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Abstract to deduce the word argument structures. In contrast, Gleit-
This paper addresses possible interactive effects betwerh man (1990) proposed an alternative account called syatacti
learning and syntax learning at an early stage of develop- bootstrapping. She argued that children use syntactic know
ment. We present a computational model that simulates how edge they have developed to learn what words mean. More
mg g?ggggsfrggp] gesiynqtefg ;?:é“t'g%lﬁ’”rgcs‘%staif]geﬁq ‘é"r?trigs'i";‘;g‘ specifically, the semantically relevant syntactic stroestsur-
pings, and how the emergence of links between syntax and rounding avgrb, such as the subcatggorlzathn frames droun
word learning could facilitate subsequent word learninge T & Verb, provide contextual cues for its meaning. These two
central idea of our statistical model is to categorize wantts hypotheses focus on different aspects of potential intieras

ggor%gz r?i%szdo??h?seeirssynrgi:ctﬂ:ccrgtlgs ;?gstﬂgi?] eslg)r(?ate'?]ema between syntax and semantic learning, and both of them have
edge acqu?red from a c%ncurrent wc?rd Iearningprocess. Once been supported by empirical studies. .
built, those syntax-semantics mappings can be furthereil The present paper proposes a computational model of how
as a syntactic constraint in statistical word learning. \We a  Syntax-semantics mappings can be learned and emerged from
plied the model to realistic data collected from child-nesth two language learning processes — syntax learning and word
picture book reading interaction. A comparative study be- learning, and how these mappings can then facilitate word

tween a statistical model and the model based on both statist . . . . .
cal and syntactic information shows that syntactic cuesogan  |€@rning. Our study is quite different from previous work

seamlessly integrated in statistical learning and siganifiy in several important ways. First, we propose and implement
improve word learning performance. a general statistical-learning mechanism in which syitact
cues can be seamlessly integrated with already learned se-
Introduction mantic knowledge to help the learning of new words. We

suggest that syntax can act as a linguistic spotlight that fa

One of the most complex learning tasks young children arejlities word learning by selecting, grouping and hightigly
faced with is to learn their native language. Language acthose words that are likely to have the same type of refer-
quisition, of course, consists of several distinct taskshsas  ents. Using the proposed learning mechanism, we demon-
speech perception, speech segmentation, word learning agrate how syntactic learning could help object name learni
syntax learning. Among others, word learning involves howand how the development of grammatical abilities continues
to map a phonological form to a conceptual representationg be highly linked to lexical development. Second, both the
such as associating the sound “dog” to the concept of dogroposed learning mechanism of syntax-semantics mappings
Thus, the crucial issue in word learning is to build word- gnd the mechanism of utilizing the mapping knowledge in
to-world mappings from language and extralinguistic con-word learning are general that can be applied not only to a
texts. Syntax learning, on the other hand, is mainly abougpecific syntactic category (verb, etc.) but also to othéer ca
how to categorize words into grammatical categories (e.gegories. Thus, we suggest that the acquisition of syntax and
noun, verb, etc.) which are basic building blocks of gram-the integration of syntactic cues in word learning mightpar
mar, and then how to acquire the hierarchical and contextially account for the explosive expansion of vocabulary as
sensitive structures that are represented by those signtatt  primary syntactic structures are gradually acquired. d;hie
egories. Therefore, syntax learning uses sequential sfenbo apply the model to raw data collected from everyday parent-
data (sentences in a language, etc.) to construct a grammarghildren interaction but not to some artificial or synthesiz

