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Abstract

In this paper we propose that the dichotomy between exemplar-
based and prototype-based models of concept learning can be
regarded as an instance of the tradeoff between complexity and
data-fit, often referred to in the statistical learning literature as
the bias-variance tradeoff. This continuum reflects differences
in models’ assumptions about the form of the concepts in their
environments: models at one extreme, here exemplified by
prototype models, assume a simple conceptual form, entailing
high bias; models at the other extreme, exemplified by exem-
plar models, entertain more complex hypotheses, but tend to
overfit the data, with a concomitant loss in generalization per-
formance. To investigate human learners’ place on this contin-
uum, we had subjects learn concepts of varying levels of struc-
tural complexity. Concepts consisted of mixtures of Gaussian
distributions, with the number of mixture components serving
as the measure of complexity. We then fit subjects’ responses
to both a representative exemplar model and a representative
prototype model. With moderately complex multimodal cate-
gories, the exemplar model generally fit subjects’ performance
better, due to the prototype models’ overly narrow (high-bias)
assumption of a unimodal concept. But with high-complexity
concepts, the exemplar model’s overly flexible (high-variance)
assumptions made it overfit concepts relative to subjects, al-
lowing it to outperform subjects on highly complex concepts.
We conclude that neither strategy is uniformly optimal as a
model of human performance.

Introduction

Modern research on categorization has centered around two
general strategies for conceptual representation, termed pro-
totype theories and exemplar theories. Prototype and exem-
plar theories make strikingly different assumptions about how
learners use their past experience with category examples.
Prototype theories (e.g. Smith & Minda, 1998; Nosofsky,
1987) assume that learners induce from observed category
members a central tendency, called the prototype, used as a
composite against which newly encountered items are com-
pared. New items judged sufficiently similar to the prototype
are judged to be members of the category. By contrast, in
exemplar theories (e.g. Kruschke, 1992; Medin & Schaffer,
1978; Nosofsky, 1987), no central tendency is computed. In-
stead, the learner stores the attributes of observed examples
along with category labels, called exemplars. Category de-
cisions are then made by comparing newly observed items
to these stored exemplars, and objects are classified via their
similarity to these memorized examples.

Historically, prototype and exemplar strategies have been
regarded as qualitatively different, and often competing, ac-
counts of categorization. More recently, several authors

(Ashby & Alfonso-Reese, 1995; Rosseel, 2002; Vanpaemel,
Storms, & Ons, 2005) have pointed out how the two ap-
proaches may be seen as interrelated (see discussion below).
In this paper, we suggest a new way in which prototype and
exemplar models may be regarded as formally related, tap-
ping a very basic continuum drawn from statistical learning
literature, known as the bias-variance tradeoff. We then test
this idea by teaching subjects concepts intended to favor one
or the other end of the continuum—specifically, by varying
the level of complexity of the set of objects to be learned.
Our results suggest that human subjects tend to fall between
the extremes represented by the two historically influential
models, and more generally, that this is a fruitful new way of
looking at categorization strategies.

The Bias-Variance Tradeoff

A key aspect of any learning model is the success with which
it forms generalizations from training data, as measured by
its accuracy in classifying further data from the same source.
Somewhat counter-intuitively, this accuracy is not maximized
by modeling training data as accurately as possible. An ex-
tremely close fit to training data tends to generalize poorly to
future data, because such a fit inevitably entails fitting ran-
dom (noise) aspects of the sample as well as regular, replica-
ble trends, a phenomenon known as overfitting. On the other
hand, a model that fits the training data too poorly will miss
regular trends as well as noise, called underfitting. The crit-
ical variable modulating this phenomenon is the complexity
of the hypotheses entertained by the learner (for example, the
degree of the polynomial used in fitting a sequence of numeric
data). More complex hypotheses (e.g. higher-degree polyno-
mials) can, by definition, fit the training data more closely,
while less complex ones may lack the flexibility to fit it well
enough. The tradeoff is referred to as “bias vs. variance”
because at one extreme (simple hypotheses), the model im-
poses a strong expectation or “bias” on the data, sacrificing
fit, while at the other extreme (complex hypotheses), hypothe-
ses are more flexible (i.e., exhibit greater variance), risking
overfitting. The phenomenon can be seen schematically by
plotting generalization accuracy as a function of model com-
plexity; accuracy first rises to some optimum, but then de-
clines (Fig. 1). This basic tradeoff arises in a wide variety of
settings, as it seems to be fundamental to the vary nature of
generalization of any data that involve an unknown mixture of
regular and random elements (Dietterich, 2003; Hastie, Tib-
shirani, & Friedman, 2001).

