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Abstract 

An experiment was conducted in order to characterize the 
intrinsic fluctuations of human behavior as they are reflected 
in multiple repetitions of a single spoken word.  Ten 
participants repeated the word “bucket” 1100 times, and 
fluctuations across repetitions in the acoustic measures of 
syllable duration, peak pitch, peak intensity and spectral 
intensity were analyzed for power law scaling relations.  All 
measures for all subjects showed fluctuations resembling the 
scaling relation known as 1/f noise, with many distinct 
streams of 1/f noise running in parallel.  These results provide 
evidence for the emergent basis of human behavior.  

Introduction 
At some level, everyone would agree that an individual’s 
behavior is the product of many neural and bodily systems 
working together, influenced broadly by the individual’s 
historic and behavioral contexts.  Our question is “how do 
these systems coordinate to produce coherent behavior?”  
Coherence is ubiquitous to human behavior but can be seen 
clearly in transparent examples like swimming or 
drumming, where the limbs exhibit a coherent orchestration 
of movement, presumably with a corresponding 
orchestration of neural activity. 

The implications of this question about the fundamental 
basis of coordination can be illustrated by considering the 
interpretation of neuroimaging results.  Many studies report 
that multiple brain regions are engaged in performing 
cognitive tasks (Cabeza & Nyberg, 2000), and it is a general 
rule that activation becomes more widespread as task 
difficulty increases.  It must also be recognized that the 
amount of activation observed in neuroimages is just as 
much a function of analysis parameters as it is of actual 
neural activity.  Therefore it appears that activation of 
multiple brain regions can be observed for any given 
behavioral performance. 

Evidence for widespread brain activity raises the question 
of how brain regions interact to produce behavior.  If their 
interactions are linear or weakly non-linear, then one could 
plausibly use neuroimaging to identify the contributions that 
each region makes to behavior, abstracted away from the 
particulars of behavioral contexts.  In other words, one 
could plausibly draw causal lines from brain regions to 
behavioral categories.  As just one example from language 
research, one could use subtractive or correlational methods 
(which are linear) to test whether one set of regions is used 

in reading words, and a different set of regions is used in 
reading nonwords.  

But if interactions are sufficiently non-linear, then the 
roles of brain regions in behaviors will be strongly 
conditioned by context (e.g., see Elman et al., 1996).  To 
provide an illustrative analogy using the human body, 
consider how the roles of the hands are conditioned by an 
individual’s history and behavioral context.  They can be 
used for grasping, chopping, gesturing, sign language, 
playing music, and even walking, under the right conditions.  
While one might try to fix the thread that runs through these 
functions, it would be very difficult to capture the seemingly 
boundless number of potential functions of the hands.  This 
space of potential functions is created by context, which 
may include the task demands as well as many aspects of an 
individual’s body and experience.  

The analogy is that, if interactions are sufficiently non-
linear, then the functions of brain regions are contextual in 
the same way that the functions of the hands are contextual.  
This does not mean that each brain region is equally likely 
to support any given function.  To the contrary, brain 
regions undoubtedly have functional distinctions, just as the 
hands are functionally distinct from other anatomical 
components.  But these distinctions would derive from 
differences in the potentials and constraints that are 
provided by each component to shape the contextual 
emergence of cognitive and behavioral function. 

We use the term emergence to mean that function is 
instantiated by coordinations of activity whose cause cannot 
be isolated in one or more system components.  Instead, the 
cause of coordination lives exclusively “in between” the 
components, i.e., in their two-way interactions.  Such 
emergent coordination is defining of complex systems, and 
relatively simple models of emergent coordination have 
been studied in complex systems throughout the physical, 
biological, and social science (see Bak, 1996; Holland, 
1998; Kelso, 1997). 

Our working hypothesis is that human systems are 
complex systems, in the sense that their components are 
governed by non-linear interactions from which the 
coordination of behavior emerges.  This is a very general 
hypothesis that one might not at first expect to be 
empirically testable, but it turns out that the capacity for 
emergent coordination in complex systems has a universal 
signature.  From black holes to quasars, rivers to fault lines, 
financial networks to computer networks and brains to 
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hearts, these and many other kinds of complex systems have 
all exhibited power law scaling relations in their behaviors. 
Scaling relations in nature are generally accepted as 
emergent patterns of coordination (West & Brown, 2005).  