Although acquisition of the lexicon and acquisition of the data, and show a dynamic picture of how the learning mech-
grammar seem to address totally different issues, these twanism works with realistic input.
learning processes might be closely related due to universa Related Work
correspondences between syntax and semantics. For iastanghere are a number of existing models that account for dif-
Bloom (1994) pointed out bidirectional mappings betweenferent aspects of word learning. Plunkett, Sinha, Miller,
syntax and semantics, such as count nouns to kinds of irend Strandsby (1992) built a connectionist model of word
dividuals, mass nouns to kinds of portions, and Noun Phrasdearning in which a process termed autoassociation mapped
(NPs) to individuals. Such mappings suggest a possible boopreprocessed images with linguistic labels. The linguis-
strapping procedure between these two learning processedie behavior of the network exhibited non-linear vocabu-
the progresses in one learning process could facilitate thiary growth (vocabulary spurt) that was similar to the pat-
other learning process. In fact, two compelling hypothesesern observed in young children. Colunga and Smith (2005)
have been proposed by theorists. The semantic bootstgppipresented a connectionist model showing that regularities
hypothesis (Pinker, 1989) argued that word meanings can keemong object and substances categories were learnable and
antecedently acquired from the observation of events @ th generalizable enabling the system to become, after train-
used to determine the syntactic category of each word aniohg, a more rapid learner of new object and substance
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names. Siskind (1996) developed a mathematical mode objects co-occur in a single learning moment without any
based on cross-situational learning and the principle of co information about which word goes to which object from a
trast, which learned word-meaning associations when preial itself. Only 3.13%(132/4223) of co-occurring pairs are
sented with paired sequences of pre-segmented tokens andrrect, which shows the difficulty of the word-learningkas
semantic representations. Regier (2005) suggested that at As shown in Table 1, every word in a learning situation can be
tion to relevant aspects of form and meaning could accournpotentially associated with any co-occurring object. Thius

for developmental changes without a change in associativiearning task for both young children and simulated leaner
mechanism. Tenenbaum and Xu (2000) developed a compis to find a very few correct lexical items from a huge amount
tational model based on Bayesian inference which could infeof irrelevant co-occurring words and objects.

meanings from one or a few examples without encoding the Table 2: Statistics of training data

constraint of mutual exclusion. Li, Farkas, and MacWhin-| # of words | # of unique words| words per situation
ney (2004) proposed a SOM-based developmental model that 3571 581 >8

learned topographically organized representationsriguiis- # of objects| # of unique objectg objects per situatior]
tic categories over time. However, the role of syntax in word 1230 113 >3

learning has not been systematically studied in cognitere d : : : :
velopment (but also see Siskind, 1992 using syntactic con #gf?gs # of u2|2q2u3e pairs | # of colrgzct pairs
straints to help the acquisition of semantics based on a-ogi

inference mechanism). In addition, artificial or synthesiz The Model

data are used to demonstrate a model’s performance and fRur model consists of three components: statistical word
lustrate the key ideas in a model. In contrast, this work aplearning without syntax, syntax learning and the integrati
plies the data collected from natural parent-child intéemc ~ Of syntactic knowledge in word learning. The central idea

to our proposed model and the results show what a learninig that a syntax learning process can learn structural-infor
mechanism could achieve from realistic data. mation in unsupervised mode based on statistical regulari-

Data ties in speech. Meanwhile, a word learning process uses co-

Six 18-month-old children and their parents participated i 0ccurrence regularities between language and extraBtigui
data collection. Each parent was asked to narrate one gictufontexts to build word-referent mappings. Importantly th
book. In total, six books for 1-3 year old children were used results in these two learning processes can be merged to gen-
Parents were also instructed to act naturally without amy co €rate new kinds of statistical regularities. More spedifica
straint about what they had to say or what they had to dothe syntax learning process categorizes words into several
Picture book narration is one of common parent-child activi 9roups based on their linguistic roles. Semantic meanings
ties in everyday life from which children learn the names ofof the words in a syntactic category can be acquired through
objects shown in the picture books. Therefore, the data cothe word learning process and jointly determine the seman-
lected from this setting is realistic and representativevefy-  tic meaning of that syntactic category. Thus, the integrati
day word learning. The data used in this simulation studyof the results in these two learning processes generates the
were our descriptions of video clips. More specifically, ourMappings between syntax and semantics, which in turn can
description of the audio input — what we feed into the stafacilitate lexical acquisition by considering the syntacole
tistical simulated learner — is the entire list of spokendgor Of @ new word in word learning. The following subsections
Our description of the video stream, again what we feed intdVill describe this learning mechanism in detail.
the statistical learner, is the list of all the (basic-lovah-  Statistical Word Mapping Without Syntactic Cues
jects in picture books that a narrator was attending to fronin early word learning without syntactic cues, childrendav
moment to moment when spoken utterances were produceth start by pairing spoken words with co-occurring contexts
Table 1 shows several examples wherein each row represerasllecting multiple such pairs, and then figuring out the eom
one learning situation (defined by speech silence) congisti mon elements. Although no one doubts this process, there has
of multiple words and multiple objects. been few modeling studies (but also see Siskind, 1996). Yu,

