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Abstract

An experiment was conducted in order to characterize the
intrinsic fluctuations of human behavior as they are reflected
in multiple repetitions of a single spoken word. Ten
participants repeated the word “bucket” 1100 times, and
fluctuations across repetitions in the acoustic measures of
syllable duration, peak pitch, peak intensity and spectral
intensity were analyzed for power law scaling relations. All
measures for all subjects showed fluctuations resembling the
scaling relation known as I/f noise, with many distinct
streams of 1/f noise running in parallel. These results provide
evidence for the emergent basis of human behavior.

Introduction

At some level, everyone would agree that an individual’s
behavior is the product of many neural and bodily systems
working together, influenced broadly by the individual’s
historic and behavioral contexts. Our question is “how do
these systems coordinate to produce coherent behavior?”
Coherence is ubiquitous to human behavior but can be seen
clearly in transparent examples like swimming or
drumming, where the limbs exhibit a coherent orchestration
of movement, presumably with a corresponding
orchestration of neural activity.

The implications of this question about the fundamental
basis of coordination can be illustrated by considering the
interpretation of neuroimaging results. Many studies report
that multiple brain regions are engaged in performing
cognitive tasks (Cabeza & Nyberg, 2000), and it is a general
rule that activation becomes more widespread as task
difficulty increases. It must also be recognized that the
amount of activation observed in neuroimages is just as
much a function of analysis parameters as it is of actual
neural activity. Therefore it appears that activation of
multiple brain regions can be observed for any given
behavioral performance.

Evidence for widespread brain activity raises the question
of how brain regions interact to produce behavior. If their
interactions are linear or weakly non-linear, then one could
plausibly use neuroimaging to identify the contributions that
each region makes to behavior, abstracted away from the
particulars of behavioral contexts. In other words, one
could plausibly draw causal lines from brain regions to
behavioral categories. As just one example from language
research, one could use subtractive or correlational methods
(which are linear) to test whether one set of regions is used
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in reading words, and a different set of regions is used in
reading nonwords.

But if interactions are sufficiently non-linear, then the
roles of brain regions in behaviors will be strongly
conditioned by context (e.g., see Elman et al., 1996). To
provide an illustrative analogy using the human body,
consider how the roles of the hands are conditioned by an
individual’s history and behavioral context. They can be
used for grasping, chopping, gesturing, sign language,
playing music, and even walking, under the right conditions.
While one might try to fix the thread that runs through these
functions, it would be very difficult to capture the seemingly
boundless number of potential functions of the hands. This
space of potential functions is created by context, which
may include the task demands as well as many aspects of an
individual’s body and experience.

The analogy is that, if interactions are sufficiently non-
linear, then the functions of brain regions are contextual in
the same way that the functions of the hands are contextual.
This does not mean that each brain region is equally likely
to support any given function. To the contrary, brain
regions undoubtedly have functional distinctions, just as the
hands are functionally distinct from other anatomical
components. But these distinctions would derive from
differences in the potentials and constraints that are
provided by each component to shape the contextual
emergence of cognitive and behavioral function.

We use the term emergence to mean that function is
instantiated by coordinations of activity whose cause cannot
be isolated in one or more system components. Instead, the
cause of coordination lives exclusively “in between” the
components, i.e., in their two-way interactions. Such
emergent coordination is defining of complex systems, and
relatively simple models of emergent coordination have
been studied in complex systems throughout the physical,
biological, and social science (see Bak, 1996; Holland,
1998; Kelso, 1997).

Our working hypothesis is that human systems are
complex systems, in the sense that their components are
governed by non-linear interactions from which the
coordination of behavior emerges. This is a very general
hypothesis that one might not at first expect to be
empirically testable, but it turns out that the capacity for
emergent coordination in complex systems has a universal
signature. From black holes to quasars, rivers to fault lines,
financial networks to computer networks and brains to