Scaling relations occur most generally when one system 
variable is related to another system variable raised to some 
power.  Scaling relations are fractal, in that the variables 
bear a self-similar relation to each other across scales of 
measurement (Bak, 1996). To illustrate, let us introduce the 
scaling relation known as long-range correlation 
(Wagenmakers, Farrell, & Ratcliff, 2005).  The experiment 
reported herein investigates long-range temporal 
correlations in human behavior, but it is instructive to first 
go through an example of long-range spatial correlations.   

Consider a sheet of cortex as a system of neurons.  
Imagine flattening the sheet and defining the distance 
between two neurons as their Euclidean distance on the 
sheet.  Further imagine that each neuron has a time-varying 
level of activity, and that correlations in neuronal activity 
are measured as a function of distance apart.  This 
unrealistic but illustrative model of cortex would exhibit 
long-range spatial correlations if the activities of nearby 
neurons were positively correlated, and correlations decayed 
towards zero slowly as distance increased.  Slow decay 
means specifically that correlations diminish as an inverse 
power of distance, rather than the exponential decay that is 
more commonly discussed (exponential decay corresponds 
to “short-range” correlation).  In particular, C(d) ≈ 1/dγ, 
where C(d) is correlation as a function of distance d, and  
0 < γ < 1. 

Power law decay of correlations means that all neuronal 
activities would tend to be correlated with each other to 
some degree, no matter how far apart (hence the term “long-
range”).  Long-range spatial correlations indicate a 
coherence of activity across the entire model sheet of cortex, 
and hence the potential for emergent coordination.  This 
potential has been demonstrated by simple models in which 
long-range spatial correlations lead to spontaneous, global 
patterns of neural activity (Stauffer & Aharony, 1992). 

Long-range temporal correlations are defined by the same 
power law decay, but for measurements across different 
points in time rather than different points in space.  In our 
model sheet of cortex, for instance, one can imagine 
measuring the activity of one neuron over two different time 
periods, and testing whether the two time series of 
measurements are correlated.  The neuron would exhibit 
long-range temporal correlations if C(k) ≈ 1/kγ, where k is 
defined in terms of separation in time instead of space. 
Analogous to our spatial illustration, long-range temporal 
correlations may indicate the potential for coordinated 
activity to emerge and cohere across time.   

If one accepts long-range temporal correlations as 
evidence for the emergent basis of human behavioral 
coordination, then the evidence has been mounting for some 
time (Gilden, 2001; Van Orden, Holden, & Turvey, 2003).  
Long-range temporal correlations have been found in many 
kinds of human performances, including walking, gazing, 

finger tapping, and ratings of self-esteem (see Van Orden et 
al., 2003).  Moreover, these long-range correlations have 
been found to resemble the specific power law known as 1/f 
noise.  

To illustrate the properties of 1/f noise, a time series of 
1024 simple reaction times is shown in the left panel of 
Figure 1, taken from one participant in an experiment 
reported by Beltz and Kello (2004).  Distinct undulations 
can be seen in the time series, undulations that extend across 
dozens and even hundreds of reaction times.  These 
undulations have a fractal or self-similar quality, in that 
their statistics are the same across timescales.  In other 
words, one could “zoom in” or “zoom out” on the time 
series to find undulations nested within undulations, such 
that one would not be able to determine the scale of 
measurement based on the statistics of the visible 
undulations.  1/f noise is thus said to be scale-free. 

 

 
 

Figure 1: Left graph shows reaction times plotted as a trial 
series.  Right graph shows a spectral analysis of the time 

series, plotted in log-log coordinates. 
 

The 1/f scaling relation can been seen more clearly in a 
spectral analysis of the time series, shown in the right panel 
of Figure 1.  Spectral analysis essentially decomposes the 
time series into a set of sine waves of varying amplitudes 
and frequencies.  Each point on the spectral plot represents 
one sine wave, with its frequency on the x-axis and power 
(squared amplitude) on the y-axis.  Scaling relations express 
themselves as linear trends in log-log coordinates, and the 
regression line in Figure 1 indicates a clear scaling relation 
between power and frequency in this participant’s reaction 
time fluctuations.  In particular, P ≈ 1/fα, where alpha is 
estimated in the range 0 < α < 1. 

This range is noteworthy because 1/f noise with α near 
one has been found throughout complexity phenomena in 
nature (for hundreds of examples, see http://www.nslij-
genetics.org/wli/1fnoise).  Moreover 1/f noise strikes a 
balance between the randomness of white noise (where α is 
near zero) and the regularity of brown noise (i.e., a random 
walk were α is near two).  Despite decades of research on 
1/f noise, this scaling relation has proven difficult to 
interpret because many models are known to generate or 
mimic the basic finding of 1/f noise, and not all of them are 
models of emergence as we have defined it.  Thus a skeptic 
may say that 1/f noise is ubiquitous simply because there are 
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so many unrelated ways for it to occur.  The same could be 
said for nearly all of the reports of 1/f noise in human 
performance to date.   

