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Abstract

Participants performed a categorization task in which basic-
level animal names (e.g., caf) were assigned to their
superordinate categories (e.g., mammal). Manual motor
output was measured by sampling computer-mouse
movement while participants clicked on the correct
superordinate category label, and not on a simultaneously
presented incorrect category. Animal names were selected
from the concept-name set of McRae, de Sa, & Seidenberg
(1997), in which each concept is associated with a sparse
semantic feature vector. If the competing category label draws
motor attraction during the categorization task, this attraction
should be predicted by feature-semantic measures based on
animals’ proximity to the incorrect category. This proximity
was computed by comparing each animal’s feature vector to
the mean vector of alternative category choices (e.g., cat’s
vector to the central tendency of all reptile vectors).
Dependent measures were computed from mouse-movement
trajectories. Degree of trajectory curvature correlated with the
proximity of an animal’s vector to the mean vector of
alternative categories, but only in a particular feature-
semantic space. Results suggest that continuous motor output
may systematically reflect underlying cognitive processing.
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Introduction

An increasing amount of research reveals that dynamic
characteristics of motor output reflect underlying cognitive
processing, rather than simply reflecting the discrete
decision resulting from that processing. For example, when
the cognitive system directs manual output amidst an array
of graspable objects, the arm’s movement does not always
proceed in ballistic fashion toward a single selected object,
but may vary continuously depending on the nature of
underlying processing. Both manual output and oculomotor
responses demonstrate these dynamic characteristics
intrinsic to the temporal extent of a response, not just the
final outcome of the response. For example, Doyle and
Walker (2001) demonstrate that saccadic eye movements
reflect attentional processing of visual cues in a simple
fixation experiment. Saccade trajectories to the same
location exhibit very subtle differential curvature depending
on the position of distractor or cue stimuli (see also Sheliga,
Riggio, & Rizzolatti, 1995). Additionally, considerable

research over the past 10 years has shown that eye
movements offer a semi-continuous measure of ongoing
cognitive processing (Ballard, Hayhoe, & Pelz, 1995;
Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995;
Underwood, 2005). Aggregate data from eye movements
often indicate a graded nature inherent to cognition in
general.

Similar findings demonstrate that manual motor output
can reveal graded representations. The force and velocity of
manual responses vary concomitantly with frequency in a
lexical decision task (Abrams & Balota, 1991; Balota &
Abrams, 1995), and response and stimulus probability in
simple reaction-time tasks (Mattes, Ulrich, & Miller, 2002;
Ulrich, Mattes, & Miller, 1999; see also Osman, Kornblum,
& Meyer, 1986; Balota, Boland, & Shields, 1989). And in
experimental work similar to the saccade trajectory
experiments described above, Tipper, Howard, and Jackson
(1997) have shown that arm ftrajectories can curve
depending on the visual distractor context in which reaching
motions are made (see also Tipper et al., 1992; Sheliga et
al., 1997). More recently, Spivey, Grosjean, and Knoblich
(2005) and Dale, Kehoe, and Spivey (in press) used
computer-mouse trajectories to show that graded manual
output reveals temporal continuity in the underlying
cognitive processes in spoken word recognition and
categorization.

In the latter two studies, manual trajectories were
measured through streaming x-y coordinates of computer-
mouse movement, and revealed attraction to other response
choices in the visual display. For example, in Dale et al. (in
press), mouse trajectories were recorded during lexical and
pictorial categorization of animal exemplars. Participants
categorized an animal by clicking the mouse on one of two
category choices. Mouse-movement trajectories consisted of
a movement from the bottom center of the screen, to the
correct target on the upper left- or right-hand corner of the
screen (beside which was a competing category label).
Target trials used atypical animals (e.g., whale) with an
incorrect competitor category that had considerable overlap
in terms of semantic and visual features (e.g., fish). Though
participants responded by clicking the appropriate category
(e.g., mammal), mouse-movement trajectories exhibited
substantial attraction toward the competitor category.
Competing activation of the incorrect category in these trials
was evident even in the properties of the resultant motor
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output, and not simply in the decision processes leading up
to it. Information flows from the sensors into the
categorization process and does not “discretize” before
issuing motor output to the effectors. Instead, the effectors
themselves seem to reflect some of this processing given the
typicality of the exemplar (e.g., rabbit vs. whale), and the
featural overlap with the competing category (e.g., fish).