hearts, these and many other kinds of complex systems have
all exhibited power law scaling relations in their behaviors.
Scaling relations in nature are generally accepted as
emergent patterns of coordination (West & Brown, 2005).
Scaling relations occur most generally when one system
variable is related to another system variable raised to some
power. Scaling relations are fractal, in that the variables
bear a self-similar relation to each other across scales of
measurement (Bak, 1996). To illustrate, let us introduce the
scaling relation known as long-range correlation
(Wagenmakers, Farrell, & Ratcliff, 2005). The experiment
reported  herein  investigates long-range temporal
correlations in human behavior, but it is instructive to first
go through an example of long-range spatial correlations.
Consider a sheet of cortex as a system of neurons.
Imagine flattening the sheet and defining the distance
between two neurons as their Euclidean distance on the
sheet. Further imagine that each neuron has a time-varying
level of activity, and that correlations in neuronal activity
are measured as a function of distance apart. This
unrealistic but illustrative model of cortex would exhibit
long-range spatial correlations if the activities of nearby
neurons were positively correlated, and correlations decayed
towards zero slowly as distance increased. Slow decay
means specifically that correlations diminish as an inverse
power of distance, rather than the exponential decay that is
more commonly discussed (exponential decay corresponds

to “short-range” correlation). In particular, C(d) =~ 1/d’,
where C(d) is correlation as a function of distance d, and

0<y<l

Power law decay of correlations means that all neuronal
activities would tend to be correlated with each other to
some degree, no matter how far apart (hence the term “long-
range”). Long-range spatial correlations indicate a
coherence of activity across the entire model sheet of cortex,
and hence the potential for emergent coordination. This
potential has been demonstrated by simple models in which
long-range spatial correlations lead to spontaneous, global
patterns of neural activity (Stauffer & Aharony, 1992).

Long-range temporal correlations are defined by the same
power law decay, but for measurements across different
points in time rather than different points in space. In our
model sheet of cortex, for instance, one can imagine
measuring the activity of one neuron over two different time
periods, and testing whether the two time series of
measurements are correlated. The neuron would exhibit

long-range temporal correlations if C(k) ~ 1/k’, where & is
defined in terms of separation in time instead of space.
Analogous to our spatial illustration, long-range temporal
correlations may indicate the potential for coordinated
activity to emerge and cohere across time.

If one accepts long-range temporal correlations as
evidence for the emergent basis of human behavioral
coordination, then the evidence has been mounting for some
time (Gilden, 2001; Van Orden, Holden, & Turvey, 2003).
Long-range temporal correlations have been found in many
kinds of human performances, including walking, gazing,
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finger tapping, and ratings of self-esteem (see Van Orden et
al., 2003). Moreover, these long-range correlations have
been found to resemble the specific power law known as 1/f
noise.

To illustrate the properties of 1/f noise, a time series of
1024 simple reaction times is shown in the left panel of
Figure 1, taken from one participant in an experiment
reported by Beltz and Kello (2004). Distinct undulations
can be seen in the time series, undulations that extend across
dozens and even hundreds of reaction times. These
undulations have a fractal or self-similar quality, in that
their statistics are the same across timescales. In other
words, one could “zoom in” or “zoom out” on the time
series to find undulations nested within undulations, such
that one would not be able to determine the scale of
measurement based on the statistics of the visible
undulations. 1/f noise is thus said to be scale-free.
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Figure 1: Left graph shows reaction times plotted as a trial
series. Right graph shows a spectral analysis of the time
series, plotted in log-log coordinates.

The 1/f scaling relation can been seen more clearly in a
spectral analysis of the time series, shown in the right panel
of Figure 1. Spectral analysis essentially decomposes the
time series into a set of sine waves of varying amplitudes
and frequencies. Each point on the spectral plot represents
one sine wave, with its frequency on the x-axis and power
(squared amplitude) on the y-axis. Scaling relations express
themselves as linear trends in log-log coordinates, and the
regression line in Figure 1 indicates a clear scaling relation
between power and frequency in this participant’s reaction
time fluctuations. In particular, P = 1/f*, where alpha is
estimated in the range 0 <o < 1.

This range is noteworthy because 1/f noise with o near
one has been found throughout complexity phenomena in
nature (for hundreds of examples, see http://www.nslij-
genetics.org/wli/1fnoise). Moreover 1/f noise strikes a
balance between the randomness of white noise (where o is
near zero) and the regularity of brown noise (i.e., a random
walk were o is near two). Despite decades of research on
I/f noise, this scaling relation has proven difficult to
interpret because many models are known to generate or
mimic the basic finding of 1/f noise, and not all of them are
models of emergence as we have defined it. Thus a skeptic
may say that 1/f noise is ubiquitous simply because there are



so many unrelated ways for it to occur. The same could be
said for nearly all of the reports of 1/f noise in human
performance to date.

