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Abstract

Most research on step-by-step causal learning has focused on
the various possible effects early correlations (in a sequence)
can have on a learner’s causal beliefs. Recent work has
suggested that more information about an individual’s
learning strategy can be extracted by examining the slope of
the learner’s causal belief trajectory over time after the world
changes. We examined step-by-step causal learning from
biased sequences with large probabilistic dependencies, using
three analyses: testing for primacy vs. recency effects;
classifying learning type based on learning curve slope; and a
novel analysis based on the patterns of belief change found
across multiple sequences. We found few standard order
effects (and all of those were primacy effects), and people
seemed to be reasoning in a more “model-based” manner than
had previously been demonstrated. More generally, the effects
of prior observations on subsequent learning appear to be
substantially subtler than previous analyses revealed.

Introduction and Related Research

Causal beliefs play a central role in many areas of cognition
(Sloman, 2005), and the psychological processes governing
causal learning have been the focus of substantial research.
The primary psychological work on causal learning has
focused on causal inference “in the long run” (Cheng, 1997,
Cheng & Novick, 1992; Gopnik, Glymour, Sobel, Schulz,
Kushnir, & Danks, 2004; Griffiths & Tenenbaum, 2005;
Perales & Shanks, 2003; White, 2003). The resulting
theories aim to explain and predict how people’s causal
beliefs depend on observed statistics and prior knowledge
when presented with a sufficiently large number of cases.

In contrast, we focus here on the stepwise learning
problem, which has received much less attention (though
see, e.g., Danks, Griffiths, & Tenenbaum, 2003; Shanks,
1995; Shanks & Dickinson, 1987; and papers discussed
below). The goal in this setting is to characterize the ways in
which people’s beliefs change upon the observation of one
(or a few) cases. Thus, the resulting theories aim to predict
and explain the step-by-step learning curves for sequences
of cause-effect observations.

A natural experimental technique for investigating case-
by-case causal belief change is the use of biased sequences:
ones in which the first and second halves of the sequence
exhibit significantly different correlations between the
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putative cause and the effect. The contrast in the statistics
for the first and second halves of the sequence enable us to
focus on the ways in which prior observations effect the
changes in an individual’s causal beliefs. To maximize the
contrast between the sequence halves, we focus on
conditions in which the correlation presented in the first half
is exactly balanced out by the correlation of the second half.
This combination results in zero correlation between the
putative cause and the effect over the course of the entire
sequence. Thus, any differences in final causal beliefs
should be solely a result of order effects.

For sequences with this type of internal structure, there
are two obvious potential order effects. Primacy effects
occur when the final causal beliefs are biased towards the
initial correlation (as found in Dennis & Ahn, 2001). In
contrast, recency effects occur when the final causal beliefs
are biased towards the second half correlation (Catena,
Maldonado, & Céndido, 1998; Lbopez, Shanks, Almaraz, &
Fernandez, 1998; Collins & Shanks, 2002).

Two different types of theories of step-by-step causal
learning have been proposed in order to account for such
order effects. Associationist or error-correction models (e.g.
Rescorla & Wagner, 1972; Pearce, 1994) predict that causal
beliefs should change in response to the learner’s prediction
errors. These models thus “track” the recent correlations in
the sequence, and so are invariably thought to lead to
recency effects. In contrast, theories based on explicit
mental models (Dennis & Ahn, 2001) hold that the learner
develops an explicit model of the underlying causal
relationship during the course of observations. Subsequent
observations are interpreted in light of that model and, when
the model is sufficiently strong, contradictory evidence is
discounted (Einhorn & Hogarth, 1978; Hogarth & Einhorn,
1992). Because of this discounting, evidence in the second
half of the learning sequence has less impact on the
learner’s causal beliefs, which is thought to result in
primacy effects.

Danks & Schwartz (2005) argued on theoretical grounds
that one cannot simply infer that associationist theories
always predict primacy effects, while model-based theories
always predict recency effects. If an error-correction model
has a time-varying learning rate (which is typically
necessary for convergence in the long run; see Danks,
2003), then such a model has the potential to exhibit



primacy effects for certain sequences. On the other hand,
theories based on explicit models can exhibit recency effects
if the learner changes her mental model during the second
part of the sequence (since subsequent cases would then be
reinforcing the model, and so should be overweighted).
Because there are theories of each type that predict order
effects of each type, primacy/recency effects alone are
insufficient to decide between associationist and model-
based theories.