Table 1: Examples of training data Ballard, and Aslin (2005) introduce a formal model of statis
visual context tical word learning which provides a probabilistic frameto
for encoding multiple sources of information. Given mukip
scenes paired with spoken words collected from natural in-

speech

is that a little baby

and what is the little baby holdin

that is right flowers

that is a pumpkin and look

what is this back there

boy, flowers, bird

y boy, flowers, bird
boy, flowers, bird
boy, pumpkin, leave
boy, pumpkin, leave

teractions between caregivers and children, the modelés ab
to compute the association probabilities of all the possibl
word-meaning pairs.

The general setting is as follows: suppose we have a
word setX = {w,ws,...,wy} and a meaning sét’ =
{my, ma,...,mpr}, whereN is the number of words anti/
is the number of meanings (basic-level objects, etc.). I et
be the number of spoken utterances. All word data are in a

sety = {(S,5%)),1 < s < S}, where each spoken ut-

(s) :

The statistics of the data set (the sum over six subjectdff@nceSw’ CONSIStS Ofr WOrdSwy(1), Wu(2), -+ Wu(r), and
are described in Table 2. The learning environment is rathef(¢) can be selected from 1 &. Similarly, the correspond-
highly ambiguous wherein on average more than 8 words anhg contextual informatiorS,(;f) include! possible meanings
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My (1), Mo (2), -+ Moy @Nd the value ob(j) is from 1 toM. perspective, this result might be quite in line with the tear
Assume that every word,, can be associated with a mean- ing performance of young children who also learn syntactic
ing m,,. Given a data se{, We use the machine translation knowledge in an unsupervised manner and would not learn
method proposed by Brown, Pietra, Pietra, and Mercer (1994 grammar overnight but instead gradually acquire and accu-
to maximize the likelihood of generating the meaning stsing mulate syntactic knowledge. In this way, equivalence eass

given English descriptions: can be treated as temporary results toward grammatical cate
P(SW 82 585 g(2)  g(5)) gories. The next section will show how this partial lingigst
s ) ) knowledge can be utilized in word learning. _
_ H Zp(s(s) a|S(S)) Table 3: Examples of the results of syntax learning
m o TR E582 { and at below hope so in by maybe except...

s=1 a

s E584 { big little }

l I
€ E586 { apples here there these they flowgrs
AN m”l} j wu 7 0
S:r[l (r+1) jI;[l ;p( whouw) E588 { rabbit rooster bear bunny cat mom dog dyck

where the alignment indicates which word is aligned with E590 { front case}
which meaningp(m,; |w, ) is the association probability | P583 [aE584]
for a word-meaning pair: P585 [Eb586 are]
plmolwaiy) = PMy) |l Wui), Gu))IP(Gu) [Wa()) P587 [E582the E588]
wherep(g.(;) [wa (s ) is the probability that a word has a refer- | PS589 [in ES90 of ]
entandp(m,;)|wu(i), gu(i)) IS the association probability of |earning Syntax-Semantics Mappings

a word-referent pair given that the word has a referent. Wlth.l.he general idea is like this: the syntax learning process ca

out any linguistic knowledge and starting from scratch, theegorizes words into groups based on their syntactic roles.