Current Experiment

We designed an experiment to provide more discriminating
evidence on whether 1/f noise is a sign of the emergent basis
of coordination in human behavior. The basic logic is that,
if 1/f noise is a generic property of system interactions, then
it should be found wherever the collective effects of system
interactions are measured without being obscured by task-
specific effects.

This qualification turns out to be a rather stringent one.
The issue is that, for any given series of measurement trials,
idiosyncratic effects will be introduced nearly anytime that
behavior is purposely varied in some way from one trial to
the next. Such variations are unwanted because they will
affect behavioral measurements according to the order in
which they occur, and these order effects will be reflected in
the spectral portraits of behavioral fluctuations. Therefore,
in order to observe 1/f noise most clearly, one should take
measurements of the same behavior enacted repeatedly,
with minimal perturbations and contingencies from one
enactment to the next. The only distinction between
measurements should be that they occurred at different
points in time. We shall refer to such measurements as the
intrinsic fluctuations of behavior.

1/f noise in human behavior has thus far been consistently
reported in measurement conditions that approximate to
some degree the pure definition of intrinsic fluctuation. For
instance, one of the clearest and earliest reports of 1/f noise
in human behavior came from the task of repeatedly
estimating the same distance or amount of time, over and
over again with no external cue for more than 1000 times
(Gilden, Thornton, & Mallon, 1995) (It is general practice
that evidence for a scaling relation needs to span at least
three decades of scale, which requires over 1000 data
points). More explicitly, Beltz and Kello (2004) found that
behavioral fluctuations were de-correlated by perturbations
to measurement in the form of unpredictable variations in a
cue to respond.

Results to date are consistent with the concept of intrinsic
fluctuation and the general hypothesis of emergent
coordination, but they may still be explained by non-
emergent hypotheses. For instance, under certain
parameterizations, 1/f noise may result from the summation
of processes that fluctuate on a wide range of timescales
(Beran, 1994). Perhaps variations in the timescales of
bodily and neural processes happen to align to produce 1/f
noise (Bills, 1935), or wvariations in unconscious,
subconscious, conscious processing may similarly align
(Ward, 2002). Another possibility is that attentional or
strategic drifts might follow a pattern of 1/f noise for some
reason (Pressing & Jolley-Rogers, 1997; Wagenmakers,
Farrell, & Ratcliff, 2005). These non-emergent mechanisms
may also explain the association of 1/f noise with intrinsic
fluctuation, but without a commitment to emergence.
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The non-emergent basis of these alternate mechanisms
leads to a testable prediction. The prediction is based on the
fact that the alternate mechanisms are all singular, isolated
sources of 1/f noise. At any given point in time, they
predict only one “signal” of 1/f noise to be emitted from a
person. There can be only one overall “system flux”, for
instance, and multiple threads of attention or strategy are not
typically hypothesized. By contrast, according to emergent
coordination, 1/f noise is a generic property of system
interactions that give rise to all behaviors. Any and all
behavioral signals should yield 1/f noise under conditions of
intrinsic fluctuation, even if there are multiple distinct
signals. Thus one should be able to find multiple, parallel
streams of 1/f noise under conditions of intrinsic fluctuation.

Beltz and Kello (2004) tested these competing predictions
by creating conditions for measuring two parallel but
unrelated streams of intrinsic fluctuation. As already
mentioned, they measured fluctuations in reaction times to
simple response cues, but they also measured fluctuations in
the corresponding key-contact durations, that is, the time
from key press to key release. Reaction times and key-
contact durations were indeed uncorrelated as one might
expect, yet they both fluctuated as 1/f noise.

While the appearance of these two parallel yet distinct
streams of 1/f noise was predicted by emergent
coordination, the result can be accommodated post-hoc by
non-emergent hypotheses. For instance, one might claim
that conscious/controlled/cognitive processes emit their own
stream of 1/f noise in reaction times, and unconscious/
automatic/motor processes emit a second stream of 1/f noise
in key-contact durations. Kello and his colleagues (2006)
argued against this kind of post-hoc account on logical
grounds, but such accounts remain as logical possibilities.