The bias-variance tradeoff is a useful way to understand the
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Figure 1: A schematic illustration of generalization accuracy as a
function of model complexity, illustrating the bias-variance trade-
off. (Note: model complexity here is schematic and differs from the
measure used in subsequent graphs.)

distinction between exemplar and prototype concept learning
models. Along this continuum, prototype models exemplify
the “bias” end of the spectrum. With a very simple, con-
strained schema for categories (the prototype), such models
impose a strong bias on the observations, and thus will poorly
fit data not conforming to this schema. Highly disjunctive
or chaotic concepts, which are not well-described by a sin-
gle central tendency, will generally be underfit by a prototype
classifier. Data generated by a simple highly coherent source,
by contrast, might be well fit by this strategy.

Exemplar models, on the other hand, exemplify the “vari-
ance” end of the spectrum. By using individual stored ex-
emplars as classification standards, an exemplar model in ef-
fect entertains a very complex decision surface, with as many
bends and wrinkles as there are learned exemplars. Such a
system, by design, can learn arbitrarily complex collections
of examples, as it imposes minimal expectations (bias) on
the structure they are liable to exhibit. Such a strategy al-
lows flexible learning but, of course, risks overfitting when
the concepts are simple and the observed complexities are ac-
tually noise.

An ideal model of categorization would seek to balance
bias and variance, finding an ideal level of hypothesis com-
plexity, and thus optimizing its ability to generalize. But such
an ideal balance cannot, unfortunately, be determined a priori,
because it depends on the nature of the classes to be learned.
Specifically, it depends on the proportion of regularity and
noise in the source that generates the observations, i.e. on the
complexity typical of the environment.

In this light it may be seen that prototype and exemplar
models reflect different tacit assumptions about the nature of
“natural” concepts in the human learner’s environment. Pro-
totype models will be effective in an environment in which
natural classes tend to take the form of single, unimodal prob-
ability distributions in some feature space, and would be ex-
pected to perform poorly in more complex environments. Ex-
emplar models, by contrast, tacitly presume a complex envi-
ronment in which each object might, in principle, act as a
“class of its own.” Such a model represents an effective strat-
egy in a complex environment, but in a simpler one may over-
fit spurious elements, literally committing to memory what
are actually random events.

In the current paper we pursue a neutral, empirical ap-
proach to evaluating human generalization performance in a
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Figure 2: Schematic illustrations (contour plots) of the five concept
types. Each concept consisted of a mixture of N Gaussian clouds in
a two-feature space, with N ranging from 1 (left) to 5 (right).

range of points on the bias-variance continuum by systemat-
ically manipulating the complexity of concepts presented to
subjects. By confronting subjects with categories with vary-
ing levels of structural complexity, we may empirically ex-
amine how each of the two historically influential strategies
fares as a model of human performance, ranging parametri-
cally between the zone tacitly assumed by prototype models
(simple concepts) to that tacitly assumed by exemplar models
(complex concepts). We were interested in the effect of con-
ceptual complexity on human performance, and also, more
specifically, on the influence of complexity of the nature of
subjects’ learning strategies.

