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Abstract

Many studies in the last four decades have investigated the
relative difficulty in learning of concepts defined by various
logical forms. Historically, most such studies have used
Boolean concepts, that is, categories formed by logical
combinations of binary-valued variables. In previous work,
we have found that in such categories subjective difficulty is
well predicted by Boolean complexity, that is, the length of
the shortest propositional formula equivalent to the concept.
However, this formalization does not extend easily to
concepts defined using features with more than two values.
Such categories are of particular interest because they are not
easily handled by any contemporary theories based on
continuous metric spaces. In more recent work, we have
developed a representational formalism suitable for
representing such categories. This theory provides a measure
of conceptual complexity for such categories, called algebraic
complexity. Here we report an experiment testing the
learnability of a set of a set of categories defined over two
three-valued features. The results show that algebraic
complexity gives a good account of the subjective learnability
of these concepts.
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Introduction

Categories help us to organize a complex world by grouping
objects and entities in a coherent fashion. But when it comes
to coherence, not all categories are created equal. Some
collections (pet cats) seem well-organized and coherent;
others (snips, snails, and puppy-dog tails) seem disjoint,
heterogeneous, and incoherent. Studies since the 1950s have
investigated the factors influencing subjective coherence, as
manifested in the ease with which categories with various
types of logical form can be learned by subjects. Simple
conjunctive categories (big red things) can be learned
accurately from few examples, while disjunctive categories
(big red or small blue things) require more examples before
subjects can acquire them (see Bourne, 1970, for a summary
of this extensive literature). However the spectrum of
categorical coherence cannot be reduced to the simple
dichotomy of conjunction vs. disjunction. In a more
complex setting involving three Boolean features, Shepard,
Hovland and Jenkins (1961) found a reliable ordering of
learning difficulty among six logical forms, whose structural
differences cannot be described solely in terms of the
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number of conjunctions or dimensions involved in the
concept.

The variety of possible conceptual forms in Boolean
spaces ranges far beyond the six classes used by Shepard et
al. (1961). An extensive study of learning difficulty in our
laboratory (Feldman, 2000) considered 35 more such
classes, testing the accuracy with which subjects could learn
each classification after a fixed duration of learning. Each of
these concept forms, like Shepard et al.’s famous types,
involved a combination of Boolean features that is not
isomorphic in logical form (congruent) to any of the other
classes. And also like the famous set of six, the classes
studied represented an exhaustive survey of one part of the
space of Boolean forms: in the Shepard et al. set, all
concepts in 3-dimensional Boolean space with four positive
examples; in the Feldman (2000) set, all concepts in 3- or 4-
dimensional Boolean space with two, three, or four positive
examples (see Feldman, 2003).

Considering this wide array of types, a simple empirical
trend emerged: the subjective learning difficulty of each
concept type was well-predicted by its Boolean complexity.
The Boolean complexity of a Boolean concept is simply the
length of the shortest propositional formula equivalent to the
original concept regarded as a propositional formula,
measured in /iterals (mentions of a variable name). Like its
more famous cousin Kolmogorov complexity (see Li &
Vitanyi, 1997), Boolean complexity reflects the inherent
incompressibility of the concept in question. The ease of
learning is well predicted by the degree to which the
concept can be faithfully compressed into a more compact
form. This finding thus represents a kind of simplicity
principle at work in human learning (cf. Pothos & Chater,
2002). The implication is that learners seek to compress the
examples they have observed into a more compact
representation, and learn more effectively to the extent that
the training examples are, in fact, faithfully compressible.

As has often been remarked in the literature, though,
Boolean features represent a particularly artificial space in
which to study categorization. One would like to extend this
simplicity principle to a wider and perhaps more natural
type of feature space. The notion of Boolean complexity,
however, does not extend easily to non-Boolean features.
Features with three or more discrete values (e.g., shape =
{square, circle, triangle} or species = {dog, elephant,
llama}), while intuitively seeming like a simple extension of
the Boolean features studied in the 1960s, do not lend
themselves to a simple propositional representation.
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Figure 1: Abstract concept forms, algebraic power spectra, and algebraic complexity values for concepts from the 3/6

family.