Current Experiment 
We designed an experiment to provide more discriminating 
evidence on whether 1/f noise is a sign of the emergent basis 
of coordination in human behavior.  The basic logic is that, 
if 1/f noise is a generic property of system interactions, then 
it should be found wherever the collective effects of system 
interactions are measured without being obscured by task-
specific effects.   

This qualification turns out to be a rather stringent one.  
The issue is that, for any given series of measurement trials, 
idiosyncratic effects will be introduced nearly anytime that 
behavior is purposely varied in some way from one trial to 
the next.  Such variations are unwanted because they will 
affect behavioral measurements according to the order in 
which they occur, and these order effects will be reflected in 
the spectral portraits of behavioral fluctuations.  Therefore, 
in order to observe 1/f noise most clearly, one should take 
measurements of the same behavior enacted repeatedly, 
with minimal perturbations and contingencies from one 
enactment to the next.  The only distinction between 
measurements should be that they occurred at different 
points in time.  We shall refer to such measurements as the 
intrinsic fluctuations of behavior. 

1/f noise in human behavior has thus far been consistently 
reported in measurement conditions that approximate to 
some degree the pure definition of intrinsic fluctuation.  For 
instance, one of the clearest and earliest reports of 1/f noise 
in human behavior came from the task of repeatedly 
estimating the same distance or amount of time, over and 
over again with no external cue for more than 1000 times 
(Gilden, Thornton, & Mallon, 1995) (It is general practice 
that evidence for a scaling relation needs to span at least 
three decades of scale, which requires over 1000 data 
points).  More explicitly, Beltz and Kello (2004) found that 
behavioral fluctuations were de-correlated by perturbations 
to measurement in the form of unpredictable variations in a 
cue to respond.   

Results to date are consistent with the concept of intrinsic 
fluctuation and the general hypothesis of emergent 
coordination, but they may still be explained by non-
emergent hypotheses.  For instance, under certain 
parameterizations, 1/f noise may result from the summation 
of processes that fluctuate on a wide range of timescales 
(Beran, 1994).  Perhaps variations in the timescales of 
bodily and neural processes happen to align to produce 1/f 
noise (Bills, 1935), or variations in unconscious, 
subconscious, conscious processing may similarly align 
(Ward, 2002).  Another possibility is that attentional or 
strategic drifts might follow a pattern of 1/f noise for some 
reason (Pressing & Jolley-Rogers, 1997; Wagenmakers, 
Farrell, & Ratcliff, 2005).  These non-emergent mechanisms 
may also explain the association of 1/f noise with intrinsic 
fluctuation, but without a commitment to emergence. 

The non-emergent basis of these alternate mechanisms 
leads to a testable prediction.  The prediction is based on the 
fact that the alternate mechanisms are all singular, isolated 
sources of 1/f noise.  At any given point in time, they 
predict only one “signal” of 1/f noise to be emitted from a 
person.  There can be only one overall “system flux”, for 
instance, and multiple threads of attention or strategy are not 
typically hypothesized.  By contrast, according to emergent 
coordination, 1/f noise is a generic property of system 
interactions that give rise to all behaviors.  Any and all 
behavioral signals should yield 1/f noise under conditions of 
intrinsic fluctuation, even if there are multiple distinct 
signals.  Thus one should be able to find multiple, parallel 
streams of 1/f noise under conditions of intrinsic fluctuation. 

Beltz and Kello (2004) tested these competing predictions 
by creating conditions for measuring two parallel but 
unrelated streams of intrinsic fluctuation.  As already 
mentioned, they measured fluctuations in reaction times to 
simple response cues, but they also measured fluctuations in 
the corresponding key-contact durations, that is, the time 
from key press to key release.  Reaction times and key-
contact durations were indeed uncorrelated as one might 
expect, yet they both fluctuated as 1/f noise.   

While the appearance of these two parallel yet distinct 
streams of 1/f noise was predicted by emergent 
coordination, the result can be accommodated post-hoc by 
non-emergent hypotheses.  For instance, one might claim 
that conscious/controlled/cognitive processes emit their own 
stream of 1/f noise in reaction times, and unconscious/ 
automatic/motor processes emit a second stream of 1/f noise 
in key-contact durations.  Kello and his colleagues (2006) 
argued against this kind of post-hoc account on logical 
grounds, but such accounts remain as logical possibilities. 