ﬁ/l'eanwhile, the word learning process builds the associatio
probabilities between words and objects. Building syntax-
semantics mappings can then be accomplished by integrating
association probabilities{m,  [w, ) the results of these two I_garning processes. The presemimod
Early Syntax Learning v(5) Mu(@) /- explores how two specific mappings could emerge from the
) ) integration: (1) those words with high association prolabi
We used to the learning algorithm developed by Solan, Hornges with objects (thus, with similar semantic propertias)
Ruppin, and Edelman (2005) to extract linguistic strucure g|so Jikely to be in the same syntactic groups built by the syn
The method represents sentences as paths on a graph agd |earning process, and (2) the words that are less likely t
words as vertices on the paths. It aligns and identifies thosgsfer to objects are also grouped together based on their syn
sentences that share some words and extracts both commgyitic roles. In this way, all the words in a syntactic class ¢
and variant words in those sentences. The approach then prgjintly define the semantic role of that class. Next this link
gresswely infers Imgwsﬂc structures from th_e accruedis  petween syntax and semantics can be used to guide subse-
tical knowledge. For instance, given two simple sentencegyent word learning. For example, if most words in a syntac-
“this is a cat” and “here is a dog”, the method can extract thgic class are associated with some object kinds and therefor
pattern % is ay” while x can be replaced bithis, her¢ and  they are likely to be object names, other words in the same
y stands for{cat, dog. Technical details can be founded in ¢|ass should also be likely to associate with object kinds be
Solan et al. (2005). . _ cause of the inherent relationship between count nouns and
Table 3 shows examples of applying the syntax learningpject names. Thus, when the model considers whether a new
method on our data. Induced syntactic structures are repreyord refers to an object, it is based on not only the associa-
sented in two forms: patterns and equivalence classes.-A p&jgn probability between these two (co-occurrence staist
tern represents a set of full (or part of ) sentences or phrasgegularities between word-to-world mappings) but alsotwha
that share common symbols. Those sympols can be e'thers"’}'ntactic class this word is in. By doing so, syntax-seneanti
word or a group of words termed an equivalence class thahappings may improve the performance of statistical word
can be replaced in the pattern to form different sentences Qgarning.
phrases. For instance, the pattern P587 can represent dif-\njithout any linguistic cues, the previous model assumes
ferent phrases by selecting different members in the.equivmat every word (even function words) could be associated
alence classes E582 and E588, such as “and the rabbit”, “anglith an object referent and therefore estimates the aggmtia

;I;]hus, the me{nb?rs "? an 3quivalen|ce C'%SIS ofa p?tt?[rgf%ﬁyow association probabilities are estimated by two parts:
e same syntactic role and are replaceable in contex a
y P p(mlw) = p(glw)p(m|w, g)

syntactic pattern. We notice that most equivalence classes

are not necessarily identical to grammatical categorids. A Zp(0|w)p(g|0) x p(m|w, g)

though all the members in E588 are object names, E586 con- C

tains not only object names (apples, flowers,etc.) but alsavhere a new variabl€' represents the syntactic class of a

pronouns (they,these,etc.). This is because the unsgpdrvi word. The model uses both the syntactic class of a word
method here can induce only partial and not-precise knowlp(C|w) and the semantic property of the syntactic class
edge from a limited amount of data. From a developmentab(g|C) to estimate the probability that this word refers to

fore, p(gn|w,,) is set to be 1 for every word. The estimate
of p(m,|wy, g,) can be found in Yu et al. (2005). The up-
per right figure in Figure 1 shows the results of word-reféeren
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syntax learning

E588:{ rabbit rooster bear bunny cat mom dog duck}
E582:{ ah and at below so in by maybe now from }
E596:{ he she so there this everyone}

E611:{ a the }

E638:{ he she}

E658:{ side bottom middle }

E590:{ front case }

E615:{ girl bear horse boy cat }

E617:{ read take make put}

E619:{ sky boy lake moon dad town tree difference }
E621:{ grass sleep stars}

E623:{ bed hippo pig flashlight }

E625:{ horns books mom }

E627:{ bed bunny dog pig }

E634:{ bird caterpillar chicken }

E636:{ reaching back still piled }

— E999:{is the and on going to a all of these are...}

girl
word flower:
g0

word-object association
object
bear rabbit dish

mom  cat
s boy bed water dog

NON

all
that
which|
bear
yellow

-abbit

—cat
his
things|
girl
now
| dog
for
wear
some
here

has
it

...... going
mom

\ p(m| w)
P(g1C) !