In more recent work, however, we have developed a
conceptual representation formalism called the concept
algebra (Feldman, 2004; Feldman, in press) that is suitable
for the expression of concepts defined over features with
arbitrary numbers of levels per feature. This newer approach
provides a natural complexity measure for concepts defined
in such spaces, called algebraic complexity, which we will
describe below. The main aim of this paper is to investigate
the relationship between algebraic complexity and empirical
subjective learning difficulty for concepts defined over two
features with three levels each (a 3x3 grid).

Non-binary discrete-featured concepts are of particular
theoretical interest, apart from their relation to algebraic
representations. As Lee and Navarro (2002) have recently
pointed out, such concepts are not well handled by most
contemporary theories, which are predominantly based on
similarity measures defined over continuous metric spaces.
Strictly speaking, such a metric is not defined in a Boolean
space, but one can easily be induced simply by imposing a
continuous space between the terminal 0 and 1
corresponding to false and true values of each Boolean
variable. But this is not possible with three or more
categorical values per feature, due to the absence of a
natural order (much less a metric) among the distinct values.
In their study, Lee and Navarro studied such concepts,
attempting to fit their data using the ALCOVE model of
Kruschke (1992), which assumes a metric space. They
found that ALCOVE only gave a good account of human
data when a similarity space was imposed on the object set
in such a way as to respect the qualitative pattern among the
discrete features. Once suitably equipped with such a
metric, and only then, ALCOVE was indeed successful in
modeling human performance. But Lee and Navarro
concluded that the nature of the qualitative pattern present in
the concepts is psychologically critical, exerting a strong
influence on the success of learning. Such qualitative
patterns are the primary focus of interest in the concept
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algebra, and algebraic complexity itself is expressly
designed to reflect the expressive complexity of exactly
such patterns. Hence such patterns, difficult to handle in
conventional accounts, but “home turf” for the concept
algebra, constitute a particularly critical test case to establish
the empirical validity of the concept algebra, and, more
generally, to better understand the nature of subjective
conceptual complexity.

The concept algebra and algebraic complexity

The concept algebra is based on the idea of regularities
among discrete features. If all objects in a set share an
attribute (a specific value of a feature), for example, we
acknowledge a particularly simple regularity. Six llamas,
among an otherwise diverse set of animals, share a salient
commonality, of which an observer would surely take note.
This “regularity” in this example is simple because it only
involves one feature. More complex regularities can be
constructed from larger numbers of features. The building
blocks in the concept algebra are regularities with an
implicational form,

o1(v]) = —0a(vp), )

to be read as “if feature o1 has value v{, then feature oy
doesn’t have value vy”—a quasi-causal “law” observed

among the observed objects. We speak of a set of objects as
“obeying” such a regularity if all of its members are
consistent with it (The strictness of this formulation can be
relaxed in various ways, which for simplicity of presentation
we don’t pursue here.) In the above regularity, there is one
antecedent (i.e. one attribute to the left of the implication
—). More generally there may be a conjunction of K of
them,
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Fig. 2. Abstract concept forms, algebraic power spectra, and algebraic complexity values for concepts from the 4/5

family.

01(v]) .0g(vK) = ~op(vp),  (2)

where D is the maximum number of features involved, the
dimensionality of the space in question. The number K,
called the degree of the regularity, reflects the dimension of
the regularity in question, because any such regularity can
be thought of as “prohibiting”—ruling out objects within—a
region of dimension K in the D-feature space. The generic
regularity in Eq. 2 says, in words, that if an object has value
vy of feature 1, and also value v, of feature oy (etc. up to
K), then it will not have value vp of feature op.
Geometrically, a K = 2 regularity prohibits a “plane”
(regardless of D) within the matrix of possible objects,
meaning that it defines a K-dimensional region in which
objects do not occur. Similarly, a K = 3 regularity prohibits
a volume (3-dimesional region), and so forth. Hence the
number K reflects in a very straightforward way the intrinsic
complexity of the regularity in question.

Most featural patterns cannot be described by such a
simple, uniform rule. But it turns out that any pattern can be
fully described as a finite combination of such rules. The
concept algebra describes how more complex patterns can
be represented as combinations (literally, conjunctions) of
implicational regularities, each of which has the form in Eq.
(2). (The combinatoric nature of the representation scheme,
whereby patterns are constructed out of combinations of
simple patterns, is what makes the theory “algebraic.”) The
fact that this is possible for any featural pattern, captured in
a “representation theorem” detailed in Feldman (in press), is
at the heart of the algebraic approach.