Instead, the shape of the causal learning curve after the
midpoint—i.e., when correlations “switch”—can provide a
more robust measure for classifying step-by-step learners
(Danks & Schwartz, 2005). At the sequence midpoint, the
learner’s causal beliefs should be extremal (within the
sequence). Thus, the learner should have the largest
prediction errors, but also be maximally confident in her
beliefs. Associationist theories, therefore, will always
predict that learners will have their largest shifts in causal
belief immediately after the midpoint (since errors will be
largest at that point). In contrast, model-based theories
predict that the largest shifts in causal belief should occur
significantly after the switch point (namely, whenever the
learner’s mental model shifts in response to the evidence).

Danks & Schwartz (2005) explored order effects using a
variety of sequences that varied significantly in length,
though they all had the same bias within each half-sequence.
They found only slight primacy effects for only a subset of
sequences, which suggests a (weak) preference for model-
based learning. In contrast, when they classified learners
using the above criterion (time of largest belief shifts), they
found primarily associationist behavior, though with a non-
trivial number of (apparently) model-based learners.
Moreover, for both analysis methods, there were no
systematic effects of sequence length. The analysis based on
learning curve shape thus revealed more about the learning
process than using only final ratings.

In their experiment, they used relatively weak causal
strengths compared to previous studies, such as Dennis &
Ahn (2001). For example, the positive-correlation halves of
the sequences had P(E | C) = 0.75 and P(E | -C) = 0.25,
resulting in AP = 0.5 and power PC (Cheng, 1997) causal
power = 0.67. (Negative-correlation sections were exactly
opposite.) Quite different order effects might occur for
sequences with larger biased causal strengths. In addition,
their analysis used only high-level features of the learning
curve shape, and more information might be available with
more sophisticated learning curve analyses. We here report
the results of an experiment using sequences with a range of
probabilistic dependencies, as well as a novel analysis
technique for learning curves from biased sequences.

Experiment

Participants

Forty Carnegie Mellon students were compensated $10 each
for participation. The experiment took approximately forty
minutes to complete.

Design and Materials

The experiment was done on computers. The experiment
cover story placed participants as doctors researching the
causal relationships between native plants and skin diseases
found on foreign islands. Over the course of the experiment
participants traveled to different islands, with a new disease/
plant sequence for each island.

Participants were first provided an introduction to the
information they would be given, as well as to the
mechanism for providing responses. Before seeing the first
experimental sequence, participants were shown four cases
to familiarize themselves with the experiment interface, and
offered an opportunity to ask questions.

On each “island,” participants interviewed forty villagers
to learn about their health. For each observed case,
participants were told whether or not that individual had
been exposed to the local plant, and also whether that person
had a specific skin rash. After each observed case,
participants were asked, “How much does the plant cause
the rash?” They responded using a slider that ranged from
+100 (the plant “always caused” the rash) to =100 (the plant
“always prevented” the rash), with O indicating no causal
relationship. The numeric value for the slider was provided,
but to avoid anchoring effects, the slider was repositioned at
0 after each response.

Each participant saw five different sequences of forty
cases each. Four of the five sequences were significantly
biased: the first half of the sequence had a positive (or
negative) correlation between Rash and Plant, and the
second half had the opposite correlation. An unbiased
sequence was included as a control condition. Overall, in
each individual sequence, Rash and Plant were uncorrelated,
and P(Plant) = P(Rash) = 0.5. The precise segment statistics
(and model predictions) are given in Table 1.

Table 1: Half-sequence statistics

Name of the P(Rash| | P(Rash | AP | Causal
half-sequence | Plant) No Plant) power
Strong — 0.1 0.9 -0.8 | -0.89
Strong + 0.9 0.1 0.8 |0.89
Weak — 0.3 0.7 -04 | -057
Weak + 0.7 0.3 0.4 | 0.57
Unbiased 0.5 0.5 0.0 |0.0

We will refer to the five sequences by strength, followed by
‘+/-* or ‘-/+’ (when appropriate). Thus, Strong +/- indicates
the sequence in which the participant saw the Strong + half-
sequence, followed by the Strong — half-sequence.