E588:{ rabbit rooster bear bunny cat mom dog_duck
LI B

Figure 1:Learning syntax-semantics mappingsUpper left: the syntax learning process categorizes wartdssieveral syntactic groups.
Upper right: the word-learning process estimates the &stsmt probabilities of any co-occurring word-object gaiepresented by cells in
the figure. White color means high association probatslitiad dark color means low association probabilities. Bottdhe integration of
semantic and syntactic knowledge resultg(n|C) — the semantic property of each syntactic clagg)C') can then be used to improve the
estimates of word-object association probabilities bystdering semantic properties of other words in the samepgrou

an object kind. In practice, a word could appear in morethe above section. The other approach uses syntax-sesiantic
than one equivalence (syntactic) classes, each of whic is amappings to facilitate word learning. In both approaches, a
sociated with a linguistic pattern. Therefogg(C'|w) is the  lexical itemL(m; < w;) is discovered based on both asso-
probability that a wordv belongs to a syntactic clagdand  ciation probabilities of a word-object pair and the numbfer o
> p(Clw) = 1. The probability that a word is in a specific their co-occurring times:

class can be estimated based on normalizing the occurrences  L(m; < w;) = p(mjlw;) x (# < mi, w; >)
of the word in thg; pattern: % < G, w; > Both models can then set up a threshold to select a set of
p\&iwi) = # w; word-object pairs from all the co-occurring ones in the asso

ciation matrix. Two metrics are used to evaluate the word-
learning performances for these two approaches: (1) word-
learning accuracy measures the proportion of selected pair
that are actually correct and (2) word-learning completsne

1 measures the proportion of correct pairs in the data that a
p(gilCi) Il Z meyﬁ}ngONp(vag) model successfully selects. The choice of different thresh
. . flweC; T . ) olds leads to different values in accuracy and completeness
Figure 1illustrates the syntax-semantics mapping mechay, compare these two approaches, we make one metric con-
nism with examples. If a word is in a syntactic class whereingant and measure the difference in the other metric. In one
other words have high association probabilities to objéltes | ,a5sure as shown on the left of Figure 2, the completeness
probability that this word also associates with an objentki  hercentage is fixed and we show that encoding syntactic cues
would increase. Similarly, if a word is syntactically gr@  jnnrove accuracy. Similarly, the completeness in thesttati
with other words without semantic mappings (such as func4| and syntactic model is better than that of the purelysstat
tion words), it is less Illkely that'the word refers to an objec tica1 model when the accuracy is fixed.
kind. Overall,p(m|w) is determined not only by(m|w, g) Table 4 shows the top 25 word-object pairs selected by two
but also the semantic properties of all the syntactic cssenqgels as a comparison. 15 word-object pairs are selected
that this word belongs to. by both models and all of them are correct except one pair

Experimental Results “climbs™-boy. For the pairs (marked by *) selected by the
We applied the same data set to two learning approachestatistical model only, 2 out 10 are correct. One crucial rea
One is purely based on statistical learning as described ison that most of those pairs are incorrect is that some fumcti

Meanwhile,p(g|C) is the probability that the words in a
syntactic clasg”' refer to object-kind categories, which is
jointly determined by the association probabilities oftak
words in this class:
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Table 4: The top 25 lexical items learned in these two meth-

1 1
ods. The marked items are word-object pairs that are selecte
08 0.8 — by one model but not the other. The bold words are incorrect.
statistical statistical+ syntactig
o6 | os — “tree” —tree “dog” - dog
04 I - “bear” —bear “pig” — pig
' “dog” —dog “tree” —tree
02— I e - “bird” — bird “sheep” —sheep
“make” —boy “bear” —bear
0 . e 0 “flower” — flower “book” — book
tatisit tatisitcal + isti isti + “ ” . ”
S nmatic e bowl” — bowl flower” — flower
(a) completeness = 0.6 (b) accuracy = 0.6 “horse" —horse “bed" — bed
Figure 2: A comparison of statistical learning and statistical “climbs” —boy “crib” = crib
learning with syntactic cues.Left: With a fixed value of complete- m = “ »
ness, the accuracy of our proposed model is much betterhbaoft pond” — pond bowl” — bowl
the statistical model. Right: With a fixed accuracy, the clatgness “rooster” —rooster “hat” — hat
of our model is significantly better than that of the statitimodel. “finally” —bed “climbs” —boy
“sun” —sun “rooster” —rooster

words happen to frequently co-occur with some specific ob-
jects (but not other objects). Therefore, both their asdimri
probabilities and their numbers of co-occurrences are rela
tively high. In contrast, the statistical and syntactic rgeh
improved the performance by removing those pairs from the

