability of the category’s causal structure
generating a case with the given features.

Categorization Theories and Graphical Models

Consider the problem of “categorization” from the graphical
models point of view. In particular, suppose that we have
some set of categories that are described by probability
distributions, where each can be perfectly represented by a
suitable probabilistic graphical model. Given these models
and some novel case, we can straightforwardly determine
(using Bayesian updating) the probability that the novel case
was drawn from each of the probability distributions. That
is, for each graphical model G under consideration, we can
compute P(G | X) for the instance X. At least superficially,
these conditional probabilities resemble the predictions of
the various categorization theories (which all have the form
‘P(Say “A” | X)).

Danks (2004) proves that the resemblance is more than
superficial. The psychological theories of categorization are
each mathematically equivalent to computing P(G | X),
where G is restricted to be a particular type of graphical
model. Differences among (the graphical model versions of)
the different psychological theories arise because the
possibility space is restricted in different ways. The
relationship between categories in psychological theories
and graphical model classes can be summarized as:

e Exemplar-based categories are equivalent to (a subclass
of) Bayes nets with the structure shown in Figure 1;

e Prototype-based categories are equivalent to (a subclass
of) Markov random fields; and

e Causal model categories are equivalent to Bayes nets
with arbitrary structure.
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Figure 1: Bayes net structure for exemplar categories

Danks (in press) explores some methodological and
theoretical implications of these mathematical equivalencies
(e.g., enabling connections with causal learning research, or
explaining recent experimental results). Our focus here is on
one particular possibility raised in that chapter. Since
categories in the psychological theories correspond to
special cases of chain graphs, perhaps all psychological
categorization is simply Bayesian categorization on various
chain graphs. That is, the extant psychological theories
might simply be particularly salient special cases of
categorization that arise because Bayes nets and Markov
random fields are the simplest types of chain graphs.

If this suggestion is correct, then people should be capable
of learning categories that are perfectly representable only
by a full-fledged chain graph (but not a Bayes net or
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Markov random field). These probability distributions are
quite complex, and so learning such a category should be
challenging.

Experiment

The experiment reported here had a very simple central
question: Can people learn a category whose distribution
(over features) can be represented by a chain graph, but not
a Bayes net or Markov random field?

Experimental Design

Consider the chain graph: F1 - F3 — F4 <& F2. This chain
graph implies: F1 and F2 are unconditionally independent;
F1 and F4 are independent conditional on {F3, F2}; and F2
and F3 are independent conditional on {F4, F1}. Probability
distributions with these independencies cannot be perfectly
represented by any Bayes net or Markov random field. That
is, any graphical model with only directed edges, or with
only undirected edges, will necessarily imply strictly more
or strictly fewer independencies than actually obtain in this
probability distribution. This chain graph is the simplest one
that cannot be perfectly represented by a Bayes net or a
Markov random field.

The formal equivalencies between the psychological
theories of categorization and inference in probabilistic
graphical models enable us to conclude immediately that
any probability distribution perfectly representable by this
chain graph cannot be perfectly represented by a prototype
or causal model learner. The distribution could be learned
by exemplar-based category learning, but only by encoding
all of the exemplars (twelve in this experiment). A category
based on this probability distribution thus provides a critical
test case: none of the current psychological theories of
categorization predict that people will easily learn this
category, and only the exemplar theories predict that
anything at all could be learned. At the same time, since the
distribution can be perfectly represented with the chain
graph, it is (in principle) learnable.

The distribution in the Target column of Table 1 can only
be perfectly represented by this chain graph, and so serves
as the target category for our learning experiment. For our
contrast class, we use a multiplicative prototype category in
which the central prototype is F1 = F2 = 1, and F3, F4 are
irrelevant. F1 and F2 have equal weights in the category,
and so cases with only one of the two features occurs half as
frequently as the prototypical cases; cases without either
feature are one-fourth as frequent. The case distribution for
the contrast category is also provided in Table 1.

Four of the cases listed in Table 1—those with F3 = F4 =
l—were not shown to participants, and thus provide an
instrument for measuring category generalization. For
completeness, we have provided the implied counts for
those four cases using numbers in double brackets.

In deterministic learning scenarios, high performance can
result simply by memorization of salient or common
exemplars, and not from any understanding of the category
structure. Therefore, we deliberately used a probabilistic
categorization task because we wanted to know whether
people could learn the underlying distribution. Because the

task was probabilistic, perfect performance was not
possible. Optimal performance—i.e., correctly choosing the
more likely category for each case—results in 66.67%
correct classification (on average).