Critically, the simplest representation of a given pattern in
terms of component regularities—called its power series
expansion—may, and usually does, contain regularities of
various degrees. The power series thus gives a kind of
“spectral breakdown” of the pattern, analogous to the
Fourier expansion of a complex periodic function into sine
and cosine components. The power series expansion

963

decomposes the pattern into its constituent regular
components, enumerating which regularities—simple (low-
degree), complex (high-degree), and in-between—jointly
constitute the pattern.

The number of regularities at each degree (K =1, 2 ... D)
contained in a pattern’s power series is referred to as its
power spectrum. The power spectrum of a featural pattern
contains an enormous amount of information about what is
going on in the pattern. The spectrum can be easily plotted,
giving a useful graphical display of the given pattern’s
regularity structure (Figs. 1, 2). Patterns with most of their
power at low degrees are “simple,” in that most of their
structure can be described using small numbers of features
at a time. At the other extreme, patterns with most of their
power at high degree are “complex,” meaning that most of
what is going in them can only be described by referring to
many (or all) of the features at once. Most patterns are
somewhere in the middle (Feldman, 2004).

Finally, algebraic complexity C is simply the total
spectral power weighted by degree. This is a single scalar
number that summarizes where in the spectrum of
complexity the bulk of the pattern’s power lies. Thus this
number expresses the difficulty of expressing the pattern as
an algebraic combination of regularities, that is, its
complexity in algebraic terms. Several choices of weighting
scheme are possible (see Feldman, in press, for discussion).
A particularly simple scheme, which we use in this paper, is
to weigh each regularity of degree K by K + 1,

C=2(K+)hg (3)

where Ag is the spectral power at K, that is, the number
regularities of degree K that the pattern obeys. Because each
regularity of degree K requires K+1 literals to express (see

Eq. 2), weighting power this way means that C is the total
number of literals in the pattern’s complete power series.



This means that the resultant complexities are
commensurate with Boolean complexities, in that they are
both measured in literals. Note, though, that while Boolean
complexity is limited to binary variables, algebraic
complexity can tolerate arbitrary numbers of levels per
feature.

A Matlab package for computing algebraic power series,
spectra, and algebraic complexity values, is freely available
at ruccs.rutgers.edu/~jacob/demos/algebra.html.

Concepts chosen for study

As mentioned, the studies of Shepard et al. (1961) and
Feldman (2000) had used “exhaustive” concept sets,
containing every non-congruent class given a fixed range of
dimension and number of examples. We followed a similar
strategy here, using two three-valued discrete features as our
space. The total number of ot;jects with D features having V'
values each is V", here 3* or 9. We used concepts
designating either three or four of these objects as positive,
respectively referred to as the 3/6 concepts (Fig. 1) and the
4/5 concepts (Fig. 2), as well as their complements. As with
Boolean concepts, many of the possible concept structures
in this space are congruent, meaning that they are actually
equivalent after the labels have been swapped or permuted.
With the 3/6 concepts there are exactly four distinguishable
types, and with the 4/5 concepts there are five. These nine
concepts, along with their complements, were the objects of
study in our experiments. The figures show the concept in
canonical form (arbitrarily chosen from among the
equivalent forms), along with their power spectra and
algebraic complexities. Each category type is given a
standard label (A3, B3, ..., A4, ...), which we use for
reference in the remainder of the paper.

We included complementary versions of each concept in
our study because, while on the one hand they have very
similar logical structure to the originals, studies of Boolean
concepts have found a reliably inferior learning of them,
termed the “parity effect” in Feldman (2000), with the
“normal” form of each concept (smaller half presented as
positive) termed “up” parity, and the complementary form
(larger half presented as positive) termed “down” parity.

Algebraic complexity is generally different for
complementary categories, in contrast to Boolean
complexity, which is always identical for categories and
their complements (which differ in propositional expression
only by a negation, not affecting complexity). However we
suspected that subjects might focus on the smaller half (in
the spirit of the standard explanation of the parity effect
itself), and thus in what follows use the algebraic
complexity value derived from the smaller part regardless of

parity.