The experiment herein was designed to push this issue to
its logical extreme. If 1/f noise reflects the emergent basis
of behavioral coordination, then the possible number of
parallel and distinct streams of 1/f noise should be unlimited
in principle. Key presses afford no more than a small
handful of behavioral measures, and so are ill-suited to
testing for many parallel and distinct streams of 1/f noise.
Therefore, we elicited intrinsic fluctuations in a repeated
speech token because spoken utterances afford a plethora of
dependent measures to examine for 1/f noise. If 1/f noise
reflects the emergent basis of behavioral coordination, then
all acoustic measures of intrinsic fluctuation, no matter how
distinct from each other, should all appear as 1/f noise.

Methods

Participants. Five male and five female undergraduate
students participated in the experiment for course credit.

Procedure. Each participant said the word “bucket” 1100
times in a row. Utterances were paced by audiovisual cue
that was presented once every 1.2 seconds. The word
“bucket” was chosen because it is easy to produce and it
affords the automation of many acoustic measures.
Participants were fitted with headworn cardioid



microphones to reduce perturbations of the recorded signal
from environmental noises and changes in microphone
proximity. They were instructed to speak in a natural
manner and to produce one “bucket” after each cue. A
practice block of ten utterances preceded the experimental
block.

Figure 2: Steps in data collection process: 1) Audio file of
block of utterances; 2) Segmented audio files by syllable; 3)
Serial order by syllable; 4) Duration, intensity and pitch
values determined for each syllable; 5) Spectrograph-like
plots of spectral power estimates, coded black (low power)
to white (high power). Ordered from low frequency
(bottom) to high frequency (top).

Data Collection and Analysis. Each utterance was
segmented into separate syllables using standard automated
tools and parameters that are part of the Logic Pro digital
audio software. Two non-spectral acoustic measurements
were taken from each syllable using the Praat speech
analysis software (Boersma & Weenink, 2005): peak
intensity and acoustic duration. Peak pitch was also
measured from the “buck” syllables but not the “ket”
syllables because the latter generally did not contain enough
periodic energy. In addition to these five non-spectral
measures per utterance, the long-term average spectrum
(LTAS) was computed for each syllable. The LTAS was
analyzed using frequency bands that were 160 Hz wide,
with center frequencies from 80Hz to 13,440Hz, yielding a
total of 84 spectral power estimates per syllable. In all, 173
acoustic measurements were taken per utterance (see Figure
2). Utterances with artifacts or anomalous measurements
were removed from the analyses, and then the beginnings of
each data series were truncated to yield 1024 utterances per
participant.
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Figure 3: Examples of spectral power fluctuations for
one participant over the course of the experiment.

Results

Figure 3 shows six example time series of spectral power
estimates for one participant’s series of “buck” syllables.
Two informal observations can be made: each series
exhibits the self-similar nested undulations that are
characteristic of 1/f noise, and the series do not appear to be
positively correlated with each other.

To more formally examine the data for 1/f noise, a
spectral analysis (not to be confused with the LTAS
measures) was conducted on the fluctuations across
utterances for each of the 173 acoustic measures taken from
each participant. The resulting spectra for each acoustic
measure were then averaged across participants, and the
averaged spectra for the non-spectral measures are shown in
Figure 4 in log-log coordinates. Each individual spectrum
resembled the average, and the averages show clear scaling
relations, particularly in the lower frequencies. The higher
frequencies are less reliable because they are more greatly
influenced by measurement error, which “whitens” the
spectral portrait. Whitening is seen as a flattening of the 1/f
scaling relation.

Therefore, to estimate the exponent of the scaling relation
seen in the averaged data, regression lines were fit to the
lowest 32 frequency bins of each spectrum. The slopes of
these lines were used as negative estimates of the exponent
of the 1/f' scaling relation. While one may debate the
strengths and weaknesses of this estimation method
compared with others (Thornton & Gilden, 2005), all
methods are likely converge to similar estimates in this case,
given the clarity of the spectral portraits for these data.
Furthermore, we are only trying to estimate whether the
exponent falls somewhere within the range of 1/f noise,
rather than pinpointing its specific value.
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Figure 4: Power spectra averaged across participants for
acoustic duration, peak intensity and peak pitch. Log
frequency is on the x-axis and log power is on the y-axis.