“snake” —snake

“horse” —horse

“getting” —book

“chicken” —chicken

“umbrella” — umbrella

“bird” — bird

top items in its list based on the syntactic roles of those{fun ot~ gi attle” - rattle
tion words. As shown in Table 4, 8 out 10 pairs (marked by gﬁld _Cdaatld ,,S?Cifs,, _SSZIS(E ot
o) selected by our model are correct. Overall, these two lists — : “p -
provide a concrete example of the differences between thes at’ —crib duck” — duck
two approaches “bed” - bed “SUI’I" —Ssun

General Discussion these’ —hen “boat’ ~boat

e “going” —duck “girl” — qirl

Three statistical learning mechanisms are introducedrand i “boat” —boat “dad” — dad
plemented in the model: statistical word learning to build “see” — boy “blanket’ — grass

word-to-world mappings, statistical syntax learning te ac
quire linguistic patterns, and word learning with syntax- : e i i
semantics mappings. This section discusses reIevant-expé\J.V0 grammars in an artificial language, 12-month-olds could

im_ental studies ano_l findings that support the cognitivegiau i r:zc?hrgltngtgtigteizvalﬁlgg?r?irfgoﬁi;hhet grgyg;aggaséos?r?gae; -
bility of those learning mechanisms.

quiring rudimentary syntax (the ordering of words, etc.).
Statistical word learning One of the most important find- Meanwhile, recent computational studies show that strattu
ings in language acquisition is that humans are sensitive tRnowledge can be acquired through relatively simple com-
statistical regularities in language and are able to aequirputational mechanisms (Redington, Chater, & Finch, 1998;
linguistic knowledge based on statistical learning. $affr Mintz, Newport, & Bever, 2002; Solan et al., 2005). For
Aslin, and Newport (1996) demonstrated that 8-month-oldnstance, Mintz et al. (2002) showed that grammatical cate-
infants are able to find word boundaries in an artificial lan-gories of nouns and verbs can be acquired through calcglatin
guage based only on statistical regularities. Can stzdisti distributions over words. Specifically, a distributionabdy-
learning also account for word acquisition? The kind of sta-sis was developed in which nouns and verbs were success-
tistical learning requested in word-to-world mappings Wdou fully categorized based on their co-occurrence pattertis wi
be quite different from statistical speech segmentationt- n surrounding words. The syntax learning mechanism we ap-
simply count the frequency or condition probabilities ofrlo  plied and integrated in our model is another example of how
or syllables in a speech stream, but compute co-occurrig st grammatical structures can be deduced in unsupervised mode
tistical regularities across language and extralinguistin-  (Solan et al., 2005). Putting together, statistical sytgaxn-
texts. Nonetheless, our recent findings (Yu & Smith, sub4ng is also likely to be a fundamental mechanism in language
mitted) show that both adult and children are sensitive taacquisition.

statistical regularities. When presented with multiplals; Interaction between word and syntax learing processes

each containing multiple pictures and names with no inforgacent empirical studies have suggested that syntactic cue
mation about which picture is paired with which name, both., 4 play a crucial role in the course of lexical develop-

adults and even 12-month old babies are able to build correchant  Gleitman (1990) demonstrated that learners use evi-
picture-name pairings. The computational model of staéibt  jence from the syntactic structure in which verb occurs to

word learning in this work demonstrates how such leaming,g|, yerp learning. The role of syntactic cues is partidylar
mechanism works. useful when an extralinguistic scene is insufficient for- dis
Statistical syntax learning Gomez and Gerken (1999) covering the meaning of a verb. For instance, there aregaire
have shown that after less than 2-min exposure to one oferbs that most often share the same extralinguistic cgntex
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