Experiment: Manipulating Complexity

Accordingly, the strategy in our study was to confront sub-
jects with concepts of varying levels of complexity, and then
to fit a representative prototype model and a representative
exemplar model to their classification responses. Our aim
was also to adopt a simple, theoretically neutral measure of
complexity. To this end we constructed concepts using two
continuous features, with the positive examples drawn from
a probability density function that was a mixture of N Gaus-
sian sources, with NV varying from 1 to 5 (Fig. 2). N =1
concepts are simple, unimodal Gaussian clouds. At the other
extreme, N = 5 concepts are highly heterogeneous mixtures
with five distinct modes. The number NV thus represents the
complexity of the conceptual structure in a fairly transparent
way.

A number of earlier studies (McKinley & Nosofsky, 1995;
Smith & Minda, 1998) have varied the structure of concepts
in attempts to probe subjects’ learning strategies, and indeed
concluded that the success of one strategy or the other de-
pends on the “diffusion” or “differentiation” of the concepts
on which performance was tested. Our study, we feel, takes a
step forward by putting this intuition on a firmer footing, by
varying conceptual structure in a more systematic way, and
by tying the resulting variations in learning success to a fun-
damental spectrum of strategies in learning.

Subjects

Thirteen undergraduates at Rutgers University received class
credit for participation.

Stimuli and Procedure

The objects observed by our subjects were parameterized by
two dimensions loosely adapted from (Ashby & Maddox,
1990), who used semicircles with a spoke radiating from the
center, with the two dimensions being the diameter of the cir-
cle and the orientation of the spoke. We embedded similar pa-
rameterized figures in depictions of flags flying from “ships,”
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Figure 3: Subject performance as a function of conceptual com-
plexity. Error bars indicated =+ one standard error.

which the subjects were asked to classify as either hostile (pi-
rate) or friendly (good guy) depending on the appearance of
the flag. Each ship floated in from off-screen, with a flag con-
taining a black rectangle and a white sword. The width of the
rectangle (0 to 170 pixels) and the orientation of the sword
(0-359°) served as the two quasi-continuous dimensions.

For each concept, the positive examples were generated
from a probability density function in this two dimensional
space. Each such distribution was a mixture of /N bivariate
circular Gaussians, with the number N of mixture compo-
nents in serving as the manipulation of conceptual complexity
(Fig. 2). Negative examples were generated from the corre-
sponding inverse distribution. To ensure that subjects gave
their primary attention to the positive set, whose structure we
were manipulating, the total area of the positive set (i.e. the
integral of the positive probability density) was held constant
on all concepts at one fourth of the total. The means of the
Gaussian components were separated using a criterion rela-
tive to their standard deviations, to prevent them from over-
lapping and thus obscuring our quantification of complexity.
Half of the trials were drawn from the positive set and half
from the negative, randomly intermixed within a concept,
with a total of 150 items per concept. Each subject saw one
concept from each of the five complexity levels, in random
order, so all comparisons are within-subject.

Subjects were presented with instructions indicating that
on each trial, a ship would move onto the screen whose flag
he or she must look at in order to determine if the ship was
a pirate or a “good guy.” Feedback was provided after each
classification, from which the subject gradually learned the
correct classification. Each session consisted of 150 such tri-
als, taking about ten minutes. Each subject ran one such ses-
sion at each of the five complexity levels, in random order.

Results

The most conspicuous aspect of the results is the steady de-
cline in subject performance as conceptual complexity in-
creases (Fig. 3), mirroring similar findings with other types
of stimuli and complexity measures (Feldman, 2000; Fass &
Feldman, 2002). This trend, interesting in and of itself, re-
flects a simplicity bias that is apparently ubiquitous in human
learning.

Details of Models

Our more detailed analyses concerned the relative perfor-
mance of prototype and exemplar models in accounting for
performance as complexity is varied. We first provide further
details of the models used in our analysis.