So far, this literature has revealed effects of movement
dynamics in simple experimental manipulations. For
example, in both the saccade (e.g., Doyle & Walker, 2001)
and manual response research (e.g., Tipper et al., 1997),
trajectory curvature occurs in simple contexts containing
visual distractors. An important outstanding concern is the
extent to which properties of motor dynamics reflect finer-
grained aspects of the underlying processing task. To make
this point clearer, consider the categorization experiments in
Dale et al. (in press) just described. While these experiments
relied on two groups of animal exemplars, highly typical
(e.g., rabbif) and highly atypical (e.g., whale), they did not
explore whether typicality gradients between these extremes
are evident in mouse trajectories. Similar research on lexical
decision suggests that there should be a relationship
between such stimulus parameters and motor output (e.g.,
Abrams & Balota, 1991). Given the extensive influence of
typicality in categorization (see Murphy, 2002), and that
motor output may reflect cognitive processing, one should
also expect that motor output would reveal gradedness as a
function of typicality in a similar categorization task. In the
current paper, such gradients are explored through semantic-
space measures based on feature norms (McRae et al,
1997).

Moreover, through these feature norms (described
below), further details regarding the underlying factors
contributing to graded motor output can be acquired by
exploring what specific semantic features define the
gradients along which output varies. For example, when
categorizing animal exemplar names (lexical items), one
might expect that certain semantic features constraining that
process would exert more of an influence than others, such
as visual features if animals were presented using pictures
(e.g., visual vs. non-visual properties about the animal).

The following experiment aims to supply some insight
into these issues. A large set of animal names is categorized
in the same task as Dale et al. (in press), but the competing,
incorrect category is randomly selected from 4 possible
alternatives. Motor output is again measured in terms of
mouse trajectories. The subsequent analysis provides clues
about finer-grained processing exhibited by motor output.
Firstly, effects akin to typicality gradients should be
revealed in the motor output by comparing similarity (or
distance) in semantic space between categorized animal
exemplars and the competing category. Secondly, because
lexical items are being processed, we use multiple feature-
semantic measures to reveal that specific feature sets are
related to the gradients along which motor output varies.
Results demonstrate that the effectors exhibit cognitive
processing in systematic ways: Effects found in research on

categorization decisions are also revealed in their motor
output. In addition, motor output may uncover the semantic
features of the stimuli that wunderlie the lexical
categorization task.

Experiment

Participants

31 Cornell University undergraduates participated in the
study for extra credit in psychology courses. All participants
were right-handed.

Materials

Basic-level animal names were selected from the concept-
name set of McRae et al’s (1997) study in which
participants listed features of various animals and objects.
For the present study, we used 125 of McRae et al.’s animal
names. Each animal corresponded with a superordinate
category of mammal, fish, reptile, bird, or insect. The
experiment was programmed using RealBasic, and
presented on an Apple eMac computer. A standard one-
button Apple mouse was sampled using RealBasic’s Timer
control at a rate of approximately 40 Hz.

Procedure

At the start of each experimental trial, participants were
presented with two superordinate animal categories, one
category name in the upper right-hand corner of the
computer screen and one category name in the upper left-
hand corner (with approximately 16 degrees of visual angle
between categories). After 2000 ms, a 1cm” square appeared
at the bottom center of the screen (approximately 13 degrees
of visual angle from either category name). When
participants clicked on this square with the computer mouse,
the square was replaced by a basic-level animal name that
corresponded with one of the two super-ordinate animal
categories already at the top of the screen. Participants’ task
was to click on the super-ordinate category corresponding
with the animal name for that trial. They were informed to
respond naturally and accurately, and were not encouraged
to do so in a speeded manner. Before the 125 experimental
trials, each participant completed three practice trials. The
animal name presentation order and each trial’s incorrect
category were randomized. Likewise, the presentation side
of the category names (left vs. right) was also random.
Streaming x-y coordinates were recorded between
participants’ click on the square, and their final
categorization choice (see Fig. 1A).