We used four different presentation orders; in each order,
the first sequence had a Strong bias, and every sequence was
followed by one in which the AP of the first half differed by
at least 0.4 (so that no sequence was followed by a “close”
one). Importantly, participants were not told that any of the
sequences had an internal bias, or that there might be a
change at the sequence midpoint. Regardless of presentation
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order, every participant saw exactly the same case ordering
for each sequence. Although this potentially introduces a
confounding factor, it was necessary to enable any between-
participant data analysis at points other than the midpoint
and endpoint of a sequence.

Results and Discussion

Five individuals were removed from the data analysis due to
inability to follow experimental instructions." We then
performed three different types of analyses.

Traditional Order Effect Analysis. Figure 1 provides the
mean midpoint and final ratings for the 35 participants in
each of the five sequences (error bars are 95% confidence
intervals). As expected, the midpoint ratings for all of the
biased sequences were highly significant (all p < .001; one-
sample two-tailed t-test), suggesting that participants were
sensitive to the probabilistic dependencies in the data.
Somewhat surprisingly, the mean midpoint rating for the
unbiased sequence was also significantly different from zero
(p < .05). We currently have no explanation for this finding.

We tested for order effects in two different ways. A
“normative” order effect occurs when final ratings are
significantly different from zero. We found normative
primacy effects in the Strong +/- (p < .05) and Weak -/+ (p
< .01) conditions. A “subjective” order effect occurs when
an individual’s ratings are significantly different for
sequences with different biases. We also found subjective
primacy effects for Strong +/- and Weak -/+ conditions. For
each of these sequences, the mean final ratings were
significantly different from the mean final ratings in the
three sequences with opposite (or no) bias.?
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Figure 1: Midpoint and final mean ratings (N = 35)

These results are consistent with the findings of Danks &
Schwartz (2005) for weak causal strengths: order effects
were found in only some conditions, and all order effects

! Specifically, four individuals responded with the impact of each
particular case (rather than integrating over the cases that they had
observed). One individual gave only zeros for ratings.

2 Weak -/+ vs. Strong +/-: p < .01; Weak -/+ vs. Weak +/-: p < .02;
all other relevant pairs: p < .05 (all two-sample paired t-tests)

were primacy effects. We also did a between-group
comparison of the mean midpoint and final ratings of (i) the
Weak conditions in the present experiment, and (ii) the 32-
and 48-case sequences of Danks & Schwartz (2005). The
only significant difference was between the midpoint ratings
of the Weak +/- and 48-case sequences (p < .05). Although
such comparisons are notoriously problematic, this analysis
suggests that the present experiment (partially) replicates the
results of Danks & Schwartz (2005).

Learning Curve Classification. The classification of
individuals into distinct “learning types” based on the high-
level shape of the learning curve reveals a similar, but not
identical, picture to that found in Danks & Schwartz (2005).
The basic classification method for this analysis compares
(for each individual) the changes in rating between (a) the
midpoint and %-point; and (b) the %4-point and final rating.
If change (a) is larger than change (b), then the individual is
learning as if “Associationist”; if change (b) is larger, then
the individual’s learning is as if “Model”-based.

To avoid inferences based on insignificant differences, we
classified any individual whose changes (a) and (b) were
within two points of one another as “Indeterminate.” Similar
results (though with a corresponding increase in the number
of “Indeterminate” individuals) were obtained for larger
thresholds. In addition, qualitatively similar results were
obtained when the learning curves were “smoothed” in
various ways (e.g., using the mean ratings in some window
around the point, rather than the point itself). Table 2
provides the classification of all 35 individuals in each of
the five conditions.

Table 2: High-level classification of individuals

Associationist | Model Indeterminate
Strong -/+ | 23 6 6
Weak -/+ 22 2 11
Unbiased 18 7 10
Weak +/- 11 13 11
Strong +/- | 19 10 6

As one would expect, there are many more “Indeterminate”
individuals in the Weak and Unbiased conditions than in the
Strong conditions. Those sequences induced much weaker
causal beliefs in the participants at the midpoints, and the
subsequent changes were correspondingly smaller as well.
Thus, it is more likely that the relevant shifts in any
particular individual’s learning curves in those conditions
will be (approximately) equal.