Table 1: Experimental case distribution

F1 F2 F3 F4 Target Contrast
0 0 0 0 4 1
0 0 0 1 2 1
0 0 1 0 2 1
0 0 1 1 0 [[1]] 0[[t]]
0 1 0 0 2 2
0 1 0 1 4 2
0 1 1 0 1 2
0 1 1 1 0 [[2]] 0[[2]]
1 0 0 0 2 2
1 0 0 1 1 2
1 0 1 0 4 2
1 0 1 1 0 [[2]] 0[[2]]
1 1 0 0 1 4
1 1 0 1 2 4
1 1 1 0 2 4
1 1 1 1 0 [[4]] 0 [[4]]

Participants and Materials

Eighty-eight Carnegie Mellon students were compensated
$10 for participation in a group of experiments containing
this one. The full set of experiments took approximately 45
minutes to complete.

The experiment was done on computers. Participants were
placed in the role of biologists classifying two novel species
of insects. To help them learn how to categorize, they were
presented with a sequence of “already classified” insects.
For each case in the learning sequence, participants were
presented with an image of the four-featured insect and
asked to classify it as a “Marbock” or “Wermer.” After
categorizing the insect, participants were given feedback
about the actual insect name, as well as whether their
answer was correct.

Participants were told that the learning phase would last
until they were “sufficiently good at classifying these bugs.”
Due to the difficulty of the learning task, however, we did
not actually use a specific performance criterion. Instead,
we simply presented every participant with two complete
sets (108 total cases). Within each block of 54 cases, the
cases were presented in a randomized order.

After completing the learning phase, participants were
presented with all sixteen possible insects (randomized
order) and asked ‘“how likely is it that this bug is a
[TARGET]?” where ‘TARGET’ was replaced by the chain
graph category name. Participants provided a 0-100 rating
using a slider movable only in increments of five (i.e., the
rating was functionally on a 0-20 scale). The lower and
upper ends of the rating scale were respectively labeled
“Cannot be a [TARGET]” and “Definitely a [TARGET].”

We have found in other experiments that participants can
successfully learn other categories using the same interface
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and functionally similar images (Zhu & Danks, in prep).
Thus, there is no a priori reason to think that the interface
impedes category learning (to any significant degree).

Results and Discussion

One measure of successful category learning is performance
in the learning phase prediction task. Since we randomized
the presentation order within each 54-case block, we cannot
directly compare performance in smaller intervals (since the
optimal performance might differ across individuals). A
histogram of percent correct responses in the second half of
the learning phase is given in Figure 2.
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Figure 2: Histogram of second half learning rates

This performance distribution is not significantly different
from normal (p > .70; Shapiro-Wilk test), and the mean is
not significantly different from 0.5 (p > .70; one-sample t-
test). Thus, we have prima facie evidence that participants
did not (in general) learn the categories: their performance
in the second half of the learning phase is not statistically
distinguishable from what one would expect from chance
performance in a population of this size.

The sixteen likelihood ratings also provide information
about learning performance: specifically, did any of the
participants learn (something like) the correct category
structures? The mean ratings (error bars indicate 95%
confidence intervals), as well as the correct likelihood for
observed cases, are shown in Figure 3.

There are 120 pairwise comparisons of ratings, and so we
applied the Benjamini & Yekutieli (2001) false discovery
rate correction (henceforth, BY-FDR) to the two-sample
paired t-test p-values. After applying this correction, there
was only one significant difference in ratings: 1010 vs. 1111
(p < .05). This analysis of the ratings for the full population
thus supports the previous analysis: people do not seem to
have learned the categories in this experiment.
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Figure 3: Mean ratings for all participants

At a more fine-grained level, however, the data present a
subtler picture. If the performance distribution in the
learning phase is due primarily to chance, then we would
expect to find statistically similar ratings from participants
with (i) above-chance performance, and (ii) below-chance
performance. In the same spirit, if any individuals actually
did learn something about the category structures, then we
would expect that this knowledge would translate into
above-chance performance. Thus, if any significant learning
occurred, then the above-chance performers should exhibit a
better understanding of the category structures.