Prototype Model

The multiplicative prototype model, first used by Nosofsky
(Nosofsky, 1987) allows for psychological similarity to de-
crease exponentially with increasing distance. To compute
similarity between a to-be-categorized item and a prototype,
the values of the item and the prototype are compared along
stimulus dimensions. The prototype is represented as the av-
erage of all exemplars seen from that category. Formally, the
scaled psychological distance between the to-be-categorized
item ¢ and prototype P is given by

d 1/r
DiP = (Z wm|xim - Pm|r>
m=1

The distance, D;p , is most commonly computed using a
simple Euclidean metric (r = 2), where z;,, and P, are the
values of the to-be-categorized item and prototype on dimen-
sion m in d-dimensional space. A weighting variable for di-
mension m, represented as w,,, is used to account for the in-
equality of attention on each dimension. This variable allows
for a magnification of the psychological space along more at-
tended dimensions and shrinkage along less attended dimen-
sions (Kruschke, 1992; Nosofsky, 1986).

Similarity is then measured as a monotonically decreasing
function of the psychological distance between the point rep-
resentation of the stimulus and the prototype given by

)

o ©)
where c is a freely estimated sensitivity parameter. Higher
values of ¢ “magnify” the psychological space, increasing the
differentiation between the prototypes within the psychologi-
cal space by increasing the steepness of the similarity gradient
around them. In order to make a decision as to which cate-
gory a particular item belongs, similarities are calculated be-
tween a to-be-categorized item and the prototype from each
category. A guessing parameter, g, is used to represent the
probability the observer chooses at random between the two
categories, resulting in a probability (1 — g) that the subject
uses the similarities for his decision. If, for example, there are
two categories, A and B, then the similarity to prototype A is
divided by the sum of Prototype A and Prototype B similarity
to generate the model’s predicted probability of a Category A
response to stimulus %:

Sip =€

p(Ralsi) =g/2+ (1 —g) <%> 3)

Exemplar Model

The generalized context model (GCM) (Nosofsky, 1986) as-
sumes that the evidence for a particular category is found by
summing the similarity of a presented object to all category
exemplars stored in memory. Items are represented as points
in multidimensional psychological space, with the similarity
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between objects 7 and j measured as a decreasing function of
their distance in that space,

sij = el “4)

(Shepard, 1987). Here, as in the prototype model, c is a sen-
sitivity parameter that describes how similarity scales with
distance. With large values of ¢, similarity decreases rapidly
with distance; with smaller values of ¢, similarity decreases
more slowly with distance. Distances are calculated similar
to that in the prototype model, here summed from the to-be-
categorized item and every exemplar, where x;,, is the value
of the to-be-categorized item ¢ on dimension m and ¥y, is the
value of a category exemplar j on dimension m. As with the
prototype model, w,, is used as an attentional weight granted
dimension m.

d 1/r
dij = <Z wm|$im - yjm|r> (5)

m=1

To make a classification decision, similarities are calcu-
lated and summed between the to-be-categorized item and
the exemplars from each category. If, for example, there are
two categories, A and B, then summing across the category
A exemplars and category B exemplars results in the total
similarity of the item to category A members and category B
members. For category A, C'4 represents all exemplars in cat-
egory A and C'p represents all the exemplars in category B.
Using the similarity choice rule (Luce, 1963), the probability
of category A response for stimulus ¢ depends on the ratio of
1’s similarity to A to its total similarity to A and B,

ZjecA Sij

(6)
jeca Sii T Xjecy 5ij>

where again g is a guessing parameter previously described.

p(Ralsi) = g/2+(1—g) (E

Model Fit to Subject Data

To evaluate model performance, we first used parameter val-
ues that optimized each models’ log likelihood fit to subjects’
responses. Both models generally decrease in fit as complex-
ity increases (Fig. 4). This simply reflects subjects’ poorer
performance with increasing complexity, meaning that their
responses become progressively more random and thus more
unpredictable as complexity increases. At very high com-
plexity (N = 4 and 5), subject performance is very poor (see
Fig. 3), so the two models begin to converge in their ability to
fit what are now substantially random responses.