Overall, substantially more individuals are classified as
Associationist learners in the -/+ sequences than in the -/+
sequences. In contrast, Danks & Schwartz (2005) did not
find a substantial difference between the classifications for
+/- and -/+ sequences of similar length. However, since this
classification criterion is relatively coarse (and the 2005
experiment had relatively small sample sizes), we do not
place substantial weight on this difference.
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As a check on this analysis method, we performed the
same analysis on a uniform population of associationist
learners. Specifically, we simulated 35 individuals, each of
whom learned using the augmented Rescorla-Wagner model
(Van Hamme & Wasserman, 1994) with individual-specific
parameter values.® Since we used fixed sequences in the
experiment, we were able to calculate a precise causal belief
learning curve for each individual. As one would expect, the
simulated learning curves were qualitatively similar, though
with minor differences due to variations in parameter
values. These simulated individuals have no noise in their
responses; their ratings exactly correspond to their current
beliefs. To better approximate realistic behavior, we did
1000 runs in which we applied Gaussian noise (mean=0,
sd=5) to the ratings for each individual.

We classified these 35,000 (noisy) learning trajectories
using the above method. The classification profile (in
thousands) is given in Table 3. The simulation classification
finds more Associationist behavior in the -/+ sequences than
in the +/- sequences, just as in the empirical classification.
Thus, it seems reasonable to conclude that there are a non-
trivial number of associationist experimental participants. At
the same time, there are notable differences between the two
classifications, particularly many fewer Indeterminate
individuals in the simulation classification (especially for
Weak -/+). Thus, we suspect that we have a mixed
population of causal learners (see also Lober & Shanks,
2000). Unfortunately, we do not know of any proposed
computational theories of step-by-step model-based
learning, and so we cannot produce a complementary set of
simulated model-based learners.

Table 3: Classification of noisy simulated individuals

Associationist | Model Indeterminate
Strong -/+ | 34.2 0.4 0.4
Weak -/+ 31.9 1.7 14
Unbiased 19.9 7.0 8.1
Weak +/- 16.4 141 45
Strong +/- | 23.3 8.0 3.7

Comparisons of Belief Change Patterns. Our final set of
analyses focused on a previously unexplored feature of this
type of data. By design, for each bias, the first half of the +/-
sequence is the same as the second half of the corresponding
-/+ sequence (and vice versa). Thus, participants see the
exact same sequence of 20 cases twice: once as the first half
of a sequence, and once as the second half. We can therefore
analyze order effects on learning by comparing directly the
changes in their ratings when presented with the same
sequence of cases in different settings (either the start or the
midpoint of a sequence). Any significant differences
between the changes that participants made on some
particular case are presumably due to order effects.

3 ) = 1.0; all other parameters drawn uniformly from: og € [0.6,
0.8]; ac €[0.7,0.9]; a.c €[-0.3,-0.4]; B4, B, €[0.1, 0.2].

We have four different biased half-sequences: Strong +,
Strong —, Weak +, and Weak —. Figures 2-5 show the mean
case-by-case changes for each of the half-sequences in each
of the relevant full sequences. (Note that the y-axis scale is
not the same in the four figures.) For example, the Strong —
graph (Figure 2) compares the first half of the Strong -/+
sequence with the second half of the Strong +/- sequence.
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Figure 2: Mean changes in Strong — half-sequence
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Figure 3: Mean changes in Weak — half-sequence
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Figure 4: Mean changes in Weak + half-sequence
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Mean Rating Change
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Figure 5: Mean changes in Strong + half-sequence

We then tested for significant differences in each pair of 19
case-to-case changes in each of the four half-sequences. For
example, one test is for differences between (i) the change
from the first to second case in the Strong -/+ sequence; and
(ii) the change from the 21% to 22" case in the Strong +/-
sequence (point 1 in Figure 2). Out of the 76 distinct tests
(all two-sample paired t-tests), there were only seven
significant differences (shown in Table 4).