The experiment herein was designed to push this issue to 
its logical extreme.  If 1/f noise reflects the emergent basis 
of behavioral coordination, then the possible number of 
parallel and distinct streams of 1/f noise should be unlimited 
in principle.  Key presses afford no more than a small 
handful of behavioral measures, and so are ill-suited to 
testing for many parallel and distinct streams of 1/f noise.  
Therefore, we elicited intrinsic fluctuations in a repeated 
speech token because spoken utterances afford a plethora of 
dependent measures to examine for 1/f noise.  If 1/f noise 
reflects the emergent basis of behavioral coordination, then 
all acoustic measures of intrinsic fluctuation, no matter how 
distinct from each other, should all appear as 1/f noise. 

Methods 
Participants. Five male and five female undergraduate 
students participated in the experiment for course credit.   
 
Procedure. Each participant said the word “bucket” 1100 
times in a row.  Utterances were paced by audiovisual cue 
that was presented once every 1.2 seconds.  The word 
“bucket” was chosen because it is easy to produce and it 
affords the automation of many acoustic measures.  
Participants were fitted with headworn cardioid 
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microphones to reduce perturbations of the recorded signal 
from environmental noises and changes in microphone 
proximity.  They were instructed to speak in a natural 
manner and to produce one “bucket” after each cue. A 
practice block of ten utterances preceded the experimental 
block. 
 

 

Figure 2:  Steps in data collection process: 1) Audio file of 
block of utterances; 2) Segmented audio files by syllable; 3) 

Serial order by syllable; 4) Duration, intensity and pitch 
values determined for each syllable; 5) Spectrograph-like 

plots of spectral power estimates, coded black (low power) 
to white (high power). Ordered from low frequency 

(bottom) to high frequency (top).   
  

Data Collection and Analysis. Each utterance was 
segmented into separate syllables using standard automated 
tools and parameters that are part of the Logic Pro digital 
audio software.  Two non-spectral acoustic measurements 
were taken from each syllable using the Praat speech 
analysis software (Boersma & Weenink, 2005): peak 
intensity and acoustic duration.  Peak pitch was also 
measured from the “buck” syllables but not the “ket” 
syllables because the latter generally did not contain enough 
periodic energy. In addition to these five non-spectral 
measures per utterance, the long-term average spectrum 
(LTAS) was computed for each syllable. The LTAS was 
analyzed using frequency bands that were 160 Hz wide, 
with center frequencies from 80Hz to 13,440Hz, yielding a 
total of 84 spectral power estimates per syllable.  In all, 173 
acoustic measurements were taken per utterance (see Figure 
2).  Utterances with artifacts or anomalous measurements 
were removed from the analyses, and then the beginnings of 
each data series were truncated to yield 1024 utterances per 
participant.   

 

 
 

Figure 3:  Examples of spectral power fluctuations for 
one participant over the course of the experiment. 

Results 
Figure 3 shows six example time series of spectral power 
estimates for one participant’s series of “buck” syllables.  
Two informal observations can be made: each series 
exhibits the self-similar nested undulations that are 
characteristic of 1/f noise, and the series do not appear to be 
positively correlated with each other. 

To more formally examine the data for 1/f noise, a 
spectral analysis (not to be confused with the LTAS 
measures) was conducted on the fluctuations across 
utterances for each of the 173 acoustic measures taken from 
each participant. The resulting spectra for each acoustic 
measure were then averaged across participants, and the 
averaged spectra for the non-spectral measures are shown in 
Figure 4 in log-log coordinates.  Each individual spectrum 
resembled the average, and the averages show clear scaling 
relations, particularly in the lower frequencies.  The higher 
frequencies are less reliable because they are more greatly 
influenced by measurement error, which “whitens” the 
spectral portrait.  Whitening is seen as a flattening of the 1/f 
scaling relation. 

Therefore, to estimate the exponent of the scaling relation 
seen in the averaged data, regression lines were fit to the 
lowest 32 frequency bins of each spectrum.  The slopes of 
these lines were used as negative estimates of the exponent 
of the 1/f〈 scaling relation.  While one may debate the 
strengths and weaknesses of this estimation method 
compared with others (Thornton & Gilden, 2005), all 
methods are likely converge to similar estimates in this case, 
given the clarity of the spectral portraits for these data.  
Furthermore, we are only trying to estimate whether the 
exponent falls somewhere within the range of 1/f noise, 
rather than pinpointing its specific value. 
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Figure 4:  Power spectra averaged across participants for 
acoustic duration, peak intensity and peak pitch.  Log 

frequency is on the x-axis and log power is on the y-axis.  
Negative estimates of the 1/f〈 exponents are shown. 