Experiment

Subjects

Fourteen undergraduates at Rutgers University received
class credit for participation. All confirmed having normal
color vision.
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Design, Materials and Procedure

For our two features, we chose color and shape. The three
values for color were {red, blue, yellow}, while the three
values for shape were {triangle, square, circle}. In each
case, the three values lack any salient natural order. Thus,
the basic stimuli were the nine objects (red triangle, red
square, red circle, blue triangle, blue square, blue circle,
yellow triangle, yellow square, yellow circle), corresponding
to the nine points on the 3x3 grids shown in the figures.
Stimuli were drawn on a computer screen. Each object
occupied a space on the screen that was approximately 1/9
of the screen-width square, at varying locations on the
screen as explained below.

Shepard, Hovland and Jenkins (1961) showed that
learning tasks based on memorization produce the same
rank ordering between logical structures (Experiments II
and IIT). Thus, the learning phase consisted of a presentation
of all nine objects on the screen. The screen was divided in
half horizontally; members from the randomly generated
category were located above the line with the label “In the
category,” while the remaining objects were located below
the line with the label “Not in the category.” Following
results from Feldman (2000), subjects were given a fixed
time to study the category: 15s for the 3/6 categories, and
20s for the 4/5-object categories.

The testing phase followed the learning period. The
learning screen was cleared, and each object was presented
one at a time in random order. Subjects had to press the “1”
key if they thought the object was in the category and the
“2” key if they thought the object was not. If the subjects
pressed the wrong key, a beep indicated to them that they
had made a mistake. The computer recorded each response
and time it took to respond. After all the objects had been
classified once, a screen appeared telling the subjects to
press any key when they were ready to start the next trial,
which would be a new category.

Each subject learned each category in three different
randomized instantiations. Here an “instantiation” means an
assignment of dimensions and values to specific meanings.
Category A3, Up parity, for example, might be instantiated
as all red objects, or all blue objects, or all triangles, or all
squares, etc. Thus, each subject learned a total of 54 [(5
types for the 4-object category + 4 types for the 3-object
category) x 2 parities x 3 different presentations] categories
during his or her session. The computer randomly generated
the order in which the 54 categories were presented. Each
session took approximately 45-60 minutes.

Results

Fig. 3 shows measured performance (log proportion correct)
as a function of algebraic complexity C. Data are collapsed
over parity. A linear regression confirms a decreasing trend
in performance as complexity increases: for 3/6 categories
(Fig. 3), R’ = 0.06, F(1,110) = 7.310, p=.008; for 4/5
categories (Fig. 4), R*=0.11, F(1,138) = 17.922, p <.001.
As with Boolean categories, subjects’ performance was



better in the up parity cases than down—that is, when the
smaller subset of objects was labeled as positive. But the
parity effect was not significant in this experiment (z = .842,
ns.). This presumably reflects the relatively small difference
in the numerosity of positive and negative examples (here
3/6 and 4/5, but as extreme as 4/12 in the Feldman (2000)
experiments), reducing the tendency to focus on the smaller
part of the training set.

Discussion

As predicted, classification learning becomes progressively
more difficult as algebraic complexity increases. While
other unknown factors clearly contribute to learning, Figs. 3
and 4 demonstrate that learning performance closely tracks
the intrinsic complexity of the concept forms, as quantified
by the algebraic complexity. As in Feldman (2000), subjects
have more difficulty learning concepts with more complex
internal forms, reflecting a simplicity principle at work in
human learning. The results here confirm that this effect
does not in any substantial way depend on the details of
Boolean representations or Boolean complexity, which are
not even computable here, nor on the use of binary-valued
features. The simplicity bias, we would argue, is more basic
than any of these particulars, provided only that one has the
means to quantify it. The concept algebra provides such
means, in a way that is apparently approximately
empirically correct.

Note further that the computation of algebraic complexity
has no free parameters or “fudge factors” to improve its fit
(other than the slope and intercept of the regression line
itself, required to map the algebraic complexity scale to the
empirical measurements). The number C in this sense
reflects directly the quantity of internal regularity inherent
in the featural pattern obeyed by the concept’s members.