Table 4: Significant differences between participant changes

Half-sequence | Location of Significant | p-value
Difference (1-20)
Strong — NONE
Weak — 3 <0.05
Weak + 2 <0.05
4 <0.05
13 <0.05
19 <0.05
Strong + 1 <0.01
10 <0.01

Note that there were no significant differences between the
changes in the two Strong — half-sequences. In other words,
over the whole population, participants’ responses for
particular cases in the strongly negatively biased half-
sequence were not sensitive to the “context”: whether a case
occurred in the first or second half was not (in general) a
significant factor in predicting participants’ responses to it.
As a comparison, we returned to the 35 simulated
associationist learners (x 1000 noise applications). The
noise applications now enable us to test the stability of
significant differences between pairs of changes. Changes
that are robustly significantly different should be different
for most of the noise applications. We thus tested all pairs of
changes for significant difference (defined to be p < .05 on
the two-sample paired t-test). The number of significant
differences for each pair of changes in those 1000 runs
provides an estimate of the “robustness” of the difference.

Every pair of changes was significantly different at least
40 times, but only one pair was significantly different in all
1000 runs. In fact, only ten pairs of changes were
significantly different even 30% of the time. Those pairs of
changes are listed in Table 5 (with percent of runs).

Table 5: Significant differences between simulated changes

Percent
of Runs
100.0
49.2
42.2
34.2
714
62.6
98.5
78.8
59.4
33.4

Half-sequence | Location of Significant

Difference (1-20)

Strong -

Weak —

Weak +
Strong +

RPWoO WNRFRINOA P

There are two salient differences between the simulation
analysis and the empirical data, and in both cases, the
performance of the simulated learners is readily explained.
First, all robustly significantly different pairs in the
simulated data occurred in the first third of the half-
sequence, while the significant differences in the empirical
data occurred throughout the half-sequences. This biased
distribution of significant differences is entirely to be
expected for the simulated data. Associationist learners
should have large shifts immediately after the midpoint in a
sequence compared to the shifts at the start of a sequence.
Thus, we should find significant differences between the
early changes depending on whether they came at the start
or just after the midpoint. Moreover, since the associationist
learner rapidly converges within each half-sequence, there
should be very few context effects for the later portions of
the half-sequence. This explanation is clearly closely related
to the features of associationist learning that justified our
second analysis (using change sizes after the midpoint).

Second, the robustly significantly different pairs in the
simulation clustered in the negative half-sequences, whereas
the significantly different pairs of changes in the empirical
data tended to occur in the positive half-sequences. But the
previous asymmetry (between changes at the start and at the
midpoint) should be heightened for negative half-sequences,
since associationist learners have almost no changes in
belief for the target cause when presented with a negative
correlation.

Overall, this analysis thus supports our prior (tentative)
conclusion that our empirical population is almost certainly
not composed entirely of associationist learners.

Conclusion

A powerful experimental tool for discerning the case-by-
case manner in which learners change their causal beliefs is
the use of biased sequences: those in which the correlation
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between the putative cause and the effect shifts over the
course of learning. We used multiple sequences of this type
to help determine whether causal learning is principally
based on associationist/error-correction methods, or on
explicit models of the underlying causal structure.

We found that the standard experimental focus on only
primacy vs. recency effects fails to capture the subtlety of
order effects on causal learning. In some conditions, the
internal bias of a sequence does seem to produce primacy
effects in an individual’s final causal beliefs. However, the
story is more complicated than just “first half correlations
matter more than second half correlations” (or vice versa).

By looking at both the overall shape of the causal learning
curve and the precise pattern of changes (in response to
identical data), we found that previously observed cases do
not seem to exert a uniform influence on all subsequent
cases. This focus on the step-by-step changes enables us to
analyze the participant data in substantially more detail than
simply looking at mean midpoint and final ratings. In
particular, any significant differences in changes for the
same cases in the same half-sequence (but in two different
full sequences) are almost certainly due to order effects, and
so we can make more direct inferences than were possible
using only mean final ratings.

In addition to pointing towards the subtle nature of order
effects, these analyses also strongly suggest that our
participant population was not uniform with regards to
causal learning strategy (see also Lober & Shanks, 2000).
We aim in future experiments to examine more carefully the
individual differences in learning strategy.
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