But at lower complexity levels, especially N = 2 and 3,
the fit of the exemplar model is substantially better than that
of the prototype model. By design, the prototype model deter-
mines similarity based on each exemplar’s distance from the
prototype, an average of all previously seen exemplars. For
N = 1, this assumption closely matches the actual generating
distribution, where there is one true center of the positive ex-
amples about which positive exemplars radiate outward and
the probability of a positive exemplar becomes exponentially
less likely as its distance from the center increases. The exem-
plar model also fits the data at this level of complexity well,
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Figure 4: Model fit to subject concept learning data as a function
of conceptual complexity.

with a summed log—likelihood of —48.7, resulting in a fit close
to that of the prototype model, with a fit of —56.0.

At complexity N = 2, the category generative model is
a mixture of two Gaussian clouds. Though subjects’ perfor-
mance worsens, they are still well above chance, averaging
around 80 percent correct. Here the probability distribution
in psychological space created from the prototype model, be-
cause it allows for only one central prototype, peaks in a re-
gion that falls between the two actual generative distributions.
The prototype model cannot account as well for the data as
can the exemplar model, which is able to represent the simi-
larity space as a distribution with two modes.

The advantage provided to GCM at N = 2 reoccurs at
N = 3, with GCM’s fit at —80.2 and the prototype model’s fit
at —95.2 At complexity levels N = 3 and 4, however, exem-
plar and prototype performance begins to converge. At these
high complexities, subject performance drops near chance.
As their responses follow less of a discernible strategy, both
the exemplar and prototype models are less able to approxi-
mate their responses.

Model Fit to Concepts

The analysis above involved optimizing each model to fit sub-
jects’ data as well as possible. While this method puts each
model in the best possible light, it is undesirable in that it
entails setting each models’ parameters based on information
that the model (and subject) could not, in principle, have ac-
cess to, namely the performance of the ensemble of subjects
on the task. As a second analysis, we refit each model to the
data, this time setting the parameters in order to maximize the
log likelihood of the training examples observed so far at each
point in the experiment—that is, simply allowing each model
to learn the concepts as well as possible. This method in-
evitably results in worse fit to the subject data, but illustrates
more accurately how each model would perform were it “left
to its own devices” to learn the training data as presented to
the subject.

Fig. 6 shows the fit of each model to subject data using the
settings optimized to the concept. These results are quite dif-
ferent from Fig. 4, and bring out in a very clear way the differ-
ent places that the two models occupy along the bias-variance
continuum. As before, both models generally decrease in fit
as complexity increases, reflecting the generally poorer per-
formance of subjects at high complexities. But the exem-

1041



o "-;--\E —— GCM

E 80.0% ,I‘._‘_‘___ Prototype

S - Subject

o

&b, T T

a 70.0%

£ L T

g

@ 60.0% | s !
L B L

50.0% -+

2 3 4
Complexity (N mixture components)

i

Figure 5: Model and subject performance as a function of concep-
tual complexity.

plar model, with its inherent capacity to learn complex con-
cepts, does not diminish in “learning” performance nearly as
quickly as the prototype model (Fig. 5). As aresult, the exem-
plar model is able to “out-learn” both the prototype model and
subjects on concepts at the higher levels of complexity—and
in this sense makes a poor model of subject performance at
high levels of complexity. This failure is noticeable in Fig. 6,
where now the exemplar model fits worse than the prototype
model. But in an exactly complementary way, the prototype
model does not learn moderately complex multimodal con-
cepts (N = 2 and 3) as well as do subjects—its bias towards
unimodal concepts is too strong and insufficiently variant. In
other words, the results show that as complexity increases, the
fits cross from one end of the bias-variance continuum to the
other. Subjects’ “default” bias-variance setting is somewhere
in the middle between the two models—more complex than
the unimodal assumption made by prototype models, but not
as complex as the super-multimodal assumption embodied by
GCM.