Negative estimates of the £ exponents are shown.

The next question to ask of these data is whether they
reflect multiple, distinct streams of 1/f noise. To test this,
we computed correlation coefficients for all pairs of
measures for each participant, and the average coefficients
ranged from 0.05 to 0.22. The lack of correlation among
these acoustic measures is clear evidence for as many as
five distinct streams of 1/f noise.

The same analyses were also conducted on the 168 LTAS
measures of intrinsic fluctuation, 84 per syllable. The
results of these analyses are presented in Figures 5 and 6. In
the top half of Figure 5, the negative estimates of the
exponents (i.e., regression line slopes) for averaged spectra
are plotted as a function of frequency for each syllable. In
the bottom half of Figure 5, the spectra are averaged across
frequency for each syllable. These graphs show that the 1/f
scaling relation was ubiquitous to all the spectral measures
of intrinsic fluctuation in the repetitions of “bucket”. Figure
6 shows the spectral analyses for each participant separately,
averaged across the frequency bins. These graphs show that

all ten participants generated the same 1/f scaling relation,
with the exponent ranging from 0.50 to 0.87 across
participants.

0.07
1st Syllable

g

80Hz

2nd Syllable

S
Ny

S
N

21,840Hz

S
o

Spectral Slope

-0.8

21,840Hz 80Hz

Frequency Frequency

Figure 5: Top graphs plot the spectral slope estimates as a
function of frequency band for data averaged across
participants. The frequency range for speech is shown by
the dotted lines. Bottom graphs plot the log-log spectra
averaged across participants and frequency bins.

Finally, to test whether the LTAS intrinsic fluctuations
contained distinct streams of 1/f noise, a 168 by 168
correlation matrix was computed for each participant’s data,
and the resulting correlation matrices were averaged
together.  Inspection of the averaged matrix showed
hundreds of pairs of uncorrelated LTAS components (i.e.,
average coefficients of +0.1).  Principal components
analysis (PCA) was then used to derive a more specific
estimate of the number of purely uncorrelated (orthogonal)
streams of 1/f noise. The 84 LTAS series for each syllable
were submitted to PCA analysis, and the resulting
orthogonal fluctuations (i.e., the original data projected onto
the principal components) were submitted to spectral
analysis to retest for the 1/f scaling relation.

The results showed that the strongest components of the
data also had exponent estimates closest to the boundary
condition of one for 1/f noise. Moreover, dozens of
components for each syllable, all uncorrelated by definition,
were estimated to be well within the range of 1/f noise. For
instance, 11 components in the first syllable and 14
components in the second syllable had exponents estimates

Figure 6: Spectral analyses of the LTAS fluctuations, averaged across frequency bins and separated by participant.
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greater than 0.5. These components accounted for well over
90% of the data. The remaining components fluctuated as
white noise.

Conclusion

The specific aim of our experiment was to test whether
multiple, parallel streams of 1/f noise can be found in a rich
and intricate human behavior like speech. Over 100
acoustic measures of the word “bucket” were observed
under conditions of intrinsic fluctuation, and all measures
for all ten participants closely resembled the power law
scaling relation known as 1/f noise. Moreover, correlations
and PCA analyses indicated that dozens of distinct streams
of 1/f noise ran in parallel through the intrinsic fluctuations
of speech.

These findings were predicted by the hypothesis that 1/f
noise originates from interactions that are generic to human
systems, and that provide for the emergent basis of human
behavior. By contrast, the findings are difficult to reconcile
with the hypotheses that 1/f noise originates from system
flux, or fluctuations in attention, strategies, and the like.
The problem with these non-emergent hypotheses is that
they must proliferate post-hoc mechanisms for every distinct
stream of 1/f noise that is observed.

If one accepts these results along with many other studies
as evidence for the emergent basis of human behavior, then
the next step is to more specifically characterize the system
interactions that give rise to 1/f noise under conditions of
intrinsic fluctuation, and more generally give rise to the
coordination and coherence of human behavior. Similar
issues of emergent coordination have been studied
rigorously in the physical sciences for decades. The finding
of power law scaling relations in the cognitive sciences
opens the way for physical and biological models to be used
more extensively as sources of inspiration for theories of
human cognition and behavior.
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