Feature-Semantic Measures

Three different semantic spaces were constructed using sets
of features, which composed a unique vector for each
animal, and formed the basis for semantic-gradient
measures of the proximity between animal and competing
category in these spaces. As already mentioned, any motor
attraction exhibited in a trial is hypothesized to be due at
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least partly to the semantic similarity between the incorrect
category (serving to subtly attract the manual trajectory) and
the animal name that is being categorized.

Each of the 125 animal names can be represented as a
sparse semantic vector in a 205-dimension feature space
drawn from McRae et al.’s (1997) concept-name set.' These
semantic features were organized into three groupings:
dynamic, static, and category features. Dynamic features
(109 total) depicted specific animal behaviors, e.g., “swims”
and “eats seeds.” Static features (74) depicted specific
appearance characteristics, e.g., “has a long tail” and “is
furry.” Category terms (22) included non-behavioral and
non-visual labels often used to classify animals, e.g., “is
domestic” and “is endangered.” These groupings defined the
three following feature-semantic gradients: Proximity in
semantic space using dynamic features, static features, and
the full 205-feature set.

The 125 animals can be mapped in a semantic space
with dimensionality of the number of relevant features
(dynamic, static, or full). Each category’s central tendency
point was determined by averaging the coordinates of its
constituent animals. In the resulting space, the most typical
animal exemplars (e.g., rabbit) of each category clustered
around their category’s central tendency point. On the other
hand, atypical animal exemplars (e.g., whale) of each
category were positioned much further away, often nearer to
the central tendency point of an entirely different animal

category (e.g., fish).

Manual Measures and Analyses

Streaming x-y coordinates were sampled from the
presentation of the lexical item, to the final categorization
click, and only correct trials were subjected to analysis. Four
properties of manual output were extracted from these
mouse-movement data (see Fig. 1B). First, while not used in
the main analyses, the movement initiation time was
computed by measuring the number of samples before
mouse movement was detected (i.e., while the cursor was
motionless after the start of a trial). We use this measure of
latency below for an additional analysis.

From the remaining trajectory representing output
motion, we calculated the number of time steps required to
finish the categorization (movement time), the total area
occupied by the trajectory compared to an assumed straight
line to the correct category (area), and the closest point in
the trajectory to the competing category (proximity to
incorrect category). The first measure, movement time, was
scored using sample counts extracted in RealBasic.’

! We removed features that occurred uniquely in one animal. Any
feature that defined a dimension in the feature-semantic measures
was listed in at least 2 or more animal concepts in the McRae et al.
(1997) concept set.

? The RealBasic Timer function has an approximate sampling rate
of 40 Hz or 25 ms. The actual milliseconds at which the mouse is
sampled is somewhat different, approximately 33.3ms. For this
reason, rather than approximating a derived temporal measure, we
represented the results in terms of “ticks” of the RealBasic Timer.

Analyses aimed to detect the extent to which each
feature set predicted these dependent measures. In other
words, if an animal’s feature vector is close to a competing
category’s vector, one would predict that output measures
would represent attraction towards that category label.
Therefore, proximity to the incorrect category label should
be smaller (closer to label) if the distance between the
animal and incorrect category in semantic space is small. To
test this, we performed a two-part analysis. Both tests make
use of item-based observations. Each animal is paired with 4
randomly selected non-targets. With 125 animals, we
therefore have 500 item types supplied by the experiment.
The subsequent analyses are based on these 500 item-
category pairs. Each pair has observations averaged across
participants who encountered it in a trial during the
experiment. These data were used in the two-part analysis.

mammal reptile

\

cat

Figure 1 A: What participants saw, along with a hypothetical
mouse trajectory to the correct category.

correct incorrect

movement time
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|
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Figure 1B: Depiction of dependent measures.