It is worth noting that GCM, like other exemplar models,
includes a sensitivity parameter, c, that allows it to, in effect,
slide along the bias-variance continuum. Recall that ¢ con-
trols the rate of exponential decay of probability as a function
of dissimilarity from each exemplar. High values of c entail
very narrow, “spiky” modes, and a more punctate decision
surface, which in effect means a higher variance. Lower val-
ues of ¢ entail smoother, broader, and less numerous modes,
a simpler decision boundary, and in effect more prototype-
like performance. Hence sensitivity provides the potential for
GCM to fall at various points along the bias-variance con-
tinuum. Prototype models, while they also have a sensitivity
parameter, consistently possess a unimodal assumption, with
c controlling only how quickly the category typicality falls
off with distance from the prototype. In this sense, proto-
type models exhibit an inflexibly high bias that is definitely
not representative of subject performance in our study. Ex-
emplar models are not as firmly tied to a single fixed point in
the bias-variance continuum. Nevertheless, as the above re-
sults show, exemplar models do not necessarily automatically
find the identical location along the continuum as do subjects
when fit only to the training samples they have observed. En-
dowed with the capacity to overfit the data, they may well do
SO.
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Figure 6: Fit of the two models to subject data using parameters fit
to the training data.

Integrating the Two Approaches

Many researchers have previously recognized the need to
combine the benefits of both prototype formation and exem-
plar memorization, leading to a number of “hybrid” mod-
els in the literature containing elements of both. In addi-
tion, as mentioned, several previous concept-learning models
have represented exemplar and prototype models in a unified
continuum in ways different from our approach. Ashby and
Alfonso-Reese (1995) emphasized the dichotomy between
parametric (prototype) and non-parametric (exemplar) mod-
els, seeing both as varieties of density estimation. More re-
cently, Vanpaemel et al. (2005) developed a categorization
model incorporating both prototype and exemplar type ele-
ments by placing them at the extremes of their varying ab-
straction model. In their model, the number of items to which
a new item can be compared may vary, allowing the model
to form representations that lie between pure prototype and
exemplar type structures. Rosseel (2002) explicitly adopts a
mixture model, assuming a generalization space that, like our
concepts, is a finite mixture of multivariate probability dis-
tributions. By allowing the number of mixture components
to vary, this model can mimic both parametric (prototype)
and nonparametric (exemplar) performance. While we have
not yet fit this model to our data, we expect excellent perfor-
mance, as its assumptions closely match the actual conditions
under which our concepts were generated.

All these approaches are clearly related to ours, but we
would argue that bias-variance analysis sheds a particularly
clear light on the historical dichotomy in the psychological
literature, by connecting the various proposals to a tradeoff
that is fundamental to statistical generalization regardless of
the specific form of the learning mechanism.

Conclusion

A number of conclusions can be drawn from our study, some
empirical, some more conceptual.

First, prototype and exemplar approaches to categorization
may fruitfully be regarded as points along a basic continuum
of model complexity, reflecting a spectrum of possible as-
sumptions about the complexity of concepts in the environ-
ment.

Second, conceptual complexity influences the degree to
which each strategy accurately accounts for human perfor-
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mance. At low but multi-modal levels of complexity (N =
2,3), prototype models underfit, but at high levels of com-
plexity (N = 4, 5), exemplar models overfit relative to human
learners. Human learners apparently make a more intermedi-
ate assumption about conceptual complexity than does either
classical strategy, and possibly modulate between the two ex-
tremes in accordance with the observations. Considering a
range of complexity levels, neither strategy is consistently su-
perior as a model of subjects.

Speaking methodologically, when carrying out studies of
human learning, it is imperative to consider concepts with a
range of complexity values. Our N = 1 concepts, which
resemble many concepts studied in the literature, elicited
very similar performance from prototype and exemplar mod-
els, which might shed some light on the decades of uncer-
tainty and controversy about the relative merits of the two ap-
proaches. Clear differences between the two strategies only
emerged at complexity N = 2 and above. A more systematic
approach to varying complexity is necessary to paint a com-
plete picture of human generalization under arbitrary condi-
tions.
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