As mentioned, alternative accounts of these data are not
easily available. Conventional accounts based on metric
similarity spaces cannot be applied directly. As discussed,
Lee & Navarro (2002) were able to induce ALCOVE to
predict human performance on these concepts, but only by
somewhat artificially expanding the three values of each
feature into a set of binary features (e.g., red absent/present;
blue absent/present, etc.), and then inducing a metric
between objects by counting shared features. This somewhat
roundabout procedure would be progressively more
computationally expensive as the number of features and
values increases. Additionally, such a method does not
allow for subjects to utilize the structural similarity between
the categories “All blue objects” and “All squares.” This
and other methodological differences may account for the
different rank ordering found by Lee & Navarro (2002) in
the 3/6 categories. Moreover, as we argued above, the very
need for it only goes to illustrate the importance of
incorporating the qualitative feature pattern in each concept
more directly into the model’s representation, as is the goal
in the algebraic approach.

More broadly, the influence of pattern regularity (i.e.,
simplicity) on human concept learning is notable because
such an effect is not, in principle, predicted by many
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Figure 3: Results from the 3/6 categories, showing log
proportion correct as a function of algebraic
complexity.

conventional theories. Exemplar theories (Medin &
Schaffer, 1978; Nosofsky, 1988), including ALCOVE, are
based on the idea of overt storage of training examples, and
lack any notion of the induction of a central tendency in the
observations. Such theories are not sensitive to the presence
of regularity, in a general sense, because they do not attempt
in any way to extract regularities from the observations. In
practice, such methods are in fact influenced by conceptual
complexity, but the magnitude of this influence is difficult
to quantify in advance, but rather is an epiphenomenon of
process of exemplar comparison and depends heavily on the
details of various parameters. By contrast, in the concept
algebra, the influence of regularity on performance can be
quantified analytically, as it is a direct reflection of the how
compactly each concept can be expressed in algebraic
language.

Prototype theories, by contrast, do predict an influence of
conceptual complexity on learning, as concepts ought in
principle to be difficult in accordance with how well or how
poorly they conform to the prototype schema—for example,
tightly clustering about a mean vs. highly dispersed
throughout a space. But again prototype theories cannot be
applied directly to our categorical feature space, as virtually
all accounts form prototypes by some kind of vector
averaging.

More recently, a number of authors have proposed
“hybrid” models that combine aspects of prototype
formation with exemplar storage (e.g. Love, Medin &
Gureckis, 2004; Nosofsky, Palmeri & McKinley, 1994).
Again, these theories cannot be directly applied here
because of the lack of similarity metric upon which their
components depend. More broadly, such theories recognize
the need for some degree of regularity extraction, as they
differentiate between the more “regular” elements of the
training set, from which they induce a rule of some kind,
and the less regular elements, which they store overtly. This
dichotomy is more similar in spirit to the concept algebra,
which overtly distinguishes between more and less regular
aspects of the training set, as captured by the measurement
of degree: low for regular components and broad trends,
high for irregular components and narrow details. In the
concept algebra, the mixture of such components embodied
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Figure 4: Results from the 4/5 categories, showing log
proportion correct as a function of algebraic complexity.

by each concept is itself the object of study, and the
algebraic complexity itself is the quantification of where in
this spectrum each concept actually lies. In this light one
could say that the algebraic complexity effect reflects the
mixed presence of both types of learning strategy, with the
net performance influenced by the degree to which each
concept actually requires memorization.

Limitations and Future Work

The concepts tested here manifested a fairly limited variety
of concept forms, and thus a fairly narrow range of
complexity values. The concept algebra formalism makes it
easy to generate analogous predictions in arbitrary cases of
arbitrary dimension. Hence one very obvious avenue for
future work is to expand the range of concepts tested, for
example four- and five-dimensional structures, with more
than three values per feature. Such concepts would, of
course, provide more strenuous tests of the predictions of
the concept algebra, but moreover would perhaps heighten
the contrast with any alternative predictions such as those
derived from induced metrics. Future studies along these
lines are currently being planned in our laboratory.

Also of interest will be to see how ordering structures
other than those considered here, such as ordering of feature
values along each feature, influence performance. As
explained above, in the current experiment we chose
features with no obvious ranking. However, many feature
scales of natural objects do have such natural orders, which
may be psychologically influential apart from any metric
scale derived from them. In contrast to the concepts tested
here, concepts built around such features would not have
natural representations in the concept algebra without some
extension of the theory. Such extension will, it is hoped,
allow the human bias towards conceptual simplicity to be
understood in the broadest context possible.
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