In the first part, we separated animals along feature-
semantic gradients by using one standard deviation (SD) of
the mean distance from animals to a given category (i.e., all
animals to bird). This produced two groups of animals for
each category. The first group (N = 60 in the three feature
sets), one SD below the mean distance, represents those
animals close in semantic space to the competing category.
The second group (N = 60), one SD above, is particularly
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distant from the central tendency of the competing category
(see Table 1 for examples). We conducted #-tests between
these groups for each measure.

In a second test, we sought to confirm that the
relationship between feature-semantic distances and the
measures holds across the entire group of animals. To do
this, we computed a regression coefficient between the
semantic measures and the output measures. Proximity to
incorrect category, for example, should reveal a positive
relationship with semantic distance: Closer semantic
distance measures should significantly predict closer spatial
proximity measures in the mouse movements.

Table 1: Some examples of close and distant animals in
dynamic semantic space

Close animals (one SD below mean of Euclidean
distance for given category)

animal category distance
seal fish .30
dove insect 31
walrus fish .34
Distant animals (one SD above mean of
Euclidean distance for given category)
skunk insect 1.09
moth fish 1.08
bull bird 1.06
Results

Participants erred on 2.45% of experimental trials. These
trials were not included in statistical tests.

In comparing the groups of above/below one SD to the
mean distance in dynamic feature space, animals close to
competing categories exhibited larger trajectory area
(69386.7 vs. 64671.4 pixels®, #(122) = 2.0, p < .05), longer
time in motion (26.3 vs. 23.3 samples, #(122) = 2.6, p <.05),
and significantly closer proximity to the competing category
label (340.7 vs. 368.1 pixels, #(122) = 2.6, p < .05). Neither
static nor full 205-dimensional feature space exhibited any
significant or marginally significant differences.

Regression analyses revealed the same pattern. Only
dynamic feature space again revealed significant
relationships between output measures and distance. These
are presented in Table 2, along with the results for static and
full space regressions.

Table 2: Regressions across sets and output measures

p
Measure Dynamic  Static Full
Area - 13%* -.01 -.03
In motion - 15%%%* .04 .00
Proximity  .13%* .04 .04

X p<.05 **p< .0l **p< 001

Discussion

Results further support that dynamic properties of motor
output reflect cognitive processing. The output measures
significantly relate to feature-semantic gradients for
categories and animals that are not their members: The
closer the proximity in semantic space between animal and
incorrect category, the greater the attraction of the manual
response towards that category label. In addition, by
separating the feature space in terms of different semantic
content (dynamic vs. static features), we find that the
dynamic feature set predicts attraction to the non-target
label, while static features do not. Although there are a
number of caveats regarding the immediate implications of
these semantic spaces (see below), this at least suggests that
motor output is reflecting finer-grained featural semantics
that underlie lexical categorization in the task.

An additional analysis that may test this claim is to
conduct similar tests using Latent Semantic Analysis (LSA;
Landauer & Dumais, 1997), a semantic representation
scheme based on co-occurrence of lexical items in text. If
motor output reflects the processing of lexical items
specifically, then we should also observe significant results
when computing feature-semantic gradients in terms of LSA
measures.

LSA Analysis

LSA measures computed semantic similarity (rather than
distance or dissimilarity) between animal names and the 4
alternative categories to which they do not belong.” We
should therefore expect the reverse pattern of results for our
dependent measures.

Exactly the same strategy was used to separate two
groups of differing distance from mean typicality. These did
not produce significant results. However, unlike the
regression results above for static, but similarly for the
dynamic feature space, LSA significantly predicted all
dependent measures: area, » = .14, p < .01, movement time,
r=.11, p <.05, and proximity, » = -.10, p < .05. While the
SD separation of animal-category pairs did not attain
significance, the regression results reveal that gradient
effects hold with LSA measures.

Movement Initiation Time

We present a final analysis that tests a prediction made by
the perspective that processing flows into the effectors. If
cognition indeed does not discretize information prior to
initiating motor output during categorization, then there is
likely an important temporal component to the process. If a
participant allows a relatively large amount of time to pass
during a trial before initiating her response, then one would
not expect there to be significant dynamical competition in
the output: By spending more time evaluating the animal
name and category labels before moving, the decision

? We used online LSA tools located at Isa.colorado.edu. We used
the text “General reading to 1% year of college” with 300 factors,
though most large English texts work for this analysis.
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process may reach a higher level of certainty. The upshot
may be a more reliably linear, ballistic movement to the
correct category label.