To test for increased understanding, we split the
participant population into two groups: (i) those with
second-half learning phase performance > 0.5 (N = 45); and
(ii) those with performance < 0.5 (N = 43). This split was
based on learning phase performance, and so we cannot
perform any meaningful analyses on differences in
performance.

The mean group ratings are shown in Figure 4. On the
surface, these groups are not particularly different: None of
the likelihood ratings are significantly different (two-sample
t-tests with BY-FDR correction).
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Figure 4: Mean ratings for subgroups

However, although the ratings in the two groups are similar,
there is an important difference between them: the ratings of
the low-performing group are much more tightly clustered
around 50 than the high-performing group’s ratings. The
standard deviation for the low-performing group’s mean
ratings is only 3.74, and none of the likelihood ratings are
different from one another (after BY-FDR).

In contrast, the high-performers seemed to draw important
(and accurate) distinctions among some of the cases. The
standard deviation for the high-performers’ mean ratings is
9.63, and there are 21 pairwise significant differences in the
high-performers’ ratings (after BY-FDR).'

Interestingly, all of the significant differences involve a
11** case (principally 1111 and 1101) being judged much
less likely than a non-11** case to be in the target category.
That is, it seems that the high-performers were not learning
the structure of the target category, but rather something
about the contrast category structure: namely, that 11%%*
cases (i.e., the prototypical cases for the contrast category)
were highly likely to be in the contrast category, and so
received much lower likelihood ratings for the target
category. The ratings for the 1111 case are particularly
interesting, since it never appeared in the learning phase.
Moreover, according to the “true” distributions, 1111 was

' Ordered by BY-FDR corrected p-value, the significantly different
pairs were: p <.01: {0000, 0011, 0110} vs. 1111, 0000 vs. 1101; p
<.02: {1010, 1011, 1000, 0001, 0010} vs. 1111, {0011, 1000} vs.
1101; p < .05: 0111 vs. 1111, {0001, 1001, 1011, 1010, 0010,
0101,0110, 0111} vs. 1101, 1000 vs. 1100.

equally likely to be in either the target or contrast category.
However, if one learned only the contrast prototype, then
1111 should receive a low rating. Thus, we argue that these
ratings are better explained by the hypothesis that
participants understood only some of the contrast category
structure, than by the hypothesis that they correctly learned
(some of) both category structures.

Conclusions

It is notoriously difficult to determine cognitive limits, since
there are typically many different reasons why participants
might have failed at some task. We thus must be careful
about drawing any particularly strong conclusions from this
one experiment. Nevertheless, by a variety of measures, it
seems that participants did not learn much about the target
(chain graph) category. Learning performance was not
statistically distinguishable from chance responses, and the
only significant differences in test phase ratings (for only
one sub-group) seem to be due to an understanding of the
contrast category structure, not the target category structure.

There are at least three obvious alternative explanations
for the apparent failure of participants to learn the target
category. First, participants might not have had sufficient
experience with the categories. That is, perhaps performance
would improve substantially given more observations. Pilot
experimental results do not suggest a substantial increase in
performance over time, but more investigation is needed.

Second, the two categories used in this experiment might
be overly similar. If there were more contrast between the
categories (i.e., if they were more separable), then people’s
performance and understanding might significantly increase.
This concern is particularly salient given the significant
dependence of target category learning on the structure of
the contrast category (Goldstone, 1996).

Third, the measures used here might not have accurately
revealed people’s category learning. The “high performers”
were identified using mean correct responses over the last
54 cases, so people who learned quite late in the sequence
could have been excluded. Use of a fixed presentation order
could enable us to determine more accurately the subset of
individuals who actually learned the target (and contrast)
categories. Alternately, in the test phase rating collection,
we could ask about only crucial cases, rather than all cases.

Given these alternatives, the most definitive evidence that
people are unable to learn categories with these complex
statistical structures would be a series of experiments using
categories that are progressively more difficult to learn (in
theory). In particular, the categories would vary along the
dimension of: complexity of a graphical model that
perfectly represents the underlying probability distribution.
By tracking the changes in participant performance, we
could potentially determine something about the learnability
of various classes of probability distributions. There are, of
course, many studies testing progressively harder
categories—perhaps most famously the canonical study of
Shepard, Hovland, & Jenkins (1961)—but none of those
studies vary the category complexity along the dimension
proposed here. We are currently developing an appropriate
series of categories (from the graphical models perspective),
and we hope that experiments using those categories will
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help us to understand better the nature of the limits on the
category structures that can be learned.
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