 
The next question to ask of these data is whether they 

reflect multiple, distinct streams of 1/f noise.  To test this, 
we computed correlation coefficients for all pairs of 
measures for each participant, and the average coefficients 
ranged from 0.05 to 0.22.  The lack of correlation among 
these acoustic measures is clear evidence for as many as 
five distinct streams of 1/f noise. 

The same analyses were also conducted on the 168 LTAS 
measures of intrinsic fluctuation, 84 per syllable.  The 
results of these analyses are presented in Figures 5 and 6.  In 
the top half of Figure 5, the negative estimates of the 
exponents (i.e., regression line slopes) for averaged spectra 
are plotted as a function of frequency for each syllable.  In 
the bottom half of Figure 5, the spectra are averaged across 
frequency for each syllable.  These graphs show that the 1/f 
scaling relation was ubiquitous to all the spectral measures 
of intrinsic fluctuation in the repetitions of “bucket”.  Figure 
6 shows the spectral analyses for each participant separately, 
averaged across the frequency bins.  These graphs show that 

all ten participants generated the same 1/f scaling relation, 
with the exponent ranging from 0.50 to 0.87 across 
participants. 

 

 
 

Figure 5: Top graphs plot the spectral slope estimates as a 
function of frequency band for data averaged across 

participants.  The frequency range for speech is shown by 
the dotted lines.  Bottom graphs plot the log-log spectra 

averaged across participants and frequency bins. 
 
 Finally, to test whether the LTAS intrinsic fluctuations 
contained distinct streams of 1/f noise, a 168 by 168 
correlation matrix was computed for each participant’s data, 
and the resulting correlation matrices were averaged 
together.  Inspection of the averaged matrix showed 
hundreds of pairs of uncorrelated LTAS components (i.e., 
average coefficients of ±0.1).  Principal components 
analysis (PCA) was then used to derive a more specific 
estimate of the number of purely uncorrelated (orthogonal) 
streams of 1/f noise.  The 84 LTAS series for each syllable 
were submitted to PCA analysis, and the resulting 
orthogonal fluctuations (i.e., the original data projected onto 
the principal components) were submitted to spectral 
analysis to retest for the 1/f scaling relation.   
 The results showed that the strongest components of the 
data also had exponent estimates closest to the boundary 
condition of one for 1/f noise.  Moreover, dozens of 
components for each syllable, all uncorrelated by definition, 
were estimated to be well within the range of 1/f noise. For 
instance, 11 components in the first syllable and 14 
components in the second syllable had exponents estimates 

Figure 6: Spectral analyses of the LTAS fluctuations, averaged across frequency bins and separated by participant. 
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greater than 0.5.  These components accounted for well over 
90% of the data.  The remaining components fluctuated as 
white noise.  

Conclusion 
The specific aim of our experiment was to test whether 
multiple, parallel streams of 1/f noise can be found in a rich 
and intricate human behavior like speech.  Over 100 
acoustic measures of the word “bucket” were observed 
under conditions of intrinsic fluctuation, and all measures 
for all ten participants closely resembled the power law 
scaling relation known as 1/f noise.  Moreover, correlations 
and PCA analyses indicated that dozens of distinct streams 
of 1/f noise ran in parallel through the intrinsic fluctuations 
of speech. 

These findings were predicted by the hypothesis that 1/f 
noise originates from interactions that are generic to human 
systems, and that provide for the emergent basis of human 
behavior.  By contrast, the findings are difficult to reconcile 
with the hypotheses that 1/f noise originates from system 
flux, or fluctuations in attention, strategies, and the like.  
The problem with these non-emergent hypotheses is that 
they must proliferate post-hoc mechanisms for every distinct 
stream of 1/f noise that is observed. 

If one accepts these results along with many other studies 
as evidence for the emergent basis of human behavior, then 
the next step is to more specifically characterize the system 
interactions that give rise to 1/f noise under conditions of 
intrinsic fluctuation, and more generally give rise to the 
coordination and coherence of human behavior.  Similar 
issues of emergent coordination have been studied 
rigorously in the physical sciences for decades.  The finding 
of power law scaling relations in the cognitive sciences 
opens the way for physical and biological models to be used 
more extensively as sources of inspiration for theories of 
human cognition and behavior. 
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