We looked at the relationship between movement
initiation time and the output measures. One measure
exhibits a significant relationship. Proximity to competitor
is positively related (r = .15, p < .001). In other words, the
longer the amount of time spent before initiating motor
movement, the less spatial attraction exerted by the
competing category.

General Discussion

In everyday life, our arms move continuously during such
tasks as gesturing in conversation, organizing objects on a
table, and managing cooking ingredients. Their neural
substrate is a fairly slow system (relying heavily on
prediction; e.g., Flanagan & Lolley, 2001), not firing off
movements in staccato fashion (as with saccades), but often
changing course mid-path, or issuing graded movements as
it directs the arms to their target. This intuition about
everyday movement is demonstrated in the foregoing
results, and in the array of motor-dynamics findings
reviewed above. Even in a relatively “higher-order”
cognitive process such as categorization, manual output has
internal characteristics that likely reflect the categorization
process itself. In the above results, mouse trajectories vary
concomitantly with semantic gradients, and these gradients
may lie along dimensions relevant to the processing task.

Nevertheless, a number of important limitations should
be noted. First, the results, while robust, are thus far fairly
weak. There may be a number of reasons for this. Previous
findings with saccadic trajectories show an effect of location
of distractors relative to targets, resulting in varying
strengths of trajectory curvature (see Godijn & Theeuwes,
2002, for a review). In the kinds of experiments reported
here, it is uncertain where or whether there are effects of
relative location. Further studies may explore different
locations of competing category labels, and whether this
weak result is inherent to the nature of interaction between
cognition and action, or perhaps the design presented here
involved response choices situated too close or too far to
reveal more marked trajectory effects.

Second, little was done to transform the semantic
feature space afforded by McRae et al.’s (1997) concept set
(e.g., multidimensional scaling, row/column normalization,
similarity-metric transformation). Also, these feature sets
were not intended to define categories — so raw feature
values in Euclidean space were used to infer category
clusters. Moreover, we did not make use of semantic scores
for correct categories. We feel that this is in fact a more
conservative test of the predictions made above, because
raw Euclidean distance between animal and incorrect
category relates to motor measures, without adding the
additional information regarding proximity to correct
category semantics. Further detailed analysis of McRae et
al.’s (1997) semantic feature space may thus strengthen

these results (e.g., using the coding criteria employed by
Cree and McRae, 2003).

Despite these limitations, the proximity of incorrect
category labels did produce dynamic motor movement
effects that reliably correlate with raw semantic feature
space. The results further contribute to a wide literature on
processing distinctions between mode of stimulus
presentation: Categorization of lexical items may rely on
semantic information that is distinct from that centrally
involved in categorizing pictures of animal exemplars (e.g.,
Snodgrass, 1984; Viswanathan & Childers, 2003). Although
it is possible that the limitations may have rendered
detection of static semantic features undetectable, further
exploration may seek to explore the contribution of static
visual (or other perceptual) information in both decision-
and output-based measures of lexical categorization (see,
e.g., Pulvermiiller, 1999). One approach is to make use of
picture stimuli of the 125 animal names (e.g., Dale et al., in
press). Another, as mentioned, is to subject the semantic
feature space used here to more detailed analyses, perhaps
revealing the relevance of detailed visual or other perceptual
semantic features in more sensitive tests.

The findings reported here challenge the common
intuition that the properties of motor output are
uninformative of cognition. Perhaps more importantly, they
suggest that processing flows in systematic ways into motor
behaviors, rather than simply being collapsed onto them to
generate a categorical response (cf. Gold & Shadlen, 2000).
They may even recommend a “cascadic flow” perspective
on cognition that sees information flow continuously from
sensors to effectors (McClelland, 1979; Balota & Abrams,
1995; Spivey et al., 2005).
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